153
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Involvement of Nitrogen-Containing Compounds in β -Lactam Biosynthesis and its Control

&
Pages 67-82 | Published online: 10 Oct 2008

REFERENCES

  • Affenzeller K. A., Kubicek C. P. Evidence for a compartmentation of penicillin biosynthesis in a high- and a low-producing strain of Penicillium chrysogenum. J. Gen. Microbiol. 1991; 137: 1653–1660, [INFOTRIEVE], [CSA]
  • Aharonowitz Y. Nitrogen metabolic regulation of antibiotic biosynthesis. Ann. Rev. Microbiol. 1980; 34: 209–233, [CROSSREF], [CSA]
  • Aharonowitz Y., Demain A. L. Nitrogen nutrition and regulation of cephalosporin production in Streptomyces clavuligerus. Can. J. Microbiol. 1979; 25: 61–67, [INFOTRIEVE], [CSA]
  • Aharonowitz Y., Mendelovitz S., Kirenberg F., Kufer V. Regulatory mutants of Streptomyces clavuligerus affected in free diaminopimelic acid content and antibiotic biosynthesis. J. Bacteriol. 1984; 157: 337–340, [INFOTRIEVE], [CSA]
  • Albers-Schoenberg G., Arison B. H., Kaczka E., Kahan F. M., Kahan J. S., Lago B., Maiese W. M., Rhodes R. E., Smith J. L. Thienamycin, a new β -lactam antibiotic. 3. Structure determination and biosynthetic data. 16th Inter Sci. Conf. Antimicrob. Agents Chemother., Chicago, 1976, Abstract 229
  • Alonso M. J., Luengo J. M. Interference by methionine on valine uptake in Acremonium chrysogenum. Antimicrob. Agents Chemother. 1987; 31: 357–359, [INFOTRIEVE], [CSA]
  • Andrianopoulos A., Kourambas S., Sharp J. A., Davis M. A., Hynes M. J. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J. Bacteriol. 1998; 180: 1973–1977, [INFOTRIEVE], [CSA]
  • Aoki H., Sakai M., Konomi T., Hosoda J., Kubochi T., Iguchi E., Imanaka H. Nocardicidin A, a new monocyclic β -lactam antibiotic. 1. Discovery, isolation and characterization. J. Antibiot. 1976; 29: 492–500, [INFOTRIEVE], [CSA]
  • Banko G., Wolfe S., Demain A. L. Cell-free synthesis of δ -(L-α -aminoadipyl)-L-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. Biochem. Biophys. Res. Commun. 1986; 137: 528–535, [INFOTRIEVE], [CROSSREF], [CSA]
  • Banuelos O., Casqueiro J., Fierro F., Hijarrubia M. J., Gutierrez S., Martin J. F. Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. Gene 1999; 226: 51–59, [INFOTRIEVE], [CROSSREF], [CSA]
  • Banuelos O., Casqueiro J., Gutierrez S., Martin J. F. Overexpression of the lys1 gene in Penicillium chrysogenum: homocitrate synthase levels, α -aminoadipic acid pool and penicillin production. Appl. Microbiol. Biotechnol. 2000; 54: 69–77, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bascaran V., Sanchez L., Hardisson C., Brana A. P. Stringent response and initiation of secondary metabolism in Streptomyces clavuligerus. J. Gen. Microbiol. 1991; 137: 1625–1634, [INFOTRIEVE], [CSA]
  • Brakhage A. A. Molecular regulation of β -lactam biosynthesis in filamentous fungi. Microbiol. Mol. Biol. Rev. 1998; 62: 547–585, [INFOTRIEVE], [CSA]
  • Brakhage A. A., Turner G. L-Lysine repression of penicillin biosynthesis and expression of penicillin biosynthesis genes acvA and ipnA in Aspergillus nidulans. FEMS Microbiol. Lett. 1992; 98: 123–128, [CSA]
  • Brana A. F., Wolfe S., Demain A. L. Relationship between nitrogen assimilation and cephalosporin synthesis in Streptomyces clavuligerus. Arch. Microbiol. 1986; 146: 46–51, [INFOTRIEVE], [CROSSREF], [CSA]
  • Brana A. F., Paiva N. P., Demain A. L. Pathways and regulation of ammonium assimilation in Streptomyces clavuligerus. J. Gen. Microbiol. 1986; 132: 1305–1317, [CSA]
  • Brana A. F., Wolfe S., Demain A. L. Ammonium repression of cephalosporin production by Streptomyces clavuligerus. Can. J. Microbiol. 1985; 31: 736–743, [INFOTRIEVE], [CSA]
  • Brown A. G., Butterworth D., Cole M., Hanscomb G., Hood J. D., Reading C., Rolinson G. N. Naturally occurring β -lactamase inhibitors with antibacterial activity. J. Antibiot. 1976; 29: 668–669, [INFOTRIEVE], [CSA]
  • Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. The biosynthetic implications of acetate and glutamate incorporation into (3R, 5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia. J. Antibiot. 1988; 41: 1231–1242, [INFOTRIEVE], [CSA]
