547
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Enzymatic Modifications of Cephalosporins by Cephalosporin Acylase and Other Enzymes

Pages 95-120 | Published online: 10 Oct 2008

REFERENCES

  • Abbot B. J., Fukuda D. Physical properties and kinetic properties of a cephalosporin acetyl esterase produced by Bacillus subtilis. Appl. Microbiol. 1975; 30: 413–419, [CSA]
  • Abbot B. J. Preparation of pharmaceutical compounds by immobilized enzymes and cells. Adv. Appl. Microbiol. 1976; 20: 203–257, [CSA]
  • D. Perlman. Academic Press, New York
  • Abraham E. P., Newton G. G. F. The structure of cephalosporin C. Biochem. J. 1961; 79: 377–393, [INFOTRIEVE], [CSA]
  • Abraham E. P., Loader P. B. Cephalosporin C. Cephalosporins: Chemistry and Biology, E. H. Flynn. Academic Press, New York 1972; 2–26
  • Abraham E. P., Fawcette P. Cephalosporin acetylesterase (citrus). Methods in Enzymology, J. Hash. Academic Press, New York 1975; Vol. 43: 728–731
  • Abraham E. P., Newton G. G. F. The structure of Cephalosporin C. Biochem. J. 1961; 79: 377–393, [INFOTRIEVE], [CSA]
  • Alfani F., Cutarellas N., Gallifuco A., Canterella M., Golini P., Franzosi G., Bianchi D. Preliminary investigations for the continuous enzymatic production of 7-aminocephalosporanic acid. Enzyme engineering XII, M. D. Legoy, D Thomas. New York Academy of Sciences, New York 1995; Vol. 750: 491–495, Ann. NY Acad. Sci.
  • Alonso-Morales N. A., Lopez-Gallego F., Betancor L., Hidalgo A., Mateo C., Fernandez-Lafuente R., Guisn J. M. Reversible immobilization of glutaryl acylase on SEPABEADS coated with polyethylenimine. Biotechnol. Progr. 2004; 20: 533–536, [CROSSREF], [CSA]
  • Aramori I., Fukagawa M., Tsumura M., Iwami M., Yokota Y., Kojo H., Kohsaka M., Udea Y., Imenaka H. Isolation of soil strains producing new cephalosporin acylases. J. Ferment. Bioeng. 1991a; 72: 227–231, [CROSSREF], [CSA]
  • Aramori I., Fukagawa M., Tsumura M., Iwami M., Isogai T., Ono H., Ishtani Y., Kojo H., Kohsaka M., Udea Y., Imenaka H. Cloning and nucleotide sequencing of new glutaryl-7-ACA and cephalosporin C acylase genes from Pseudomonas strains. J. Ferment. Bioeng. 1991b; 72: 232–243, [CROSSREF], [CSA]
  • Aramori I., Fukagawa M., Tsumura M., Iwami M., Isogai T. H., Ishtani Y., Kojo H., Kohsaka M., Udea Y., Imenaka H. Cloning and sequencing of a novel glutaryl-7-ACA acylase gene of Bacillus laterosporus and its expression in E. coli and Bacillus subtilis. J. Bacteriol. 1991c; 173: 7848–7855, [INFOTRIEVE], [CSA]
  • Aramori I., Fukagawa M., Tsumura M., Iwami M., Ono H., Ishtani Y., Hiroshi K., Kojo H., Kohsaka M., Udea Y., Imenaka H. Comparative characterization of new glutaryl-7-ACA acylase. J. Ferment. Bioeng. 1992; 73: 185–192, [CROSSREF], [CSA]
  • Aramori I., Fukagawa M., Tsumura M., Ono H., Ishtani Y., Kojo H., Kohsaka M., Udea Y., Imenaka H. High level production, chemical modification and site directed mutagenesis of a cephalosporin C acylase from Pseudomonas sp. N176. Eur. J. Biochem. 1995; 230: 773–778, [CROSSREF], [CSA]
  • Aretz W., Sauber K. Novel D-amino acid transaminase in enzyme engineering (9). Ann. N. Y. Acad. Sci 1988; 542: 366–370, [INFOTRIEVE], [CSA]
  • W. B. Harvey, A. M. Klibnov. New York Academy of Sciences, New York
  • Aretz W., Sauber K. Gamma-glutamyl-transpeptidase. Enzyme Engineering, H. Okada, A. Tanaka, H. W. Blanch. New York Academy of sciences, New York 1990
  • Ann. N. Y. Acad. Sci., 613(10)366–370, [CSA]
  • Armisen P., Mateo C., Cortes E., Barredo J. L., Salto F., Diez B., Rodes L., Garcia J. L., Fernandez-Lafuente R., Guisan J. M. Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. J. Chromatog. A. 1998; 48: 61–70, [CSA]
