4,875
Views
417
CrossRef citations to date
0
Altmetric
Research Article

Solid-State Fermentation Systems—An Overview

Pages 1-30 | Published online: 10 Oct 2008

REFERENCES

  • Cannel E., Moo-Young M. Solid-state fermentation systems. Process. Biochem 1980; 4: 2–7
  • Pandey A., Soccol C. R., Rodriguez-Leon J. A., Nigam P. Solid-State Fermentation in Biotechnology—Fundamentals and Applications. Asiatech Publishers, Inc., New Delhi 2001; pp. 100–221
  • Hasseltine C. W. Substrate fermentations. Process. Biochem. 1977; 12: 24–27
  • Aidoo K. E., Hendry R., Wood J. B. Solid substrate fermentations. Adv. Applied. Microbiol. 1982; 28: 201–237
  • Raimbault M., Alazard D. Culture method to study fungal growth in solid fermentation. Eur J. Appl. Microbiol. Biotech 1980; 9: 199–202, [CROSSREF]
  • Lonsane B. K., Ghildyal N. P., Budiatman S., Ramakrishna S. V. Engineering aspects of solid-state fermentation. Enzyme Microb. Technol 1985; 7: 258–265, [CROSSREF]
  • Soccol C. R. Biotechnology products from Cassava root by solid state fermentation. J. Sci. Ind. Res. 1996; 55: 358–364
  • Ooijkaas L. P., Weber F. J., Buitelaar R., Tramper J., Rinzema A. Defined media and inert supports: Their potential as solid state fermentation production systems. Tibtech. 2000; 18: 356–360
  • Gowthaman M. K., Krishna C., Moo-Young M. Fungal solid state fermentation—An overview. Applied Mycology and Biotechnology, Agriculture and Food Productions, G. G. Khachatourians, D. K. Arora. Elsevier Science, The Netherlands 2001; Vol.1: pp.305–352
  • Larroche C. Microbial growth and sporulation behaviour in solid state fermentation. J. Sci. Ind. Res. 1996; 55: 408–423
  • Abdullah A. L., Tengerdy R. P., Murphy V. G. Optimization of solid state fermentation of wheat straw. Biotechnol. Bioeng. 1985; 27: 20–27, [CSA], [CROSSREF]
  • Moo-Young M., Moreira A. R., Tengerdy R. P. Principles of solid state fermentation. The Filamentous Fungi., J. E. Smith, D. R. Berry, B. Kristiansen. Edward Arnold, London 1983; pp. 117–144
  • Yadav J. S. SSF of wheat straw with alcaliphilic. Coprinus. Biotechnol. Bioeng. 1988; 31: 414–417, [CSA], [CROSSREF]
  • Krishna C., Chandrasekaran M. Economic utilization of cabbage wastes through solid state fermentation by native microflora. J. Food. Sci. Technol. 1995; 32: 199–201
  • Krishna C., Chandrasekaran M. Banana waste as substrate for α –amylase production byBacillus subtilis(CBTK 106) under solid–state fermentation. Appl. Microbiol. Biotechnol. 1996; 46: 106–111, [CSA], [CROSSREF]
  • Krishna C. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresource Tech. 1999; 69: 231–239, [CSA], [CROSSREF]
  • Scotti C. T., Vergoignan C., Feron G., Durand A. Glucosamine measurement as indirect method for biomass estimation ofCunninghamella elegansgrown in solid state cultivate conditions. Biochem. Bioeng. J. 2001; 7: 1–5, [CSA]
  • Mitchell D. A., Targonski Z., Rogalski J., Leonowicz A. Substrates for processes. Solid Substrate Cultivation, H. W. Doelle, D. A. Mitchell, C. E. Rolz. Elsevier Applied Biotechnology Series, Elsevier, London 1992; pp. 29–52
  • Pandey M., Soccol C. R., Mitchell D. New developments in solid-state fermentation: I. Bioprocess and products. Process Biochem. 2000; 35: 1153–1169, [CROSSREF]