  • Caltrider P. G., Niss H. F. Role of methionine in cephalosporin synthesis. Appl. Microbiol 1966; 14: 746–753, [INFOTRIEVE], [CSA]
  • Casqueiro J., Gutierrez S., Banuelos O., Hijarrubia M. J., Martin J. F. Gene targeting in Penicillium chrysogenum: Disruption of the lys2 gene leads to penicillin overproduction. J. Bacteriol. 1999; 181: 1181–1188, [INFOTRIEVE], [CSA]
  • Castro J. M., Liras P., Cortes J., Martin J. F. Regulation of α -aminoadipyl- cysteinyl-valine synthetase, isopenicillin N synthetase, isopenicillin N isomerase and deacetoxycephalosporion C synthetase by nitrogen sources in Streptomyces lactamdurans. Appl. Microbiol. Biotechnol. 1985; 21: 32–40, [CSA]
  • Castro J. M., Liras P., Laiz P., Cortes J., Martin J. F. Purification and characterization of the isopenicillin N synthase of Streptomyces lactamdurans. Biochem. J. 1988; 134: 133–141, [CSA]
  • Choi K. -P., Kim K. -H., Kim J. -W. Strain improvement of clavulanic acid producing Streptomyces clavuligerus. Tenth Internat. Symp. Biol. Actinos. (ISBA 1997), Beijing, 1997, Abstr. 12P9
  • Cooney C. L., Acevedo F. Theoretical conversion yields for penicillin synthesis. Biotechnol. Bioeng. 1977; 19: 1449–1462, [INFOTRIEVE], [CROSSREF], [CSA]
  • Coque J. J. R., Liras P., Laiz L., Martin J. F. A gene encoding lysine α - aminotransferase, which forms the β -lactam precursor of α -aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans. J. Bacteriol. 1991; 173: 6258–6264, [INFOTRIEVE], [CSA]
  • D'Amato R. F., Pisano M. A. A chemically defined medium for cephalosporin C production by Paecilomyces persicinus. Ant. v. Leeuwenhoek 1976; 42: 299–308, [CROSSREF], [CSA]
  • De la Fuente J., Rumbero A., Martin J. F., Liras P. Δ -1-Piperideine-6- carboxylase dehydrogenase, a new enzyme that forms α -aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes. Biochem. J. 1997; 327: 59–64, [INFOTRIEVE], [CSA]
  • Demain A. L. Inhibition of penicillin formation by lysine. Arch. Biochem. Biophys. 1957; 67: 244–245, [INFOTRIEVE], [CROSSREF], [CSA]
  • Demain A. L., Brana A. F. Control of cephamycin formation in Streptomyces clavuligerus by nitrogenous compounds. Regulation of Secondary Metabolite Formation, H. Kleinkauf, H. v. Dohren, H. Dornauer, G. Nesemann. VCH Verlagsgesellschaft, Weinheim 1985; 77–88
  • Demain A. L., Elander R. P. The β -lactam antibiotics: past, present and future. Ant. v. Leeuwenhoek. 1999; 75: 5–19, [CROSSREF], [CSA]
  • Demain A. L., Masurekar P. S. Lysine inhibition of in vivo homocitrate synthesis in Penicillium chrysogenum. J. Gen. Microbiol. 1974; 82: 143–151, [INFOTRIEVE], [CSA]
  • Demain A. L., Newkirk J. F. Biosynthesis of cephalosporin C. Appl. Microbiol. 1962; 10: 321–325, [INFOTRIEVE], [CSA]
  • Demain A. L., Zhang J. Cephalosporin C production by Cephalosporium acremonium: the methionine story. Crit. Revs. Biotechnol. 1998; 18: 283–294, [CROSSREF], [CSA]
  • Demain A. L., Martin J. F., Elander R. P. Penicillin biochemistry and genetics. Penicillin: A Paradigm for Biotechnology, R. I. Mateles. Candida Corp., Chicago 1998; 93–114
  • Derzelle S., Duchaud E., Kunst F., Danchin A., Bertin P. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl. Environ. Microbiol. 2002; 68: 3780–3789, [INFOTRIEVE], [CROSSREF], [CSA]
  • Drew S. W., Demain A. L. Methionine control of cephalosporin C formation. Biotechnol. Bioeng. 1973; 15: 743–754, [INFOTRIEVE], [CROSSREF], [CSA]
  • Drew S. W., Demain A. L. Production of cephalosporin C by single and double sulfur auxotrophic mutants of Cephalosporium acremonium. Antimicrob. Agents Chemother. 1975; 8: 5–10, [INFOTRIEVE], [CSA]
  • Drew S. W., Demain A. L. The obligatory role of methionine in the conversion of sulfate to cephalosporin C. Eur. J. Appl. Microbiol. 1975; 2: 121–128, [CSA]
  • Drew S. W., Demain A. L. Stimulation of cephalosporin production by methionine peptides in a mutant blocked in reverse transsulfuration. J. Antibiot. 1975; 28: 889–895, [INFOTRIEVE], [CSA]
  • Drew S. W., Demain A. L. Effect of primary metabolites on secondary metabolism. Ann. Rev. Microbiol. 1977; 31: 343–356, [CROSSREF], [CSA]
