899
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Biotechnological Methods to Accelerate Cheddar Cheese Ripening

, &
Pages 121-143 | Published online: 10 Oct 2008

REFERENCES

  • Alewijn M., Sliwinski E. L., Wouters J. T. M. Production of fat-derived (flavor) compounds during the ripening of Gouda cheese. Int. Dairy J. 2005; 15: 733–740, [CSA]
  • Alkhalaf W., Piard J. C., El Soda M., Gripon J. C., Desmazeaud M., Vassal L. Liposomes as proteinase carriers for the accelerated ripening of Saint-Paulin type cheese. J. Food Sci. 1988; 53: 1674–1679, [CSA]
  • Anastasiou R., Papadelli M., Georgalaki M. D., Kalantzopoulos G., Tsakalidou E. Cloning and sequencing of the gene encoding X-prolyl-dipeptidyl aminopeptidase (PepX) from Streptococcus thermophilus strain ACA-DC 4. J. Appl. Microbiol. 2002; 93: 52–59, [INFOTRIEVE], [CROSSREF], [CSA]
  • Andersen K. T., Madsen J. S. Injection of starter bacteria and ripening enzymes into cheese matrix. IDF Symposium on Cheese: Ripening, Characterization and Technology, L. Houdek, N. Galén. Czech Republic, Prague 2004; 43, Book of Abstracts. 1st Ed.
  • Arbige M. V., Freund P. R., Silver S. C., Zelko J. T. Novel lipase for Cheddar cheese flavor development. Food Technol. 1986; 40: 91–98, [CSA]
  • Arnau J., Hjerl-Hansen E., Israelsen H. Heterologous gene expression of bovine plasmin in Lactococcus lactis. Appl. Microbiol. Biotechnol. 1997; 48: 331–338, [INFOTRIEVE], [CROSSREF], [CSA]
  • Arora G., Lee B. H. Purification and characterization of aminopeptidase from Lactobacillus casei ssp. casei LLG. J. Dairy Sci. 1992; 75: 700–710, [CSA]
  • Arora G., Cormier F., Lee B. H. Analysis of odor-active volatiles in Cheddar cheese headspace by multidimensional GC/ MS/ Sniffing. J. Agric. Food Chem. 1995; 43: 748–752, [CROSSREF], [CSA]
  • Atlan D., Gilbert C., Blanc B., Portalier R. Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397. Microbiology 1994; 140: 527–535, [INFOTRIEVE], [CSA]
  • Azarnia S., Robert N., Sabik H., St-Gelais D., Champagne C. P., Lee B. H. Cheddar-EMC flavor development using native and recombinant enzymes of Lactobacillus casei species. CIFST/AAFC Joint Conference, MontrealCanada, 2006, P119C
  • Basten D. E. J. W., Visser J., Schaap P. J. Lysine aminopeptidase of Aspergillus niger. Microbiology 2001; 147: 2045–2050, [INFOTRIEVE], [CSA]
  • Basten D. E. J. W., Dekker P. J. T., Schaap P. J. Aminopeptidase C of Aspergillus niger is a novel phenylalanine aminopeptidase. Appl. Environ. Microbiol. 2003; 69: 1246–1250, [INFOTRIEVE], [CROSSREF], [CSA]
  • Bautista L., Kroll R. G. Survival of some non–starter bacteria in naturally ripened and enzyme—accelerated Cheddar cheese. J. Dairy Res. 1988; 55: 597–602, [INFOTRIEVE], [CSA]
  • Bergamini C. V., Hynes E. R., Zalazar C. A. Influence of probiotic bacteria on the proteolysis profile of a semi-hard cheese. Int. Dairy J. 2006, In press[CSA]
  • Bines V. E., Young P., Law B. A. Comparison of Cheddar cheese made with a recombinant calf chymosin and with standard calf rennet. J. Dairy Res. 1989; 56: 657–664, [CSA]
  • Bley M. E., Johnson M. E., Olson N. F. Factors affecting non-enzymatic browning of process cheese. J. Dairy Sci. 1985; 68: 555–561, [CSA]
  • Boucher I., Parrot M., Gaudreau H., Champagne C. P., Vadeboncoeur C., Moineau S. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 2002; 68: 6152–6161, [INFOTRIEVE], [CROSSREF], [CSA]
  • Braun S. D., Olson N. F. Regulating flavor compound synthesis and cofactor recycling in heterogenous enzymatic reaction by mixtures of bacterial cell-free extracts. J. Dairy Sci. 1986a; 69: 1209–1218, [CSA]
  • Braun S. D., Olson N. F. Microencapsulation of cell-free extracts to demonstrate the feasibility of heterogenous enzyme systems and cofactor recycling for development of flavor in cheese. J. Dairy Sci. 1986b; 69: 1202–1208, [CSA]
  • Bron P. A., Benchimol M. G., Lambert J., Palumbo E., Deghorain M., Delcour J., de Vos W. M., Kleerebezem M., Hols P. Use of the air gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 2002; 68: 5663–5670, [INFOTRIEVE], [CSA]
  • Bruinenberg P. G., Limsowtin G. K. Y. Diversity of proteolytic enzymes among lactococci. Aust. J. Dairy Tech. 1995; 50: 47–50, [CSA]
  • Brule G., Lenoir J., Remeuf F. The casein micelle and milk coagulation. Cheesemaking: From Science to Quality Assurance, 2nd Ed., A. Eck, J. C. Gillis, LavoisierFrance 2000; 7–40
  • Buist G., Kok J., Leenhouts K. J., Dabrowska M., Venema G., Haandrikman A. J. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococus lactis, a muramidase needed for cell separation. J. Bacteriol. 1995; 177: 1554–1563, [INFOTRIEVE], [CSA]
