1,033
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Introducing Students to the Role of Assumptions in Mathematical Activity

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aktaş, M. C. (2016). Turkish high school students’ definitions for parallelograms: Appropriate or inappropriate? International Journal of Mathematical Education in Science and Technology, 47(4), 583–596. https://doi.org/10.1080/0020739X.2015.1124931
  • Bakker, A., & van Eerde, D. (2015). An introduction to design-based research with an example from statistics education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 429–466). Springer. https://doi.org/10.1007/978-94-017-9181-6_16
  • Ball, D. L., & Bass, H. (2000). Making believe: The collective construction of public mathematical knowledge in the elementary classroom. In D. Philips (Ed.), Constructivism in education: Yearbook of the National Society for the Study of Education (pp. 193–224). University of Chicago Press. https://doi.org/10.1177/016146810010200707
  • Ball, D. L., & Forzani, F. M. (2009). The work of teaching and the challenge for teacher education. Journal of Teacher Education, 60(5), 497–511. https://doi.org/10.1177/0022487109348479
  • Barwell, R. (2005). Ambiguity in the mathematics classroom. Language and Education, 19(2), 117–125. https://doi.org/10.1080/09500780508668667
  • Beckmann, S. (2005). Class activities to accompany Mathematics for Elementary Teachers. Pearson.
  • Bruner, J. (1977). The process of education (Rev. ed.). Harvard University Press. https://doi.org/10.2307/j.ctvk12qst
  • Byers, W. (2007). How mathematicians think: Using ambiguity, contradiction, and paradox to create mathematics. Princeton University Press.
  • Cabassut, R., Conner, A. M., İşçimen, F. A., Furinghetti, F., Jahnke, H. N., & Morselli, F. (2012). Conceptions of proof – in research and teaching. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education: The 19th ICMI Study (pp. 169–190). Springer. https://doi.org/10.1007/978-94-007-2129-6_7
  • Cobb, P., Jackson, K., & Sharpe, C. D. (2017). Conducting design studies to investigate and support mathematics students’ and teachers’ learning. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 208–233). National Council of Teachers of Mathematics.
  • Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom mathematics traditions: An interactional analysis. American Educational Research Journal, 29(3), 573–604. https://doi.org/10.3102/00028312029003573
  • Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25(2), 119–142. https://doi.org/10.3102/01623737025002119
  • Common Core State Standards Initiative (2010). Common core state standards for mathematics. https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf
  • Davies, B., Alcock, L., & Jones, I. (2021). What do mathematicians mean by proof? A comparative-judgement study of students’ and mathematicians’ views. The Journal of Mathematical Behavior, 61, 100824. https://doi.org/10.1016/j.jmathb.2020.100824
  • Dawkins, P. C. (2014). When proofs reflect more on assumptions than conclusions. For the Learning of Mathematics, 34(2), 17–23.
  • de Villiers, M. (1994). The role and function of a hierarchical classification of quadrilaterals. For the Learning of Mathematics, 14(1), 11–18.
  • Fawcett, H. P. (1938). The nature of proof (1938 Yearbook of the National Council of Teachers of Mathematics). Boureau of Publications, Teachers College, Columbia University.
  • Forman, E. A., & Ansell, E. (2002). Orchestrating the multiple voices and inscriptions of a mathematics classroom. Journal of the Learning Sciences, 11(2), 251–274. https://doi.org/10.1080/10508406.2002.9672139
  • Foster, C. (2011). Productive ambiguity in the learning of mathematics. For the Learning of Mathematics, 31(2), 3–7.
  • Fujii, T. (2014). Understanding the concept of variable through whole-class discussions: The community of inquiry from a Japanese perspective. In F. K. S. Leung, K. Park, D. Holton, & D. Clarke (Eds.), Algebra teaching around the world. (pp. 129–148). Sense Publishers. https://doi.org/10.1007/978-94-6209-707-0_8
  • Goldman, S. R. (2023). Learning in the disciplines: A conceptual framework. In I. Wilkinson & J. Parr (Eds.), International encyclopedia of education: Vol. 6. Learning, cognition, and human development (4th ed., pp. 305–314). Elsevier. https://doi.org/10.1016/B978-0-12-818630-5.14042-4
  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). Routledge.
  • Grosholz, E. R. (2007). Representation and productive ambiguity in mathematics and the sciences. Oxford University Press.