  • Drew S. W., Winstanley D. J., Demain A. L. Effect of norleucine on mycelial fragmentation in Cephalosporium acremonium. Appl. Environ. Microbiol. 1976; 31: 143–145, [INFOTRIEVE], [CSA]
  • Fang A., Demain A. L. Dependence of nitrogen- and phosphorus-regulation of β -lactam antibiotic production by Streptomyces clavuligerus on aeration level. J. Indust. Microbiol. 1995; 15: 407–410, [CROSSREF], [CSA]
  • Fang A., Keables P., Demain A. L. Unexpected enhancement of β -lactam antibiotic formation in Streptomyces clavuligerus by very high concentrations of exogenous lysine. Appl. Microbiol Biotechnol 1996; 44: 705–709, [INFOTRIEVE], [CSA]
  • Feng B., Friedlin E., Marzluff G. A. A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl. Environ. Microbiol. 1994; 60: 4432–4439, [INFOTRIEVE], [CSA]
  • Friedrich C. G., Demain A. L. Effects of lysine analogs on Penicillium chrysogenum. Appl. Environ. Microbiol. 1977; 34: 706–709, [INFOTRIEVE], [CSA]
  • Friedrich C. G., Demain A. L. Uptake and metabolism of α -aminoadipic acid by Penicillium chrysogenum Wis. 54-1255. Arch. Microbiol. 1978; 119: 43–47, [INFOTRIEVE], [CROSSREF], [CSA]
  • Goulden S. A., Chattaway F. W. End product control of acetohydroxy-acid synthetase by valine in Penicillium chrysogenum Q-176 and a high penicillin-yielding mutant. J. Gen. Microbiol. 1969; 59: 111–118, [INFOTRIEVE], [CSA]
  • Haas H., Bauer B., Redl B., Stoffler G., Marzluff G. A. Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr. Genet. 1995; 27: 150–158, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hersbach G. J. M., van der Beek C. P., van Dijck P. W. M. The penicillins: properties, biosynthesis, and fermentation. Biotechnology of Industrial Antibiotics, E. J. Vandamme. Marcel Dekker, New York 1984; 45–140
  • Hijarrubia M. J., Aparicio J. F., Casqueiro J., Martin J. F. Characterization of the lys2 gene of Acremonium chrysogenum encoding a functional α -aminoadipate activating and reducing enzyme. Mol. Gen. Genet. 2001; 264: 755–762, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hodgson J. E., Fosberry A. P., Rawlinson N. S., Ross H. N. M., Neal R. J., Arnell J. C., Earl A. J., Lawlor E. J. Clavulanic acid biosynthesis in Streptomyces clavuligerus: gene cloning and characterization. Gene 1995; 166: 49–55, [INFOTRIEVE], [CROSSREF], [CSA]
  • Honlinger C., Kubicek C. P. Metabolism and compartmentation of α -aminoadipic acid in penicillin-producing strains of Penicillium chrysogenum. Biochim. Biophys. Acta 1989; 993: 204–211, [CSA]
  • Honlinger C., Kubicek C. P. Regulation of δ -(L-α -aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the α - aminoadipate pool size. FEMS Microbiol. Lett. 1989; 65: 71–76, [CSA]
  • Hosada J., Tani N., Konomi T., Ohsawa S., Aoki H., Imanaka H. Incorporation of 14C-amino acids into nocardicin A by growing cells. Agric. Biol. Chem. 1977; 41: 2007–2012, [CSA]
  • Houck D. R., Kobayashi K., Williamson J. M., Floss H. G. Stereochemistry of methylation in thienamycin biosynthesis: example of a methyl transfer from methionine with retention of configuration. J. Amer. Chem. Soc. 1986; 108: 5365–5366, [CSA]
  • Hunter D. R., Segal I. H. Acidic and basic amino acid transport systems of Penicillium chrysogenum. Arch. Biochem. Biophys. 1971; 144: 168–183, [INFOTRIEVE], [CSA]
  • Imada A., Kitano K., Kintaka K., Muroi M., Asai M. Sulfazecin and isosulfazecin, novel β -lactam antibiotics of bacterial origin. Nature 1981; 289: 590–591, [INFOTRIEVE], [CROSSREF], [CSA]
  • Inamine E., Birnbaum J. Fermentation of cephamycin C. US Patent 3,977,942, 1976
  • Ives P. R., Bushell M. E. Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 1997; 143: 3573–3579, [INFOTRIEVE], [CSA]
  • Jaklitsch W. M., Hampel W., Roehr M., Kubicek C. P. α-Aminoadipate pool concentration and penicillin biosynthesis in strains of Penicillium chrysogenum. Can. J. Microbiol. 1986; 32: 473–480, [INFOTRIEVE], [CSA]
  • Jaklitsch W. M., Roehr M., Kubicek C. P. Lysine biosynthesis in Penicillium chrysogenum: regulation by general amino acid control and absence of lysine repression. Exper. Mycol. 1987; 11: 141–149, [CROSSREF], [CSA]