  • Barber M. S., Giesecke U., Reichert A, Wolfgang M. Industrial enzymatic production of cephalosporin-based β -lactams. Molecular Biotechnology of Fungal β -Lactam Antibiotics and Related Peptide Synthetases, A. A. Brakhage. Springer, Berlin 2004
  • Advances in Biochemical Engineering /Biotechnology, 88: 179–216, [CSA]
  • Barends T. R. M., Yoshida H., Dijkstra B. W. Three-dimensional structures of enzymes useful for β -lactam antibiotic production. Curr. Opin. Biotechnol., 15: 356–383, [CROSSREF], [CSA]
  • Battistel E., Bianchi D., Bortolo R., Bonoldi L. Purification and stability of glutaryl-7-ACA acylase from Pseudomonas sp. Appl Biochem Biotechnol. 1998; 69: 53–67, [INFOTRIEVE], [CSA]
  • Beckmann R., Cantwell C., Whiteman P., Queener S. W., Abraham E. P. Production of deacetoxycephalosporin C by transformants of Penicillium chrysogenum: Antibiotic biosynthetic pathway engineering. Industrial Microorganisms: Basic and Applied Molecular Genetics, R. H. Baltz, G. D. Hegeman, P. L. Skatrud. American Society for Microbiology, Washington, DC 1993; 177–182
  • Berdy J. The discovery of new bioactive metabolites: screening and identification. Progress in Ind. Microbiol., M. E. Bushell, U. Grafe. Elsevier, Amsterdam 1989; 27: 3–25
  • Betina V. Structure and activity relationship. Bioactive Secondary Metabolites of Microorganisms. Elsevier, Amsterdam 1994
  • Progress in Industrial Microbiology, 30: 236–296, [CSA]
  • Bianchi D., Golini P., Bortolo R., Battistel E., Tassinari R., Cesti P. Immobilization of glutaryl-7-ACA acylase on aminoalkylated polyacrylic supports. Enzyme Microb. Technol. 1997; 20: 368–372, [CROSSREF], [CSA]
  • Binder R. G., Numata K., Lowe D. A., Murakami T., Brown J. L. Isolation and characterization of a Pseudomonas strain producing glutaryl-7-aminocephalosporanic acid acylase. Appl. Environ. Microbiol. 1993; 59: 3321–3326, [CSA]
  • Binder R. G., Brown J. L., Romancik G. Biochemical characterization of a glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas strain BLO72. Appl. Environ. Microbiol. 1994; 60: 1805–1809, [INFOTRIEVE], [CSA]
  • Brannon D. R., Fukuda D. S., Mabe J. A., Huber F. M., Whitney J. G. Detection of cephalosporin C acetyl esterase in the carbamate cephalosporin antibiotic producing culture, Streptomyces clavuligerus. Antimicrob. Agents Chemother. 1972; 1: 237–241, [INFOTRIEVE], [CSA]
  • Brotzu C. G. Recherché su di nuovo antibiotico. Lav. Ist Igiene Cagliari. 1948, [CSA]
  • Burr K. W., Ramsden M., Illing G. T., Harrison L. A., Maishman N. J., Spence D. W., Slade A., US Pat. Appl. No.: 817900, 1997, Assignee: Glaxo Group Limited, (Greenford, GB)
  • Bycroft B. W., Shute R. E. Chemistry and biosynthesis of penicillins and cephalosporins. Penicillium and Acremonium, Biotechnology Handbook, J. F. Peberdy. Plenum Press, New York 1987; Vol. 1: 113–160
  • Cardoza R. E., Velasco J., Martín J. F., Liras P. A cephalosporin C acetylhydrolase is present in the cultures of Nocardia lactamadurans. Appl. Microbiol. Biotechnol. 2000; 54: 406–412, [INFOTRIEVE], [CROSSREF], [CSA]
  • Carrea G., Corcelli A., Palmisano G., Riva S. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase. Biotechnol. Bioeng. 1996; 52: 648–705, [CSA]
  • Cole M., Savidge T. A., Vanderhaeghe H. Penicillin acylase (assay). Methods in Enzymology 1975; 43: 698–705, [INFOTRIEVE], [CSA]
  • J. H. Hash. Academic Press, New York