  • Jackson, K., Garrison, A., Wilson, J., Gibbons, L., & Shahan, E. (2013). Exploring relationships between setting up complex tasks and opportunities to learn in concluding whole-class discussions in middle-grades mathematics instruction. Journal for Research in Mathematics Education, 44(4), 646–682. https://doi.org/10.5951/jresematheduc.44.4.0646
  • Jahnke, H. N. (2007). Proofs and hypotheses. ZDM, 39(1–2), 79–86. https://doi.org/10.1007/s11858-006-0006-z
  • Jahnke, H. N., & Wambach, R. (2013). Understanding what a proof is: A classroom-based approach. ZDM, 45(3), 469–482. https://doi.org/10.1007/s11858-013-0502-x
  • Kieran, C., Doorman, M., & Ohtani, M. (2015). Frameworks and principles for task design. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI study 22 (pp. 19–81). Springer. https://doi.org/10.1007/978-3-319-09629-2_2
  • Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into its nature, its learning, its teaching. Springer. https://doi.org/10.1007/978-3-319-32258-2
  • Kline, M. (1980). Mathematics: The loss of certainty. Oxford University Press.
  • Komatsu, K. (2016). A framework for proofs and refutations in school mathematics: Increasing content by deductive guessing. Educational Studies in Mathematics, 92(2), 147–162. https://doi.org/10.1007/s10649-015-9677-0
  • Komatsu, K. (2017). Fostering empirical examination after proof construction in secondary school geometry. Educational Studies in Mathematics, 96(2), 129–144. https://doi.org/10.1007/s10649-016-9731-6
  • Komatsu, K., & Jones, K. (2019). Task design principles for heuristic refutation in dynamic geometry environments. International Journal of Science and Mathematics Education, 17(4), 801–824. https://doi.org/10.1007/s10763-018-9892-0
  • Komatsu, K., & Jones, K. (2020). Interplay between paper-and-pencil activities and dynamic-geometry-environment use during generalisation and proving. Digital Experiences in Mathematics Education, 6(2), 123–143. https://doi.org/10.1007/s40751-020-00067-3
  • Komatsu, K., & Jones, K. (2022). Generating mathematical knowledge in the classroom through proof, refutation, and abductive reasoning. Educational Studies in Mathematics, 109(3), 567–591. https://doi.org/10.1007/s10649-021-10086-5
  • Komatsu, K., Jones, K., Ikeda, T., & Narazaki, A. (2017). Proof validation and modification in secondary school geometry. The Journal of Mathematical Behavior, 47, 1–15. https://doi.org/10.1016/j.jmathb.2017.05.002
  • Komatsu, K., Stylianides, G. J., & Stylianides, A. J. (2019). Task design for developing students’ recognition of the roles of assumptions in mathematical activity. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & M. Veldhuis (Eds.), Proceedings of the eleventh congress of the European Society for research in mathematics education (pp. 233–240). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
  • Komatsu, K., Tsujiyama, Y., Sakamaki, A., & Koike, N. (2014). Proof problems with diagrams: An opportunity for experiencing proofs and refutations. For the Learning of Mathematics, 34(1), 36–42.
  • Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge University Press. https://doi.org/10.1017/CBO9781139171472
  • Lampert, M. (1992). Practices and problems in teaching authentic mathematics. In F. K. Oser, A. Dick, & J. L. Patry (Eds.), Effective and responsible teaching: The new synthesis (pp. 295–314). Jossey-Bass Publishers.
  • Leatham, K. R., Peterson, B. E., Stockero, S. L., & Zoest, L. R. (2015). Conceptualizing mathematically significant pedagogical opportunities to build on student thinking. Journal for Research in Mathematics Education, 46(1), 88–124. https://doi.org/10.5951/jresematheduc.46.1.0088
  • Leikin, R., & Dinur, S. (2003). Patterns of flexibility: Teachers’ behavior in mathematical discussion. In Proceedings of the 3rd Conference of the European Society for Research in Mathematics Education. Bellaria, Italy. Retrieved October 28, 2022, from http://erme.site/cerme-conferences/cerme3/cerme-3-proceedings/
  • Marmur, O., & Zazkis, R. (2021). Irrational gap: Sensemaking trajectories of irrational exponents. Educational Studies in Mathematics, 107(1), 25–48. https://doi.org/10.1007/s10649-021-10027-2
  • Marmur, O., & Zazkis, R. (2022). Productive ambiguity in unconventional representations: “What the fraction is going on?” Journal of Mathematics Teacher Education, 25(6), 637–665. https://doi.org/10.1007/s10857-021-09510-7
  • National Institute for Educational Policy Research (NIEPR) (2016). Reports of National Assessment of Academic Ability in 2016: Lower secondary school mathematics. NIEPR. http://www.nier.go.jp/16chousa/pdf/16kaisetsu_chuu_suugaku.pdf [in Japanese]
  • National Research Council (NRC). (2013). Next Generation Science Standards: For States, by States. The National Academies Press. https://doi.org/10.17226/18290
  • Ohtani, M. (2014). Construction zone for the understanding of simultaneous equations: An analysis of one Japanese teacher’s strategy of reflecting on a task in a lesson sequence. In F. K. S. Leung, K. Park, D. Holton, & D. Clarke (Eds.), Algebra teaching around the world (pp. 113–127). Sense Publishers. https://doi.org/10.1007/978-94-6209-707-0_7
  • Ouvrier-Buffet, C. (2006). Exploring mathematical definition construction processes. Educational Studies in Mathematics, 63(3), 259–282. https://doi.org/10.1007/s10649-005-9011-3
  • Parenti, L., Barberis, M. T., Pastorino, M., & Viglienzone, P. (2007). From dynamic exploration to “theory” and “theorems” (from 6th to 8th grades). In P. Boero (Ed.), Theorems in schools: From history, epistemology and cognition to classroom (pp. 265–284). Sense Publishers. https://doi.org/10.1163/9789087901691_016
  • Polya, G. (1957). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press.