  • Jensen S. E., Paradkar A. S. Biosynthesis and molecular genetics of clavulanic acid. Ant. v. Leeuwenhoek 1999; 75: 125–133, [CROSSREF], [CSA]
  • Jensen S. E., Elder K. J., Aidoo K. A., Paradkar A. S. Enzymes catalyzing the early steps of clavulanic acid biosynthesis are encoded by two sets of paralogous genes in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 2000; 44: 720–726, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jermini M. F. G., Demain A. L. Solid state fermentation for cephalosporin production by Streptomyces clavuligerus and Cephalosporium acremonium. Experientia 1989; 45: 1061–1065, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jones C., Thompson A., England R. Guanosine 5′-diphosphate 3′-diphosphate (ppGpp), guanosine 5′-diphosphate 3′-monophosphate (ppGp) and antibiotic production in Streptomyces clavuligerus. Microbiology 1996; 142: 1789–1795, [CSA]
  • Jorgensen H., Nielsen J., Villadsen J., Mollgaard H. Metabolic flux distribution in Penicillium chrysogenum during fed batch cultivation. Biotechnol. Bioeng. 1995; 46: 117–131, [CROSSREF], [CSA]
  • Kahan J. S., Kahan F. M., Goegelman R., Currie S. A., Jackson M., Stapley E. O., Miller T. W., Miller A. K., Hendlin D., Mochales S., Hernandez S., Woodruff H. B., Birnbaum J. Thienamycin, a new β -lactam antibiotic. 1. Discovery, taxonomy, isolation and physical properties. J. Antibiot. 1979; 32: 1–12, [INFOTRIEVE], [CSA]
  • Kang S. G., Lee D. H., Ward A. C., Lee K. J. Rapid and quantitative analysis of clavulanic acid production by the combination of pyrolysis mass spectrometry and artificial neural network. J. Microbiol. Biotech. 1998; 8: 523–530, [CSA]
  • Kasarenini S., Demain A. L. A role for alanine in the ammonium regulation of cephalosporin biosynthesis in Streptomyces clavuligerus. J. Indust. Microbiol. 1994; 13: 217–219, [CROSSREF], [CSA]
  • Katayama N., Nozaki Y., Okonogi K., Ono H., Harada S., Okazaki H. Formadicins, new monocyclic β -lactam antibiotics of bacterial origin. 1. Taxonomy, fermentation and biological activities. J. Antibiot. 1985; 38: 1117–1127, [INFOTRIEVE], [CSA]
  • Kavanagh F., Tunin D., Wild G. D-methionine and the biosynthesis of penicillin N. Arch. Biochem. Biophys. 1958; 77: 268–274, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kern B. A., Hendlin D., Inamine E. L-Lysine epsilon-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. Antimicrob. Agents Chemother. 1980; 17: 679–685, [INFOTRIEVE], [CSA]
  • Kershaw N. J., McNaughton H. J., Hewitson K. S., Hernandez H., Griffin J., Hughes C., Greaves P., Barton B., Robinson C. V., Schofield C. J. ORF6 from the clavulanic acid gene cluster of Streptomyces clavuligerus has ornithine acetyltransferase activity. Eur. J. Biochem. 2002; 269: 2052–2059, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kim W. -S., Wang Y., Fang A., Demain A. L. Methionine interference in rapamycin production involves repression of demethylrapamycin methyltransfease and S-adenosylmethionine synthetase. Antimicrob. Agents Chemother. 2000; 44: 2908–2910, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kosalková K., Marcos A. T., Martín J. F. A moderate amplification of the mecB gene encoding cystathione-γ -lyase stimulates cephalosporin biosynthesis in Acremonium chrysogenum. J. Indust. Microbiol. Biotechnol. 2001; 27: 252–258, [CROSSREF], [CSA]
  • Kropp H., Sundelof J. G., Kahan J. S., Kahan F. M., Birnbaum J. MK0787 (N-forminidoyl thienamycin): evaluation of in vitro and in vivo activities. Antimicrob. Agents Chemother. 1980; 17: 993–1000, [INFOTRIEVE], [CSA]
  • Lara F., Mateos R. C., Vazquez G., Sanchez S. Induction of penicillin biosynthesis by L-glutamate in Penicillium chrysogenum. Biochem. Biophys. Res. Commun. 1982; 105: 172–178, [INFOTRIEVE], [CROSSREF], [CSA]
  • Leitao A. L., Enguita F. J., de la Fuente J. L., Liras P., Martin J. F. Inducing effect of diamines on transcription of the cephamycin C genes from the lat and pcbAB promoters in Nocardia lactamdurans. J. Bacteriol. 1999; 181: 2379–2384, [INFOTRIEVE], [CSA]