  • Conlon H. D., Baqai J., Baker K., Shen Y. Q., Wong B. L., Noiles R., Rausch C. W. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol. Bioeng. 1995; 46: 510–513, [CROSSREF], [CSA]
  • Coque J. J. R., Enguita F. J., Martin J. F., Liras P. A two protein component 7α -cephem-methoxylase encoded by two genes of the cephamycin C cluster converts cephalosporin C to 7-methoxycephalosporin C. J. Bacteriol. 1995; 177: 2230–2235, [INFOTRIEVE], [CSA]
  • Crawford L., Stepan A. M., McAda P. C., Rambosek M. J., Conder V. A., Reeves C. D. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 1995; 13: 58–62, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Demain A. L., Walton R. B., Newkirk J. F., Miller I. M. Microbial degradation of cephalosporin C. Nature (London) 1963; 199: 909–910, [CSA]
  • Demain A. L., Wolfe S. Biosynthesis of cephalosporins. Dev. Ind. Microbiol. 1987; 27: 175–182, [CSA]
  • Deshpande B. S., Ambedkar S. S., Shewale J. G. Cephalosporin C and penicillin V acylase formation by Aeromonas sp. ACY 95. World J. Microbiol. Biotechnol. 1996; 12: 373–378, [CROSSREF], [CSA]
  • Durckheimer W., Adam F., Fischer G. Recent developments in the field of cephem antibiotics. Adv. Drug Res. 1988; 17: 161–121, [CSA]
  • B. Testa. Academic Press, New York
  • Fechtig B., Peter H. H., Bikel H., Vischer E. Modification of antibiotics, II. Preparation of 7-aminocephalosporanic acid. Helv. Chim. Acta. 1968; 51: 1109–1120, [CROSSREF], [CSA]
  • Franzosi G., Battistel E., Gagliardi I., Van der Goes W. Screening and characterization of microorganisms with glutaryl-7-ADCA acylase activity. Appl. Microbiol. Biotechnol. 1995; 43: 508–513, [INFOTRIEVE], [CROSSREF], [CSA]
  • Frederiksen R. B., Emborg C. Conversion of cephalosporin C into 7-phenoxy acetoamido-cephalosporanic acid by acyltransferase of mutants of Penicillium chrysogenum. Biotechnol. Lett. 1984; 6: 549–554, [CROSSREF], [CSA]
  • Golini P., Bianchi D., Battistel E., Cesti P., Tassinari R. Immobilization of D-amino acid oxidase from different yeasts: Characterization and application in the deamination of cephalosporin C. Enzyme Microb. Technol. 1995; 17: 324–329, [CROSSREF], [CSA]
  • Hinnen A., Nuesch J. Enzymatic hydrolysis of cephalosporin C by an extracellular acetyl hydrolase of Cephalosporium acremonium. Antimicrob. Agents Chemother. 1976; 9: 824–830, [INFOTRIEVE], [CSA]
  • Ho P. P. K., Towner R. D., Indelicato J. M., Wilham W. J., Spitzer W. A., Koppel G. A. Biochemical and microbiological studies on 7α -methoxy cephalosporins. J. Antibiot. 1973; 26: 313–314, [INFOTRIEVE], [CSA]
  • Hodgkin D. C., Maslen E. N. The X-ray structure of cephalosporin C. Biochem. J. 1961; 79: 393–402, [INFOTRIEVE], [CSA]
  • Huang X., Zeng R., Ding X., Mao X., Ding Y., Rao Z., Xie Y., Jiang W., Zhao G. Affinity alkylation of the Trp-B4 residue of the beta-subunit of the glutaryl-7-aminocephalosporanic acid acylase of Pseudomonas sp. 130. J. Biol. Chem. 2002; 277: 10256–10264, [INFOTRIEVE], [CROSSREF], [CSA]
  • Hwang T., Fu H., Lin L., Hsu W. High level expression of Trigonopsis variabilis D-amino acid oxidase in E. coli using lactose as inducer. Biotechnol. Lett. 2000; 22: 655–658, [CROSSREF], [CSA]
  • Ichikawa S., Murai Y., Yamamato S., Shibuya Y., Fuzil T., Komatsu K., Kodaria R. The isolation and properties of Pseudomonas mutant with enhanced productivity of 7-β -(4-carboxybutanamido)cephalosporanic acid acylase. Agric. Biol. Chem. 1981a; 45: 2225–2229, [CSA]
  • Ichikawa S., Shibuya Y., Murai Y., Yamanato S., Fuzil T., Komatsu K., Kodaria R. Purification and properties of 7-β -(4-carboxybutanamido)cephalosporanic acid acylase produced by mutant derived from Pseudomonas. Agric. Biol. Chem. 1981b; 45: 2231–2236, [CSA]