  • Lonsane B. K., Saucedo-Castaneda S., Raimbault M., Roussos S., Viniegra-Gonzalez G., Ghildyal N. P., Ramakrishna M., Krishnaiah M. M. Scale–up strategies for solid state fermentation systems. Proc. Biochem. 1992; 27: 259–273, [CROSSREF]
  • Ramesh M. V., Lonsane B. K. Characteristics and novel features of thermostable alpha amylase produced byBacillus licheniformisM 27 under solid- state fermentation. Starch/Starke 1990; 42: 233–238
  • Barstow L. M., Dale B. E., Tengerdy R. P. Evaporative temperature and moisture control in solid substrate fermentation. Biotechnol. Tech. 1988; 5: 237–242, [CSA]
  • Ryoo D., Murphy V. G., Karim M. N., Tengerdy R. P. Evaporative temperature and moisture control in a rocking reactor for solid substrate fermentation. Biotechnol. Tech 1991; 5: 19–24, [CSA], [CROSSREF]
  • Trilli A. Scale up of fermentation. Industrial Microbiology and Biotechnology, A. L. Demain, N. A. Solomon. American Society of Microbiology, WashingtonU.S.A. 1986; pp. 227–307
  • Laukevics J. J., Apsite A. F., Viestures H. E., Tengerdy R. P. Solid substrate fermentation of wheat straw for fungal protein. Biotechnol. Bioeng. 1984; 26: 1465–1474, [CSA], [CROSSREF]
  • Sato K., Nagatani M., Sato S. A method of supplying moisture to the medium in a solid state culture with forced aeration. J. Ferment. Technol. 1982; 60: 607–610
  • Banks G. T. Scale up of fermentation processes. Topics in Enzyme and Fermentation Biotechnology, A. Wiseman. Ellis Horwood Limited, Chichester 1984; pp. 170–266
  • Silman R. W. Enzyme formation during solid substrate fermentation in rotating vessels. Biotechnol. Bioeng. 1980; 22: 411–420, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Mitchell D. A., Doelle H. W., Greenfield P. F. Improvement of growth ofRhizopus oligosporouson a model solid substrate. Biotech. Lett. 1988; 18: 497–501, [CROSSREF]
  • Kargi F., Curme J. A. Solid state fermentation of sweet sorghum to ethanol in a rotary-drum fermenter. Biotechnol. Bioeng. 1985; 27: 1122–1125, [CSA], [CROSSREF]
  • Auria R., Morales M., Villegas E., Revah S. Influence of mold growth on the pressure drop in aerated solid state fermentors. Biotechnol. Bioeng. 1993; 41: 1007–1013, [CSA], [CROSSREF]
  • Durand A., Chereau D. A. A new pilot reactor for solid-state fermentation: Application to the protein enrichment of sugar beet pulp. Biotechnol. Bioeng 1988; 31: 486–476, [CROSSREF]
  • Sato K., Sudo S. Small scale solid state fermentations. Manual of Industrial Microbiology and Biotechnology2nd Edn., A. L. Demain, J. E. Davies. ASM Press, Washington, DC 1999; pp. 61–79
  • Castilho L. R., Polato C. M. S., Baruque E. A., Sant Anna G. L., Jr, Freire D. M. G. Economic analysis of lipase production byPenicillium restrictumin solid -state and submerged fermentations. Biochem. Eng. J. 2000; 4: 239–247, [CROSSREF]
  • Raimbault M. General and microbiological aspects of solid substrate fermentation. Elect. J. Biotech 1998; 1: 1–15
  • Oriol E., Raimbault M., Roussos S., Viniegra-Gonzales G. Water and water activity in the solid-state fermentation of cassava starch by. Aspergillus niger. Appl. Microbiol. Biotechnol 1988; 27: 498–503
  • Nagel F. J. I., Tramper J., Bakker M. S. N., Rinzema A. Model for on-line moisture content control during solid state fermentation. Biotechnol. Bioeng. 2000; 72: 231–243, [CSA], [CROSSREF]
  • Desgranges C., Vergoignan C., Georges M., Durand A. Biomass estimation in solid state fermentation. Appl. Microbiol. Biotechnol. 1991; 35: 200–205, [CSA]