  • Li R., Townsend C. A. Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metabol. Eng. 2006, In press[CSA]
  • Liras P. Biosynthesis and molecular genetics of cephamycins. Cephamycins produced by actinomycetes. Ant. v. Leeuwenhoek 1999; 75: 109–124, [CROSSREF], [CSA]
  • Liras P., Rodriguez-Garcia A. Clavulanic acid, a β -lactamase inhibitor: biosynthesis and molecular genetics. Appl. Microbiol. Biotechnol. 2000; 54: 467–475, [INFOTRIEVE], [CROSSREF], [CSA]
  • Litzka O., Then B. K., van den Brulle J., Steidel S., Brakhage A. A. Transcriptional control of expression of fungal beta–lactam biosynthesis genes. Ant. v. Leeuwenhoek. 1999; 75: 95–105, [CROSSREF], [CSA]
  • Liu G., Casqueiro J., Banuelos O., Cardoza R. E., Gutierrez S., Martín J. F. Targeted inactivation of the mecB gene, encoding cystathionine-γ -lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J. Bacteriol. 2001; 183: 1765–1772, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lu Y., Mach R. L., Affenzeller K., Kubicek C. P. Regulation of α - aminoadipate reductase from Penicillium chrysogenum in relation to the flux from α-aminoadipate into penicillin biosynthesis. Can. J. Microbiol. 1992; 38: 758–63, [INFOTRIEVE], [CSA]
  • Lubbe C., Demain A. L., Bergman K. Use of controlled-release polymer to feed ammonium to Streptomyces clavuligerus cephalosporin fermentations in shake flasks. Appl. Microbiol. Biotechnol. 1985; 22: 424–427, [CSA]
  • Luengo J. M., Revilla G., Lopez-Nieto M. J., Villanueva J. R., Martin J. F. Inhibition and repression of homocitrate synthesis by lysine in Penicillium chyrsogenum. J. Bacteriol. 1980; 144: 869–876, [INFOTRIEVE], [CSA]
  • Madduri K., Stuttard C., Vining L. C. Lysine catabolism in Streptomyces spp. is primarily through cadaverine; β -lactam producers also make α –aminoadipate. J. Bacteriol. 1989; 171: 299–302, [INFOTRIEVE], [CSA]
  • Madduri K., Shapiro S., De Marco A. C., White R. L., Stuttard C., Vining L. C. Lysine catabolism and α -aminoadipate synthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 1991; 35: 358–363, [CROSSREF], [CSA]
  • Madduri K., Stuttard C., Vining L. C. Cloning and location of a gene governing lysine α -aminotransferase, an enzyme initiating β -lactam biosynthesis in Streptomyces spp. J Bacteriol. 1991b; 173: 985–988, [INFOTRIEVE], [CSA]
  • Mahro B., Demain A. L. In vivo conversion of penicillin N into a cephalosporin type antibiotic by a non-producing mutant of Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 1987; 27: 272–275, [CROSSREF], [CSA]
  • Malmberg L. -H., Hu W. -S., Sherman D. H. Precursor flux control through targeted chromosomal insertion of the lysine ε -aminotransferase (lat) gene in cephamycin biosynthesis. J. Bacteriol. 1993; 175: 6916–6924, [INFOTRIEVE], [CSA]
  • Malmberg L. -H., Hu W. -S., Sherman D. H. Effects of enhanced lysine ε - aminotransferase on cephamycin biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 1995; 44: 198–205, [INFOTRIEVE], [CSA]
  • Marcos A. T., Kosalkova K., Cardoza R. E., Fierro F., Gutierrez S., Martin J. F. Characterization of the reverse transsulfuration gene mecB of Acremonium chrysogenum, which encodes a functional cystathionine-γ -lyase. Molec. Gen. Genet. 2001; 264: 746–754, [INFOTRIEVE], [CROSSREF], [CSA]
  • Martin J. F. Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J. Bacteriol. 2000; 182: 2355–2362, [INFOTRIEVE], [CROSSREF], [CSA]
  • Martin J. F., Demain A. L. Unraveling the methionine-cephalosporin puzzle in Acremonium chrysogenum. Trends Biotechnol. 2002; 20: 502–507, [INFOTRIEVE], [CROSSREF], [CSA]
  • Martin J. F., Gutierrez S., Demain A. L. β –Lactams. Fungal Biotechnology, T. Anke. Chapman and Hall, Weinheim 1997; 91–127
  • Martin de Valmaseda E. M., Campoy S., Naranjo L., Casqueiro J., Martin J. F. Lysine is catabolized to 2-aminoadipic acid in Penicillium chrysogenum by an ε - aminotransferase and to saccharopine by a lysine 2-ketoglutarate reductase. Characterization of the ε -aminotransferase. Mol. Gen. Genomics. 2005; 274: 272–282, [CROSSREF], [CSA]
  • Masurekar P. S., Demain A. L. Lysine control of penicillin biosynthesis. Can. J. Microbiol. 1972; 18: 1045–1048, [INFOTRIEVE], [CSA]