  • Imanaka H., Miyoshi T., Konomi T., Kubochi Y., Hattori S., Kawakita T. Process for the preparation of deacetyl cephalosporin. U.S. Patent No. 4, 414, 328, 1983
  • Inoue M., Hiratake J., Suzuki H., Kumagai H., Sakata K. Identification of catalytic nucleophile of Escherichia coli gamma-glutamyltranspeptidase by gamma-monofluorophosphono derivative of glutamic acid: N-terminal thr-391 in small subunit is the nucleophile. Biochemistry 2000; 39: 7764–7771, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ishii Y., Saito Y., Fujimura T., Isogai T., Kojo H., Yashimata M., Niwa M., Kohsaka M. A novel 7-β-(4-carboxybutanamido)cephalosporanic acid acylase isolated from Pseudomonas strain C427 and its high level production in Escherichia coli. J. Ferment. Bioeng. 1994; 77: 591–597, [CROSSREF], [CSA]
  • Ishii Y., Saito Y., Fujimura T., Sasaki H. T., Noguchi Y., Yamada H., Niwa M., Shimomura K. High level production, chemical modification and site directed mutagenesis of a cephalosporin C acylase from Pseudomonas sp. N176. Eur. J. Biochem. 1995; 230: 773–778, [INFOTRIEVE], [CROSSREF], [CSA]
  • Ishiye M., Niwa M. Bacterial gamma-glutamyltranspeptidases: comparison of Escherichia coli and Pseudomonas gamma-glutamyltranspeptidase. FEMS Microbiol. Lett. 1992a; 97: 235–41, [CSA]
  • Ishiye M., Niwa M. Nucleotide sequence and expression in E. coli of the cephalosporin acylase gene of a Pseudomonas strain. Biochim. Biophys. Acta 1992b; 1132: 233–239, [INFOTRIEVE], [CSA]
  • Isogai T., Fukagawa M., Aramori I., Iwami M., Kojo H., Ono T., Udea Y., Kohsaka M., Imanaka H. Construction of a 7-Aminocephalosporanic acid (7-ACA) biosynthetic operon and direct production of 7-ACA in Acremonium chrysogenum. Bio/Technology 1991; 9: 188–191, [INFOTRIEVE], [CROSSREF], [CSA]
  • Jeffery J. D., Abraham A. E. P., Newton G. G. F. Deacetylcephalosporin C. Biochem. J. 1961; 81: 591–596, [INFOTRIEVE], [CSA]
  • Kawate S., Fukuo T., Kunito K., Kuwahara Y. Cephalosporin C acylase, Part II. Purification and characterization of the enzyme. Baiotekunoroji Kenkyu Hokokusho 1987; 37: 37–46, [CSA]
  • Khang Y. H., Yoo B. H. Isolation and characterization of a novel soil strain, Pseudomonas cepacia BY21, with glutaryl-7-aminocephalosporanic acid acylase activity. Biotech. Lett. 2000; 22: 317–320, [CSA]
  • Kim Y., Yoon K., Khang Y., Turley S., Hol W. G. The 2.0 A crystal structure of cephalosporin acylase. Structure Fold Des. 2000; 8: 1059–68, [INFOTRIEVE], [CSA]
  • Kim Y., Hol W. G. Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: insight into the basis of its substrate specificity. Chem. Biol. 2001; 8: 1253–1264, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kim S., Kim Y. Active-site residues of cephalosporin acylase are critical not only for enzymatic catalysis but also for post-translational modification. J. Biol. Chem. 2001; 276: 48376–48381, [INFOTRIEVE], [CSA]
  • Kim D. -W., Yoon K. -H. Cloning and high expression of glutaryl-7-aminocephalosporanic acid acylase gene from Pseudomonas diminuta. Biotechnol. Letts. 2001; 23: 1067–1071, [CROSSREF], [CSA]
  • Kim J. K., Yang I. S., Shin H. J., Cho K. J., Ryu E. K., Kim S. H., Park S. S., Kim K. H. Insight into autoproteolytic activation from the structure of cephalosporin acylase: a protein with two proteolytic chemistries. Proc. Natl. Acad. Sci. USA. 2006; 103: 1732–1737, [INFOTRIEVE], [CROSSREF], [CSA]
  • Konecny J., Sieber M. Continuous deacetylation of cephalosporins. Biotechnol. Bioeng. 1980; 22: 2013–2029, [CROSSREF], [CSA]