  • Mitchell D. A., Gumbira-Said E., Greenfield P. F., Doelle H. W. Protein measurement in solid state fermentation. Biotech. Tech. 1991; 5: 437–442, [CSA], [CROSSREF]
  • Roussos S., Raimbault M., Viniegra–Gonzalez G., Saucedo-Castaneda G., Lonsane B. K. Scale-up of cellulases production byTrichoderma harzianumon a mixture of sugar cane bagasse and wheat bran in solid state fermentation system. Micol. Neotrop. Aplicada 1991; 4: 83–98, [CSA]
  • Sakurai Y., Lee T. H., Shiota H. On the convenient method for glucosamine estimation in Koji. Agric. Biol. Chem. 1977; 41: 619–624
  • Penaloza W., Davey C. L., Kell D. B., Hedger J. N. Real time monitoring of the accretion ofRhizopus oligosporusbiomass during the solid substrate tempeh fermentation. World J. Microbiol. Biotech. 1991; 7: 248–259, [CSA], [CROSSREF]
  • Auria R., Hernandez S., Raimbault M., Revah S. Ion exchange resin: A model support for solid state growth fermentation ofAspergillus niger. Biotech. Tech. 1990; 4: 391–396, [CSA], [CROSSREF]
  • Krishna C., Nokes S. E. Influence of inoculum size on phytase production and growth in solid state fermentation by. Aspergillus niger. Trans. ASAE 2001; 44: 1031–1036, [CSA]
  • Mitchell D. A. Microbial basis of processes. Solid Substrate Cultivation., H. W. Doelle, D. A. Mitchell, C. E. Rolz. Elsevier Applied Science, LondonU.K. 1992; pp.17–27
  • Krishna C., Nokes S. E. Predicting vegetative inoculum performance to maximize phytase production in solid state fermentation using response surface methodology. J. Ind. Microbiol. Biotech. 2001; 26: 161–170, [CSA], [CROSSREF]
  • Viesturs U. E., Steinkraus S. V., Leite M. P., Berzines A. J., Tengerdy R. P. Combined submerged and solid substrate fermentation for the bioconversion of lignocellulose. Biotechnol. Bioeng. 1987; 30: 282–288, [CSA], [CROSSREF]
  • Mitchell D. A., Krieger N., Stuart D. M., Pandey A. New developments in solid-state fermentation. II. Rational approaches to the design, operation and scale-up of bioreactors. Process. Biochem. 2000; 35: 1211–1225, [CROSSREF]
  • Roussos S., Raimbault M., Prebois J-P., Lonsane B. K. Zymotis, a large scale solid fermenter. Appl. Biochem. Biotechnol. 1993; 42: 37–52, [CSA]
  • Hardin M. T., Mitchell D. A., Howes T. Approach to designing rotating drum bioreactors for solid state fermentation on the basis of dimensionless design factors. Biotechnol. Bioeng. 2000; 67: 274–282, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ashley V. M., Mitchell D. A., Howes T. Evaluating strategies for overcoming overheating problems during solid state fermentation in packed bed bioreactors. Biochem. Eng. J 1999; 3: 141–150, [CROSSREF]
  • Durand A. Bioreactor designs for solid state fermentation. Biochem. Eng. J. 2003; 13: 113–125, [CSA], [CROSSREF]
  • Sargantanis J., Karim M. N., Murphy V. G., Ryoo D., Tengerdy R. P. Effect of operating conditions on solid substrate fermentation. Biotechnol. Bioeng. 1993; 42: 149–158, [CSA], [CROSSREF]
  • Sangsurasak P., Mitchell D. A. Validation of a model describing 2-dimensional heat transfer during solid-state fermentation in packed bed bioreactors. Biotechnol. Bioeng 1998; 60: 739–749, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Stuart D. M. Solid-state fermentation in rotating drum bioreactors. University of Queensland, BrisbaneAustralia 1996, Ph.D. Thesis