  • Prediger, S. (2019). Theorizing in design research: Methodological reflections on developing and connecting theory elements for language-responsive mathematics classrooms. Avances de Investigación en Educación Matemática, 15, 5–27. https://doi.org/10.35763/aiem.v0i15.265
  • Rupnow, R., & Randazzo, B. (2023). Norms of mathematical definitions: Imposing constraints, permitting choice, or both? Educational Studies in Mathematics, 114(2), 297–314. https://doi.org/10.1007/s10649-023-10227-y
  • Sherin, M. G. (2002). A balancing act: Developing a discourse community in a mathematics classroom. Journal of Mathematics Teacher Education, 5(3), 205–233. https://doi.org/10.1023/A:1020134209073
  • Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145. https://doi.org/10.2307/749205
  • Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning: An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2), 91–104. https://doi.org/10.1207/s15327833mtl0602_2
  • Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathematical discussions: Five practices for helping teachers move beyond show and tell. Mathematical Thinking and Learning, 10(4), 313–340. https://doi.org/10.1080/10986060802229675
  • Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. Free Press.
  • Straesser, R. (2007). Didactics of mathematics: More than mathematics and school! ZDM, 39(1–2), 165–171. https://doi.org/10.1007/s11858-006-0016-x
  • Stylianides, A. J. (2007a). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289–321.
  • Stylianides, A. J. (2007b). Introducing young children to the role of assumptions in proving. Mathematical Thinking and Learning, 9(4), 361–385. https://doi.org/10.1080/10986060701533805
  • Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198723066.001.0001
  • Stylianides, A. J., Komatsu, K., Weber, K., & Stylianides, G. J. (2022). Teaching and learning authentic mathematics: The case of proving. In M. Danesi (Ed.), Handbook of cognitive mathematics (pp. 727–761). Springer. https://doi.org/10.1007/978-3-030-44982-7_9-1
  • Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of practice: Classroom-based interventions in mathematics education. ZDM, 45(3), 333–341. https://doi.org/10.1007/s11858-013-0501-y
  • Stylianides, A. J., & Stylianides, G. J. (2022). A learning trajectory for introducing both students and prospective teachers to the notion of proof in mathematics. The Journal of Mathematical Behavior, 66, 100957. https://doi.org/10.1016/j.jmathb.2022.100957
  • Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to proof. Journal for Research in Mathematics Education, 40(3), 314–352. https://doi.org/10.5951/jresematheduc.40.3.0314
  • Stylianides, G. J., & Stylianides, A. J. (2014). The role of instructional engineering in reducing the uncertainties of ambitious teaching. Cognition and Instruction, 32(4), 374–415. https://doi.org/10.1080/07370008.2014.948682
  • Stylianides, G. J., & Stylianides, A. J. (2023). Promoting elements of mathematical knowledge for teaching related to the notion of assumptions. Mathematical Thinking and Learning. https://doi.org/10.1080/10986065.2023.2172617
  • Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 237–266). National Council of Teachers of Mathematics.
  • Sullivan, P., Knott, L., & Yang, Y. (2015). The relationships between task design, anticipated pedagogies, and student learning. In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI study 22 (pp. 83–114). Springer. https://doi.org/10.1007/978-3-319-09629-2_3
  • Usiskin, Z., Griffin, J., Witonsky, D., & Willmore, E. (2008). The classification of quadrilaterals: A study of definition. Information Age Publishing.
  • van Dormolen, J., & Zaslavsky, O. (2003). The many facets of a definition: The case of periodicity. The Journal of Mathematical Behavior, 22(1), 91–106. https://doi.org/10.1016/S0732-3123(03)00006-3
  • Watson, A., & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design: Editorial introduction. In A. Watson & M. Ohtani. (Eds.), Task design in mathematics education: An ICMI study 22 (pp. 3–15). Springer. https://doi.org/10.1007/978-3-319-09629-2_1
  • Zaslavsky, O. (2005). Seizing the opportunity to create uncertainty in learning mathematics. Educational Studies in Mathematics, 60(3), 297–321. https://doi.org/10.1007/s10649-005-0606-5
  • Zaslavsky, O., & Shir, K. (2005). Students’ conceptions of a mathematical definition. Journal for Research in Mathematics Education, 36(4), 317–346. https://doi.org/10.2307/30035043