  • Kucers A., Bennett N. M., Kemp R. J. The Use of Antibiotics (4th ed.). William Heinemann Medical Books, London 1991
  • Kumar K. K., Sudhakaran V. K., Deshpande B. S., Ambdkar S. S., Shewale J. G. Cephalosporin acylases: enzyme production structure and applications in the production of 7-ACA. Hind. Antibiot. Bull. 1993; 35: 111–125, [CSA]
  • Kwon T. H., Rhee S., Lee Y. S., Park S. S., Kim K. H. Crystallization and preliminary X-ray diffraction analysis of glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas sp. GK16. J. Struct. Biol. 2000; 131: 79–81, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lee Y. H., Chang T. S., Liu H. J., Chu W. S. An acidic glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas nitroreducens. Biotechnol. Appl. Biochem. 1998; 28: 113–118, [INFOTRIEVE], [CSA]
  • Lee Y. S., Kim H. W., Park S. S. The role of alpha-amino group of the N-terminal serine of beta subunit for enzyme catalysis and autoproteolytic activation of glutaryl 7-aminocephalosporanic acid acylase. J. Biol. Chem. 2000; 275: 39200–39206, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lein J. One step enzymic conversion of cephalosporin C and derivatives to 7-amino-cephalosporanic acid and derivatives. US Pat. US 4981789, 1991
  • Li Y., Jiang W., Yang Y., Zhao G., Wang E. Overproduction and purification of glutaryl-7-aminocephalosporanic acid acylase. Protein Expression and Purification 1998; 12: 233–238, [INFOTRIEVE], [CROSSREF], [CSA]
  • Li Y., Chen J., Jiang W., Mao X., Zhao G., Wang E. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. Eur. J. Biochem. 1999; 262: 713–719, [INFOTRIEVE], [CROSSREF], [CSA]
  • Loader P. B., Newton G. G. F., Abraham E. P. The cephalosporin C nucleus (7-aminocephalosporanic acid) and some of its derivatives. Biochem. J. 1961; 79: 471–476, [CSA]
  • Lopez-Gallego F., Betancor L., Hidalgo A., Mateo C., Guisan J. M., Fernandez-Lafuente R. Optimization of an industrial biocatalyst of glutaryl acylase: stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. J. Biotechnol. 2004; 111: 219–227, [INFOTRIEVE], [CROSSREF], [CSA]
  • Lorenz W. W., Wiegel J. Isolation, analysis and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS 485: a β -xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. J. Bacteriol. 1997; 179: 5436–5441, [INFOTRIEVE], [CSA]
  • Mateo C., Fernandez-Lorente G., Cortes E., Garcia J. L., Fernandez-Lafuente R., Guisan J. M. One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnol. Bioeng. 2001; 76: 269–276, [INFOTRIEVE], [CROSSREF], [CSA]
  • Matsuda A., Komatsu K. Molecular cloning and structure of the gene for 7β -(4-carboxybutanamido) cephalosporanic acid acylase from a Pseudomonas strain. J. Bacteriol. 1985; 163: 1222–1228, [INFOTRIEVE], [CSA]
  • Matsuda A., Matsumaya K., Yamamoto K., Ichikawa S., Komatsu K. Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J. Bacteriol. 1987a; 169: 5815–5820, [INFOTRIEVE], [CSA]
  • Matsuda A., Toma K., Komatsu K. Nucleotide sequence of the genes for two distinct cephalosporin C acylases from a Pseudomonas strain. J. Bacteriol. 1987b; 169: 5821–5826, [INFOTRIEVE], [CSA]
  • Matsumoto K. Production of 6-APA, 7-ACA and 7-ADCA by immobilized penicillin and cephalosporin amidase. Industrial Application of Immobilized Biocatalysis, A. Tanaka, T. Tosa, T. Koyabayshi. Marcel Dekker, New York 1993; 67–88
  • Mayr U., Buckel P., Brunner H., Seidel H., Stahl P. Microbial detection system for cephalosporin C acylase. Ger. Offen. DE 3,621,563 (Cl. C12Q1/00), 1988, Boehringer Mannheim G.M.B.H.