  • Viniegra-Gonzales G., Favela-Torres E., Aguilar C. N., Romero-Gomez S. J., Diaz Gordinez G., Augur C. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 2003; 13: 157–167, [CSA], [CROSSREF]
  • Babu K. R., Satyanarayana T. Production of bacterial enzymes by solid state fermentation. J. Sci. Ind. Res. 1996; 55: 464–467
  • Selvakumar P., Ashakumary L., Pandey A. Microbial synthesis of starch saccharifying enzyme in solid cultures. J. Sci. Ind. Res. 1996; 55: 443–449
  • Lonsane B. K., Ramesh M. V. Production of bacterial thermostable alpha amylase by solid-state fermentation: A potential tool for achieving economy in enzyme production and starch hydrolysis. Adv. Appl. Micobiol. 1990; 35: 1–56
  • Pandey A., Ashakumary L., Selvakumar P., Vijayalakshmi K. S. Effect of yeast extract on glucoamylase synthesis byAspergillus nigerin solid state fermentation. Indian J. Microbiol. 1995; 35: 335–338
  • Selvakumar P., Ashakumary L., Helen A., Pandey A. Purification and characterization of glucoamylase produced byAspergillus nigerin solid state fermentation. Lett. Appl. Microbiol. 1996; 23: 403–406, [PUBMED], [INFOTRIEVE], [CSA]
  • Krishna C., Chandrasekaran M. Evaluation of SSF, SLF and SmF for α -amylase production byAeromonas caviae(CBTK 185) utilizing banana wastes. J. Cell. Biochem. 1995; 15((suppl), 48)
  • Diaz-Godinez G., Soriano-Santos J., Augur C., Viniegra-Gonzalez G. Exopectinase produced byAspergillus nigerin solid-state and submerged fermentation: A comparative study. J. Ind. Microbiol. Biotech. 2001; 26: 271–275, [CSA], [CROSSREF]
  • Liming Xia P. C. Production of cellulase by solid–state fermentation. Adv. Biochem. Eng. 1999; 65: 70–92
  • Nigam P., Singh D. Processing of agricultural wastes in solid state fermentation for cellulolytic enzymes production. J. Sci. Ind. Res. 1996; 55: 457–463
  • Tengerdy R. P. Cellulase production by solid substrate fermentation. J. Sci. Ind. Res. 1996; 55: 313–316
  • Shamala T. R., Srikantaiah K. R. Production of cellulases and D-xylanase by some selected fungal isolates. Enzyme. Microbiol. Tech. 1986; 8: 178–182, [CSA], [CROSSREF]
  • Macris B. J., Kekos D., Evrangelidou X. A simple and inexpensive method for cellulase and B-glucosidase production byAspergillus niger. Appl. Microbiol. Tech. 1989; 31: 150–151, [CSA]
  • Muniswaran P. K. A., Charyulu N. C. L. N. Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme Microb. Tech. 1994; 16: 436–440, [CSA], [CROSSREF]
  • Krishna C. Microbial enzyme production utilizing banana wastes. Cochin University of Science and Technology, India 1996, Ph.D. Thesis
  • Vandevoorde L., Verstraete W. Anaerobic solid state fermentation of cellulosic substrates with possible application to cellulase production. Appl. Microbiol. Biotechnol. 1987; 26: 479–484, [CROSSREF]
  • Wiacek-Zychlinska A., Czakaj J., Sawicka-Zukowska R. Xylanase production by fungal strains in solid-state fermentations. Biores. Tech. 1994; 49: 13–16, [CSA], [CROSSREF]
  • Puchart V., Katapodis P., Biely P., Kremnicky L., Christakopoulos P., Vrsanska M., Kekos D., Macris B. J., Bhat M. K. Production of xylanases, mannanases, pectinases by the thermophilic fungusThermomyces lanuginosus. Enz. Microbial. Tech. 1999; 24: 355–361, [CSA], [CROSSREF]
  • Deschamps F., Huet M. C. Xylanase production in solid-state fermentation: A study of its properties. Appl. Microbiol. Biotechnol. 1985; 22: 170–181, [CROSSREF]