  • Masurekar P. S., Demain A. L. Impaired penicillin production in lysine regulatory mutants of Penicillium chrysogenum. Antimicrob. Agents Chemother. 1974; 6: 366–368, [INFOTRIEVE], [CSA]
  • Mateos R. D. C., Sanchez S. Transport of neutral amino acids and penicillin formation in Penicillium chrysogenum. J. Gen. Microbiol. 1990; 136: 1713–1716, [CSA]
  • Mathison L., Soliday C., Stepan T., Aldrich T., Rambosek J. Cloning, characterization, and use in strain improvement of the Cephalosporium acremonium gene cefG encoding acetyltransferase. Curr. Gen. 1993; 23: 33–41, [CROSSREF], [CSA]
  • Matsumura S., Suzuki M. Feedback regulation of acetohydroxy acid synthase in Cephalosporium acremonium M8650 and a high cephalosporin-producing mutant. Agric. Biol. Chem. 1986; 50: 505–507, [CSA]
  • Matsumura T., Yoshida T., Taguchi H. Synthesis of cephalosporin C by a methionine analog resistant mutant of Cephalosporium acremonium. Eur. J. Appl. Microbiol. Biotechnol. 1982; 16: 114–118, [CROSSREF], [CSA]
  • McGowan S. J., Holden M. T. G., Bycroft B. W., Salmond G. P. C. Molecular genetics of carbapenem antibiotic biosynthesis. Ant. v. Leeuwenhoek 1999; 75: 135–141, [CROSSREF], [CSA]
  • McGowan S., Sebaihia M., Jones S., Yu B., Bainton N., Chan P. F., Bycroft B., Stewart G. S. A. B., Williams P., Salmond G. P. C. Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 1995; 141: 541–550, [INFOTRIEVE], [CSA]
  • Mehta R. J., Speth J. L., Nash C. H. Lysine stimulation of cephalosporin C synthesis in Cephalosporium acremonium. Eur. J. Appl. Microbiol. Biotechnol. 1979; 8: 177–182, [CROSSREF], [CSA]
  • Mendelovitz S., Aharonowitz Y. Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthetase, and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 1982; 21: 74–84, [INFOTRIEVE], [CSA]
  • Mendelovitz S., Aharonowitz Y. β -lactam antibiotic production by Streptomyces clavuligerus mutants impaired in regulation of aspartokinase. J. Gen. Microbiol. 1983; 129: 2603–2069, [CSA]
  • Menne S., Walz M., Kuck U. Expression studies with the bidirectional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl. Microbiol. Biotechnol. 1994; 42: 57–66, [INFOTRIEVE], [CSA]
  • Nara T., Johnson M. J. Production, purification and characterization of synnematin. J. Bacteriol. 1959; 77: 217–226, [INFOTRIEVE], [CSA]
  • Naranjo L., Lamas-Macieras M., Ullan R. V., Campoy S., Teijeira F., Casqueiro J., Martin J. F. Characterization of the oat1 gene of Penicillium chrysogenum encoding a mega-aminotransferase: induction by L-lysine, L-ornithine and L-arginine and repression by ammonium. Mol. Gen. Genomics 2005; 274: 283–294, [CROSSREF], [CSA]
  • Nuesch J. H., Treichler H., Liersch M. The biosynthesis of cephalosporin C. Genetics of Industrial Microorganisms, Z. Vanek, Z. Hostalek, J. Cudlin. Academia, Prague 1973; vol. 2: 309–334
  • Ott J. L., Godzeski C. W., Pavey D. E., Farran J. D., Horton D. J. Biosynthesis of cephalosporin C. Factors affecting the fermentation. Appl. Microbiol. 1962; 10: 515–523, [INFOTRIEVE], [CSA]
  • O'Sullivan J., Abraham E. P. The conversion of cephalosporins to 7α - methoxycephalosporins by cell-free extracts of Streptomyces clavuligerus. Biochem. J. 1980; 186: 613–616, [INFOTRIEVE], [CSA]
  • O'Sullivan J., Gillum A. M., Aklonis C. A., Souser M. L., Sykes R. B. Biosynthesis of monobactam compounds: origin of the carbon atoms in the β -lactam ring. Antimicrob. Agents Chemother. 1982; 21: 558–564, [INFOTRIEVE], [CSA]
  • O'Sullivan J., Souser M. L., Kao C. C., Aklonis C. A. Sulfur metabolism in the biosynthesis of monobactams. Antimicrob. Agents Chemother. 1983; 23: 598–602, [INFOTRIEVE], [CSA]
  • Paradkar A. S., Jensen S. E., Mosher R. H. Comparative genetics and molecular biology of β -lactam biosynthesis. Biotechnology of Antibiotics, 2nd ed., W. R. Strohl. Marcel Dekker, New York 1997; 241–277
  • Parker W. L., Rathnum M. L., Wells J. S., Jr., Trejo W. H., Principe P. A., Sykes R. B. SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. J. Antibiot. 1982; 35: 653–660, [INFOTRIEVE], [CSA]