  • Meister A., Tate S. S., Griffith O. W. γ -Glutamyl Transpeptidase. Methods in Enzymol. 1981; 77: 237–253, [CSA]
  • Monti D., Carrea G., Riva S., Baldaro E., Frare G. Characterization of an industrial biocatalyst: Immobilized glutaryl-7-ACA acylase. Biotechnol. Bioeng. 2000; 70: 239–244, [INFOTRIEVE], [CROSSREF], [CSA]
  • Morin R. B., Jackson B. G., Flynn E. H., Roeske R. W. Chemistry of cephalosporins antibiotics: 7-Aminocephalosporanic acid from cephalosporin C. J. Am. Chem. Soc. 1962; 84: 3400–3401, [CROSSREF], [CSA]
  • Morin R. B., Jackson B. G., Muller R. A., Lanvagnino E. R., Scanlon W. B., Andrews S. L. Chemistry of cephalosporins: Chemical correlation of penicillin and cephalosporin antibiotics. J. Am. Chem. Soc. 1963; 85: 1896–1897, [CROSSREF], [CSA]
  • Moss M. O. Enzymatic alterations of penicillins and cephalosporins. Topics in Enzyme and Fermentation Biotechnology, A. Wiseman. Ellis Horwood, Chichester 1977; 1A: 111–131
  • Nakayama R., Kumagai H., Tochikura T. Purification and properties of γ -glutamyl-transpeptidase from Proteus mirabilis. J. Bacteriol. 1984; 160: 341–346, [INFOTRIEVE], [CSA]
  • Newton G. G. F., Abraham E. P. Isolation of penicillanic acid and D-α -amino adipic acid from cephalosporin N. Nature 1953; 172: 395, [INFOTRIEVE], [CSA]
  • Nikolov A., Danielsson B. Enzymatic transformation of cephalosporin C to 7-aminocephalosporanic acid, I. Cultivation of Pseudomonas syringae and partial purification and immobilization of 7β -(4-carboxybutanamido) cephalosporanic acid acylase. Enzyme and Microb. Technol. 1994; 16: 1031–1036, [CROSSREF], [CSA]
  • Nobbs T. J., Ishii Y., Fujimora T., Saito Y., Niwa M. Chemical modification and site directed mutagenesis of tyrosine residue in cephalosporin C acylase from Pseudomonas strain N 176. J. Ferment, Bioeng. 1994; 77: 604–609, [CROSSREF], [CSA]
  • Oh B., Kim M., Yoon J., Chung K., Shin Y., Lee D., Kim Y. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochem. Biophys. Res. Commun. 2003; 310: 19–27, [INFOTRIEVE], [CROSSREF], [CSA]
  • Onions A. H. S., Brady B. L. Taxonomy of Penicillium and Acremonium. Penicillium and Acremonium, Biotechnology Handbook, J. F. Peberdy. Plenum Press, NY 1987; 1: 1–35
  • O'Sullivan J., Abraham E. P. The conversion of cephalosporins to 7α -methoxycephalosporins by cell free extracts of Streptomyces clavuligerus. Biochem. J. 1980; 186: 613–616, [INFOTRIEVE], [CSA]
  • Otten L. G., Sio C. F., Vrielink J., Cool R. H., Quax W. J. Altering the substrate specificity of cephalosporin acylase by directed evolution of the β -subunit. J. Biol. Chem. 2002; 277: 42121–42127, [INFOTRIEVE], [CROSSREF], [CSA]
  • Palzkill T., Botstein D. Identification of amino acid substitutes that alter the substrate specificity of TEM-1 beta-lactamase. J. Bacteriol. 1992; 172: 5237–5243, [CSA]
  • Park S. W., Kim Y. I., Chung K. H., Hong S. K., Kim S. W. Covalent immobilization of GL-7-ACA acylase on silica gel through silanization. Reactive and Functional Polymers 2002a; 51: 79–92, [CROSSREF], [CSA]
  • Park S. W., Choi S. Y., Chung K. H., Hong S. I., Kim S. W. Characteristics of GL-7-ACA acylase immobilized on silica gel through silanization. Biochem. Eng. J. 2002b; 11: 87–93, [CROSSREF], [CSA]