  • Dubeau H., Chahal D. S., Ishaque M. Production of xylanases byChaetomium cellulolyticumduring growth on lignocellulosis. Biotechnol. Lett. 1986; 8: 445–448, [CSA], [CROSSREF]
  • Biswas S. R., Jana S. C., Mishra A. K., Nanda G. Production, purification and characterization of xylanase from hyperxylanolytic mutant ofAspergillus ochraceus. Biotechnol. Bioeng. 1990; 35: 244–251, [CSA]
  • Mitra P., Chakraverty R., Chandra A. L. Production of proteolytic enzymes by solid state fermentation—An overview. J. Sci. Ind. Res. 1996; 55: 439–442
  • Krishna C., Pandey A., Mohandas A. Microbial phytases. Concise Encyclopedia on Bioresource Technology, A. Pandey. Haworth Press, USA 2004; pp. 569–576
  • Pandey A., Selvakumar P., Soccol C. R., Nigam P. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 1999; 77: 149–162
  • Kleist S., Miksch G., Hitzmann B., Arndt M. Optimization of the extracellular production of a bacterial phytase withEscherichia coliusing different fed-batch fermentation strategies. Appl. Microbiol. Biotech. 2003; 61: 456–462, [CSA]
  • Kamini N. R., Mala J. G. S., Puvanakrishnan R. Lipase production fromAspergillus nigerby solid-state fermentation using gingelly oil cake. Process. Biochem. 1998; 33: 505–511, [CROSSREF]
  • Taragano V. M., Pilosof A. M. R. Application of Doehlert designs for water activity, pH, and fermentation time optimization forAspergillus nigerpectinolytic activities production in solid-state and submerged fermentation. Enz. Micrbiol. Tech 1999; 25: 411–419, [CROSSREF]
  • Naidu G. S. N., Panda T. Application of response surface methodology to evaluate some aspects on stability of pectolytic enzymes fromAspergillus niger. Biochem. Eng. J. 1998; 2: 71–77, [CROSSREF]
  • Maldonado M. C., Strasser de Saad A. M. Production of pectinesterase and polygalacturonase byA. nigerin submerged and solid systems. J. Indus. Microbiol. Biotechnol. 1998; 20: 34–38, [CSA], [CROSSREF]
  • Castilho L. R., Alves T. L. M., Medronho R. A. Recovery of pectolytic enzymes produced by solid state culture of. Aspergillus niger. Process. Biochem 1999; 34: 181–186, [CSA], [CROSSREF]
  • Johns M. R. Production of secondary metabolites. Solid Substrate Cultivation, H. W. Doelle, D. A. Mitchell, C. E. Rolz. Elsevier Applied Science, London 1992; pp. 341–352
  • Robinson T., Singh D., Nigam P. Solid-state fermentation: A promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotech. 2001; 55: 284–289, [CSA], [CROSSREF]
  • Gelmi C., Perez-Correa R., Gonzalez M., Agosin E. Solid substrate cultivation ofGibberella fujikuroion an inert support. Process. Biochem. 2000; 35: 1227–1233, [CROSSREF]
  • Demain A. L. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotech. 1999; 52: 455–463, [CSA], [CROSSREF]
  • Balakrishnan K., Pandey A. Production of biologically active secondary metabolites in solid state fermentation. J. Sci. Ind. Res. 1996; 55: 365–372
  • Gonzalez J. B., Tomasini A., Gonzalez G. V., Lopez J. Penicillin production by solid state fermentation. Biotech. Lett. 1988; 10: 793–798, [CSA], [CROSSREF]
  • Bajpai P. Microbial xylanolytic enzyme system: Properties and applications. Adv. Appl. Microbiol. 1997; 43: 141–194, [PUBMED], [INFOTRIEVE], [CSA]
  • Murthy M. V. R., Mohan E. V. S., Sadhukhan A. K. Cyclosporin-A production byTolypocladium inflatumusing solid state fermentation. Process. Biochem. 1999; 34: 269–280, [CROSSREF]