  • Parker L. W., O'Sullivan J., Sykes R. B. Naturally occurring monobactams. Adv. Appl. Microbiol. 1986; 31: 181–205, [INFOTRIEVE], [CSA]
  • Perez-Esteban B., Orejas M., Gomez-Pardo E., Penalva M. A. Molecular characterization of a fungal secondary metabolite promoter: transcription of the Aspergillus nidulans isopenicillin N synthetase gene is modulated by upstream negative elements. Molec. Microbiol. 1993; 9: 881–895, [CSA]
  • Piret J., Resendiz B., Mahro B., Zhang J., Serpe E., Romero J., Connors N., Demain A. L. Characterization and complementation of a cephalosporin-deficient mutant of Streptomyces clavuligerus NRRL 3585. Appl. Microbiol. Biotechnol. 1990; 32: 560–567, [INFOTRIEVE], [CROSSREF], [CSA]
  • Queener S. W. Molecular biology of penicillin and cephalosporin biosynthesis. Antimicrob. Agents Chemother. 1990; 34: 943–948, [INFOTRIEVE], [CSA]
  • Queener S. W., Wilkerson S., Tunin D. R., McDermott J. P., Chapman J. L., Nash C., Platt C., Westpheling J. Cephalosporin C fermentation: biochemical and regulatory aspects of sulfur metabolism. Biotechnology of Industrial Antibiotics, E. J. Vandamme. Marcel Dekker, New York 1984; 141–170
  • Rius N., Maeda K., Demain A. L. Induction of L-lysine ε -aminotransferase by L-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol. Lett. 1996; 144: 207–211, [INFOTRIEVE], [CSA]
  • Romero J., Liras P., Martin J. F. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 1984; 20: 318–325, [CROSSREF], [CSA]
  • Romero J., Liras P., Martin J. F. Utilization of ornithine and arginine as specific precursors of clavulanic acid. Appl. Environ. Microbiol. 1986; 52: 892–897, [INFOTRIEVE], [CSA]
  • Romero J., Martin J. F., Liras P., Demain A. L., Rius N. Partial purification, characterization and nitrogen regulation of the lysine-aminotransferase of Streptomyces clavuligerus. J. Indust. Microbiol. Biotechnol. 1997; 18: 241–246, [CROSSREF], [CSA]
  • Sader H. S., Gales A. C. Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents. Drugs 2001; 61: 553–564, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sanchez S., Flores M. E., Demain A. L. Nitrogen regulation of penicillin and cephalosporin fermentations. Nitrogen Source Control of Microbial Processes, S. Sanchez-Esquival. CRC Press, Boca Raton 1988; 121–136
  • Sanchez S., Panaigua L., Mateos R. C., Lara F., Mora J. Nitrogen regulation of penicillin biosynthesis in Penicillium chrysogenum. Advances in Biotechnology, C. Vezina, K. Singh. Pergamon Press, Toronto 1981; vol. III: 147–154
  • Sawada Y., Konomi T., Solomon N. A., Demain A. L. Increase in activity of β -lactam synthetases after growth of Cephalosporium acremonium with methionine or norleucine. FEMS Microbiol. Lett. 1980; 9: 281–284, [CSA]
  • Seidel G., Tollnick C., Beyer M., Schugerl K. Process engineering aspects of the production of cephalosporin C by Acremonium chrysogenum. Part II. Cultivation in diluted and enriched complex media. Proc. Biochem. 2002; 38: 241–248, [CROSSREF], [CSA]
  • Shen Y. -Q., Wolfe S., Demain A. L. Enzymatic conversion of the unnatural tripeptide δ -(D-α -aminoadipyl)-L-cysteinyl-D-valine to β -lactam antibiotics. J. Antibiot. 1984; 37: 1044–1048, [INFOTRIEVE], [CSA]
  • Somerson N. L., Demain A. L., Nunheimer T. D. Reversal of lysine inhibition of penicillin production by α -aminoadipic acid or adipic acid. Arch. Biochem. Biophys. 1961; 93: 238–241, [CROSSREF], [CSA]
  • Sykes R. B., Bonner D. P., Bush K., Georgopapdakou N. H. Azthreonam (SQ 26,766), a synthetic monobactam specifically active against aerobic Gram-negative bacteria. Antimicrob. Agents Chemother. 1982; 21: 85–92, [INFOTRIEVE], [CSA]
  • Sykes R. B., Cimarusti C. M., Bonner D. P., Bush K., Floyd D. M., Georgopapdakou N. H., Koster W. H., Liu W. C., Parker W. L., Principe P. A., Rathnum M. L., Slusarchyk W. A., Trejo W. H., Wells J. S. Monocyclic β -lactam antibiotics produced by bacteria. Nature 1981; 291: 489–491, [INFOTRIEVE], [CROSSREF], [CSA]
  • Tahlan K., Anders C., Jensen S. E. The paralogous pairs of genes involved in clavulanic acid and clavam metabolite biosynthesis are differently regulated in streptomyces clavuligerus. J. Bacteriol. 2004; 186: 6286–6297, [INFOTRIEVE], [CROSSREF], [CSA]