  • Park S. W., Lee J. W., Hong S. I., Kim S. W. Immobilization of glutaryl-7-aminocephalosporanic acid acylase on silica gel and enhancement of its stability. Appl. Biochem. Biotechnol. 2003; 104: 185–198, [INFOTRIEVE], [CROSSREF], [CSA]
  • Parmar A., Humar H., Marwaha S. S., Kennedy J. F. Recent trends in enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid (7-ACA). Crit. Rev. Biotechnol. 1998; 18: 1–12, [CROSSREF], [CSA]
  • Politino M., Tonzi S. M., Burnett W. V., Romancik G., Usher J. J. Purification and characterization of a cephalosporin esterase from Rhodosporidium toruloides. Appl. Microbiol. Biotechnol. 1997; 63: 4807–4811, [CSA]
  • Richmond M. H., Sykes R. B. The β -lactamases of gram-negative bacteria and their possible physiological role. Adv. Microbial. Physiol. 1973; 9: 31–88, [CSA]
  • Ross G. W. β -Lactamases (Enterobacter species). Methods Enzymol. 1975; 43: 678–687, [INFOTRIEVE], [CSA]
  • J. H. Hash. Academic Press, New York
  • Saito Y., Ishii Y., Fujimura T., Sasaki H. T., Noguchi Y., Yamada H., Niwa M., Shimomura K. Protein engineering of a cephalosporin C acylase from strain N176. in Recombinant DNA Biotechnology III. J. A. Asenjo, B. A. Andrews, 1996; 782: 226–239, Ann. N. Y. Acad. Sci.
  • Sakai Y., Abe T., Aoki M., Ohbayashi Y., Koji I., Yamamoto K., Tani Y., Kato N. Bioconversion of 7-aminocephalosporanic acid by intact Rhodotorula glutinis cells. Appl. Environ. Microbiol. 1996; 62: 2669–2672, [INFOTRIEVE], [CSA]
  • Sakai Y., Abe T., Aoki M., Ohbayashi Y., Yamamoto K., Tani Y., Kato N. Purification and properties of cephalosporin esterase from the yeast Rhodotorula glutinis 38B1, useful for bioconversion of 7-aminocephalosporanic acid derivatives. J. Ferment. Bioeng. 1998a; 85: 53–57, [CROSSREF], [CSA]
  • Sakai Y., Ayukawa K., Mitsui R., Yrimoto H., Yamamoto K., Kato N. A novel arylesterase active toward 7-aminocephalosporanic acid from Agrobacterium radiobacter IFO1207: Nucleotide sequence gene expression in Escherichia coli and site directed mutagenesis. J. Ferment. Bioeng. 1998b; 85: 138–143, [CROSSREF], [CSA]
  • Sassiver M. L., Lewis A. Structure and activity relationship among semisynthetic cephalosporins. Adv. Appl. Microbiol. 1970; 13: 163–236, [CSA]
  • Savidge T. A. Enzymatic conversions used in the production of penicillin and cephalosporin. Biotechnology of Industrial Antibiotics, E. J. Vandamme. Marcel Dekker Co., New York 1984; 171–224
  • Schmitt E. K., Birgit H., Ulrich K. Regulation of cephalosporin biosynthesis. Molecular Biotechnology of Fungal β -Lactam Antibiotics and Related Peptide Synthetases, A. A. Brakhage. Series Advances in Biochemical Engineering /Biotechnology, Springer, Berlin 2004; 88: 1–44
  • Schräder T., Andreesen J. R. Properties and chemical modification of D-amino oxidase from Trigonopsis variabilis. Arch. Microbiol. 1996; 165: 41–47, [CROSSREF], [CSA]
  • Shibuya Y., Mastsumoto K., Fuji T. Isolation and properties of 7β -(4-carboxybutanamido) cephalosporanic acid acylase producing bacteria. Agric. Biol. Chem. 1981; 45: 1561–1567, [CSA]
  • Sio C. F., Quax W. J. Improved β -lactamase and their use as industrial biocatalysts. Curr. Opin. Biotechnol. 2004; 15: 349–355, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sjoeberg B., Nathrost-Westfelt L., Ortengren B. Enzymatic hydrolysis of some penicillins and cephalosporins by Escherichia coli acylase. Acta Chem. Scand. 1967; 21: 547–551, [CSA]