  • Ohno A., Ano T., Shoda M. Production of the antifungal peptide antibiotic, iturin, byBacillus subtilisNB22 using wheat bran as a substrate. Biotech. Lett. 1992; 14: 817–822, [CSA], [CROSSREF]
  • Ohno A., Takashi A., Shoda A. Production of a lipopeptide antibiotic surfactin with recombinant. Bacillus subtilis. Biotech. Lett 1992; 14: 1165–1168, [CSA], [CROSSREF]
  • Ohno A., Ano T., Shoda M. Production of the antifungal peptide antibiotic, iturin, byBacillus subtilisNB22 in solid state fermentation. J. Ferm. Bioeng. 1993; 75: 23–27, [CSA], [CROSSREF]
  • Ohno A., Takashi A., Shoda M. Production of a lipopeptide antibiotic, surfactin, by recombinantBacillus subtilisin solid state fermentation. Biotech. Bioeng 1995; 47: 209–213, [CSA], [CROSSREF]
  • Hasseltine C. W. Solid state fermentation (part I–II). Process. Biochem. 1977; 12: 24–32
  • Silman R. W., Black L. T. Assay of solid-substrate fermentation by means of reflectance infrared analysis. Biotech. Bioeng. 1983; 25: 603–607, [CSA], [CROSSREF]
  • Gonzalez J. B., Tomasini A. Production of aflatoxins in solid state fermentation. J. Sci. Ind. Res. 1996; 55: 424–430
  • Office of the Technology Assessment, U.S.C. Biologically based technologies for pest control. U.S. Government Printing Office, Washington, D.C. 1995
  • Wirth M. C., Walton W. E., et al. Evaluation of CytA's role in the management ofBtiresistance. Mosquito Control Research Annual Report. 1997
  • Jaronski S., Axtell R. C. Effects of temperature on infection, growth and zoosporogenesis ofLagenidium giganteum, a fungal pathogen of mosquito larvae. Mosquito News. 1983; 43: 42–45
  • Masaphy S., Levanon D., Henis Y. Degradation of atrazine by the lignocellulolytic fungusPleurotus pulmonariusduring solid state fermentation. Biores. Technol. 1996; 56: 207–214, [CSA], [CROSSREF]
  • Kastanek F., Demmerova K., Pazlarova J., Burkhard J., Maleterova Y. Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and ground water in field conditions. Int. Biodeter. Biodegr. 1999; 44: 39–47, [CSA], [CROSSREF]
  • Berry D. F., Tomkinson R. A., Hetzel G. H., Mullins D. E., Young R. W. Evaluation of solid state fermentation techniques to dispose off atrazine and carbofuran. J. Environ. Qual. 1993; 22: 366–374, [CSA]
  • Willems H. P. L., Berry D. F., Mullins D. E. Carbofuran degradation and metabolite incorporation during solid state fermentation. J. Environ. Qual. 1996; 25: 162–168, [CSA]
  • Wiesche I. C., Martens R., Zadrazil F. Two-step degradation of pyrene by white-rot fungi and soil micro-organisms. Appl. Microbiol. Biotechnol. 1996; 46: 653–659, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ofuya C. O., Obilor S. N. The effects of solid state fermentation on the toxic components of cassava peel. Process. Biochem. 1994; 29: 25–28, [CROSSREF]
  • Essers A. J. A., Jurgens C. M. G. A., Nout M. J. R. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava. Int. J. Food. Microbiol. 1995; 26: 251–257, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bau H. M., Villaume C., Lin C. F., Evard J., Quemener B., Nicolas J. P., Mejean L. Effect of a solid state fermentation usingRhizopus oligosporusSPT-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal. J. Sci. Food. Agr. 1994; 65: 315–322, [CSA]