  • Tobin M. B., Kovacevik S., Maddduri K., Hoskins J. A., Skatrud P. L., Vining L. C., Stuttard C., Miller J. B. Localization of the lysine ε -aminotransferase (lat) and δ -(L-α -aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine ε -aminotransferase activity in Escherichia coli. J. Bacteriol. 1991; 173: 6223–6229, [INFOTRIEVE], [CSA]
  • Townsend C. A., Ho M. F. Biosynthesis of clavulanic acid: origin of the C5 unit. J. Amer. Chem. Soc. 1985; 107: 1065–1066, [CROSSREF], [CSA]
  • Townsend C. A., Ho M. F. Biosynthesis of clavulanic acid: origin of the C3 unit. J. Amer. Chem. Soc. 1985; 107: 1066–1068, [CROSSREF], [CSA]
  • Turner G., Browne P. E., Brakhage A. A. Expression of genes for the biosynthesis of penicillin. Molecular Biology and its Applications to Medical Mycology, G. Maresca, G. S. Kobayashi, H. Yamaguchi. Springer Verlag, Berlin 1993; 125–138
  • Uyeda M., Demain A. L. Methionine inhibition of thienamycin formation. J. Indust. Microbiol. 1988; 3: 57–59, [CROSSREF], [CSA]
  • Van Gulik W. M., Antoniewicz M. R., deLaat W. T. A. M., Vinke J. L., Heijnen J. J. Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol. Bioeng. 2001; 72: 185–193, [CROSSREF], [CSA]
  • Velasco J., Gutierrez S., Fernandez F. J., Marcos A. T., Arenos C., Martin J. F. Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J. Bacteriol. 1994; 176: 985–91, [INFOTRIEVE], [CSA]
  • Ward J. M., Hodgson J. E. The biosynthetic genes for clavulanic acid and cephamycin production occur as a “super-cluster” in three streptomycetes. FEMS Microbiol. Lett. 1993; 110: 239–242, [INFOTRIEVE], [CSA]
  • Williamson J. M. The biosynthesis of thienamycin and related carbapenems. CRC Crit. Rev. Biotechnol. 1986; 4: 111–131, [CSA]
  • Williamson J. M., Inamine E., Wilson K. E., Douglas A. W., Liesch J. M., Albers-Schoenberg G. Biosynthesis of the β -lactam antibiotic, thienamycin, by Streptomyces cattleya. J. Biol. Chem. 1985; 260: 4637–4647, [INFOTRIEVE], [CSA]
  • Williamson J. M., Meyer R., Inamine E. Reverse transsulfuration and its relationship to thienamycin biosynthesis in Streptomyces cattleya. Antimicrob. Agents Chemother. 1985; 28: 478–484, [INFOTRIEVE], [CSA]
  • Yu H., Serpe E., Romero J., Coque J. -J., Maeda K., Oelgeschleger M., Hintermann G., Liras P., Martin J. F., Demain A. L., Piret J. M. Possible involvement of the lysine ε -aminotransferase gene (lat) in the expression of the genes encoding ACV synthetase (pcbAB) and isopenicillin N synthetase (pcbC) in Streptomyces clavuligerus. Microbiology 1994; 140: 3367–3377, [INFOTRIEVE], [CSA]
  • Zanca D. Regulación de la biosíntesis de la penicilina N y de la cefalosporina C en cepas de Cephalosporium acremonium. Ph.D. thesis, University of Salamanca, SalamancaSpain 1982
  • Zhang J., Demain A. L. Purification from Cephalosporium acremonium of the initial enzyme unique to the biosynthesis of penicillins and cephalosporins. Biochem. Biophy. Res. Comm. 1990; 169: 1145–52, [CROSSREF], [CSA]
  • Zhang J., Demain A. L. Purification of ACV synthetase from Streptomyces clavuligerus. Biotechnol. Lett. 1990; 12: 649–654, [CROSSREF], [CSA]
  • Zhang J., Demain A. L. ACV synthetase. Crit. Rev. Biotechnol. 1992; 12: 245–260, [INFOTRIEVE], [CSA]
  • Zhang J., Wolfe S., Demain A. L. Effect of ammonium as nitrogen source on production of δ -(L-α -aminoadipyl)-L-cysteinyl-D-valine synthetase by Cephalosporium acremonium C-10. J. Antibiot. 1987; 40: 1746–1750, [INFOTRIEVE], [CSA]
  • Zhang J., Banko G., Wolfe S., Demain A. L. Methionine induction of ACV synthetase in Cephalosporium acremonium. J. Indust. Microbiol. 1987; 2: 251–255, [CROSSREF], [CSA]
  • Zhang J., Wolfe S., Demain A. L. Ammonium ions repress δ -(L-α - aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase in Streptomyces clavuligerus NRRL 3585. Can. J. Microbiol. 1989; 35: 399–402, [CSA]
  • Zhang J., Wolfe S., Demain A. L. Biochemical studies on the activity of δ - (L-α -aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus. Biochem. J. 1992; 283: 691–698, [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.