  • Smith A. Cephalosporins. Comprehensive Biotechnology, M. Moo, Young. Pergamon Press, Oxford 1985; 3: 163–185
  • Sonawane V. C., Jolly R. S., Vohra R. M. Cephalosporin modification: An extracellular glutaryl 7-ACA acylase from Bacillus sp. Biotech. Lett. 1996; 18: 965–968, [CROSSREF], [CSA]
  • Sudhakaran V. K., Deshpande B. S., Ambedkar S. S., Shewale J. G. Molecular aspects of penicillins and cephalosporin acylases. Process. Biochem. 1992; 27: 131–143, [CROSSREF], [CSA]
  • Suzuki H., Miwa C., Ishihara S., Kumagai H. A single amino acid substitution Converts γ -glutamyltranspeptidase to a Class IV cephalosporin acylase (glutaryl-7-aminocephalosporanic acid acylase). Appl. Environ. Microbiol. 2004; 70: 6324–6328, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sykes R. B., Matthew M. The β -lactamases of gram negative bacteria and their role in resistance to β -lactam antibiotics. J. Antimicrob. Chemother. 1976; 2: 115–157, [INFOTRIEVE], [CSA]
  • Szwajcer E., Mosbach K. Isolation and partial characterization of a D-amino acid oxidase active against cephalosporin C from yeast Trigonopsis variabilis. Biotechnol. Letts. 1985; 7: 1–7, [CSA]
  • Takimoto A., Matsushima K., Yagi S., Sonoyama T. Purification and characterization and partial amino acid sequence of a novel cephalosporin C deacetylase from Bacillus subtilis. J. Ferment. Bioeng. 1994; 77: 17–22, [CSA]
  • Tischer W., Giesecke U., Lang G., Roder A., Wedekind F. Biocatalytic 7-ACA production. Ann. N. Y. Acad. Sci. 1992; 672: 502–509, [CSA]
  • Velasco J., Luis A. J., Angel M. M., Diez B., Soler G., Barredo J. L. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nat. Biotechnol. 2000; 18: 857–861, [INFOTRIEVE], [CROSSREF], [CSA]
  • Vicenzi J. T., Hansen G. J. Enzymatic oxidation of cephalosporin C using whole cells of the yeast Trigonopsis variabilis within a “cross-flow filter reactor.”. Enzyme. Microbial. Technol. 1993; 15: 281–285, [CROSSREF], [CSA]
  • Wildfeuer M. E. Aqueous acetylation of deacetyl glutaryl-7-aminocephalosporanic acid and speculation on the origin of deacetyl cephalosporin C in fermentation broth. J. Antibio. 1994; 47: 64–71, [CSA]
  • Yau M. H., Wang J., Tsang P. W., Fong W. P. J1 acylase, a glutaryl-7-aminocephalosporanic acid acylase from Bacillus laterosporus J1, is a member of the alpha/beta-hydrolase fold superfamily. FEBS Lett. 2006; 580: 1465–1471, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhang Q. J., Xu W. X. Morphological physiological and enzymatic characteristics of cephalosporin acylase producing Arthrobacter strain 45-A. Arch. Microbiol. 1993; 159: 392–395, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhang Q., Xu W., Shi L. 2-Nitro-5-(6-bromohexanoylamino) benzoic acid test paper method for detecting microorganisms capable of producing cephalosporin acylases. Anal. Biochem. 1991; 196: 201–206, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhang W., Liu Y., Zheng H., Yang S., Jiang W. Improving the activity and stability of GL-7-ACA acylase CA130 by site-directed mutagenesis. Appl. Environ. Microbiol. 2005; 71: 5290–5296, [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhu S., Yang S., Zhao G., Jiang W. A rapid and specific method to screen environmental microorganisms for cephalosporin acylase activity. J. Microbiol. Methods 2003; 54: 131–135, [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.