  • Kuo Y. H., Bau H. M., Quemener B., Khan J. K., Lambein F. Solid state fermentation ofLathyrus sativusseeds usingAspergillus oryzaeandRhizopus, oligosporusSPT-3 to eliminate the neurotoxin beta-ODAP without loss of nutritional value. J. Sci. Food. Agr. 1995; 69: 81–89, [CSA]
  • Bano Z., Ghosh P. K., Rajarathnam S., Shashirekha M. N. Biotransformation efficiencies of lignocellulose wastes by mushrooms in solid state fermentation. J. Sci. Ind. Res. 1996; 55: 400–407
  • Krishna C., Moo-Young M. Single cell protein. Concise Encyclopedia on Bioresource Technology, A. Pandey. Haworth Press, USA 2004; pp. 293–304
  • Desgranges C., Vergoignan C., Lereec A., Riba G., Durand A. Use of solid state fermentation to produceBeauveria bassianafor the biological control of European corn borer. Biotech. Adv. 1993; 11: 577–587, [CSA], [CROSSREF]
  • Soccol C. R., Ayala L. A., Soccol V. T., Krieger N., Santos H. R. Spore production by entomopathogenic fungus,Beauveria bassianafrom de-classified potatoes by solid state fermentation. Rev. Microbiol. 1997; 28: 34–42
  • Silman R. W., Bothast R. J., Schisler D. A. Production ofColletrichum, truncatumfor use as a mycoherbicide—effects of culture, drying and storage on recovery and efficacy. Biotec. Adv. 1993; 11: 561–575, [CSA]
  • Sree N. K., Sridhar M., Suresh K., Rao L. V. High alcohol production by solid substrate fermentation from starchy substrates using thermotolerant. Saccharomyces cerevisiae. Bioprocess. Eng 1999; 20: 561–563, [CSA]
  • Pomponi S. A. The bioprocess-technological potential of the sea. J. Biotech. 1999; 70: 5–13, [CROSSREF]
  • Fenical W. Chemical studies of marine bacteria: Developing a new resource. Chem. Rev. 1993; 93: 1673–1683, [CROSSREF]
  • Bewley C. A., Holland N. D., Faulkner D. J. Two classes of metabolites fromTheonella swinhoeiare localized in distinct populations of bacterial symbionts. Experientia. 1996; 52: 716–722, [PUBMED], [INFOTRIEVE]
  • Subramaniyan S., Prema P. Biotechnology of microbial xylanases: enzymology, molecular biology, application. Critical Rev. Biotech. 2002; 22: 33–64, [CSA], [CROSSREF]
  • Vohra A., Satyanarayana T. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Critical. Rev. Biotech. 2003; 23: 29–60, [CSA]
  • Chandrakant P., Bisaria V. S. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Critical Rev. Biotech. 1998; 18: 295–331, [CSA]
  • Krishna C. DDT degradation usingBacillus sp.(HIE 88) andPseudomonas, sp. (HIE 64). Advances in Environmental Science, C. S. P. Iyer. Educational Publishers and Distributors, New Delhi 1997; pp. 421–428
  • Holker U., Hofer M., Lenz J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotech 2004; 64(2)175–186, [CSA], [CROSSREF]
  • Lenz J., Hoffer M., Krasenbrink J. B., Holker U. A survey of computational and physical methods applied to solid-state fermentation. Appl. Microbiol. Biotech 2004; 65(1)9–17, [CSA]
  • RC-147U Enzymes for industrial applications. Business Communications Company, Inc. Dec 7, 2004, http://www.bccresearch.com
  • van d e, Lagemaat J., Phyle D. L. Solid-state fermentation: A continuous process for fungal tannase production. Biotech. Bioeng 2004; 87(7)924–929, [CROSSREF]
  • Suryanarayan S. Current industrial practice in solid state fermentations for secondary metabolite production: The Biocon India experience. Biochem. Eng. J. 2003; 13: 189–195, [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.