  • Buist G., Karsens H., Nauta A., van Sinderen D., Venema G., Kok J. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin AcmA. Appl. Environ. Microbiol. 1997; 63: 2722–2728, [INFOTRIEVE], [CSA]
  • Bulletin of the International Dairy Federation. The World Market for Cheese. BrusselsBelgium 2005; 2–22
  • Cantoni E., Schmidt-Dannert C., Brocca S., Schmid R. D. Overexpression of lipase A and B of Geotrichum candidum in Pichia pastoris: High-level production and some properties of functional expressed lipase B. Biotechnol Tech. 1997; 11: 689–695, [CROSSREF], [CSA]
  • Champagne C. P., Baillargeon-Coté C., Goulet J. Whey fermentation by immobilized cells of Propionibacterium shermanii. J. Appl. Bacteriol. 1989; 66: 175–184, [CSA]
  • Chapot-Chartier M. P., Deniel C., Rousseau M., Vassal L., Gripton J. C. Autolysis of two strains of Lactococcus lactis during cheese ripening. Int. Dairy J. 1994; 4: 251–269, [CROSSREF], [CSA]
  • Chavagnat F., Casey M. G., Meyer J. Purification, characterization, gene cloning, sequencing and overexpression of aminopeptidase N from Streptococcus thermophilus A. Appl. Environ. Microbiol. 1999; 65: 3001–3007, [INFOTRIEVE], [CSA]
  • Chien H., Chien R., Lin L. L., Chao S. H., Chen C. C., Wang W. C., Shaw C. Y., Tsai Y. C., Hu H. Y., Hsu W. H. Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. J. Biochim. Biophys. Acta 2002; 1576: 119–126, [CSA]
  • Choi Y. J., Lee B. H. Culture conditions for the production of esterase from Lactobacillus casei CL96. Bioprocess & Biosys. Eng. 2001; 24: 59–63, [INFOTRIEVE], [CROSSREF], [CSA]
  • Choi Y. J., Miguez C. B., Lee B. H. Characterization and heterologous gene expression of a novel esterase from Lactobacillus casei CL96. Appl. Environ. Microbiol. 2004; 70: 3213–3221, [INFOTRIEVE], [CROSSREF], [CSA]
  • Choisy C., Desmazeaud M., Gripon J. C., Lamberet G., Lenoir J. The biochemistry of ripening. Cheesemaking: From Science to Quality Assurance, 2nd Ed., A. Eck, J. C. Gillis, LavoisierFrance 2000; 82–151
  • Christensen J. E., Dudley E. G., Pederson J. A., Steele J. L. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek. 1999; 76: 217–246, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cogan T. M., Hill C. Cheese starter cultures. Cheese: Chemistry, Physics and Microbiology, 2nd Ed., P. F. Fox. Elsevier Applied Science, London 1993; Volume I: 193–255
  • Collins Y. F., McSweeney P. L. H., Wilkinson M. G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003a; 13: 841–866, [CROSSREF], [CSA]
  • Collins Y. F., McSweeney P. L. H., Wilkinson M. G. Evidence of a relationship between autolysis of starter bacteria and lipolysis in Cheddar cheese during ripening. J. Dairy Res. 2003b; 70: 105–113, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cotter P. D., Hill C., Ross R. P. A food-grade approach for functional analysis and modification of native plasmids in Lactococus lactis. Appl. Environ. Microbiol. 2003; 69: 702–706, [INFOTRIEVE], [CROSSREF], [CSA]
  • Cromie S. J., Giles J. E., Dulley J. R. Effect of elevated ripening temperature on the microflora of Cheddar cheese. J. Dairy Res. 1987; 54: 69–76, [CSA]
  • Crow V. L., Coolbear T., Gopal P. K., Martley F. G., McKay L. L., Riepe H. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 1995a; 5: 855–875, [CROSSREF], [CSA]
  • Crow V. L., Martley F. G., Coolbear T., Roundhill S. J. The influence of phage-assisted lysis of Lactococcus lactis subsp. lactis ML8 on Cheddar cheese ripening. Int. Dairy J. 1995b; 5: 451–472, [CROSSREF], [CSA]
  • Dalgleish D. G. The enzymatic coagulation of milk. Cheese: Chemistry, Physics and Microbiology, 2nd Ed., P. F. Fox. Elsevier Applied Science, London 1993; Volume I: 69–100
  • Deeth H. C., Fitz-Gerald C. H. Lipolytic enzymes and hydrolytic rancidity in milk and milk products. Advanced Dairy Chemistry–2–Lipids, P. F. Fox. Chapman and Hall, London 1995; 247–308
  • Deeth H. C., Touch V. Methods for detecting lipase activity in milk and milk products. Aust. J. Dairy Technol. 2000; 55: 153–168, [CSA]
  • de Kruif C. G., Holt C. Casein micelle structure, functions and interactions. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 233–276
  • de Ruyter P. G. G. A., Kuipers O. P., Meijer W. C., de Vos W. M. Food grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nature Biotech 1997; 15: 976–979, [CROSSREF], [CSA]
  • de Wit M., Osthoff G., Viljoen B. C., Hugo A. A comparative study of lipolysis and proteolysis in Cheddar cheese and yeast-inoculated Cheddar cheeses during ripening. Enzyme Microb. Technol. 2005; 37: 606–616, [CROSSREF], [CSA]
  • di Cagno R., Quinto M., Corsetti A., Minervini F., Gobbetti M. Assessing the proteolytic and lipolytic activities of single strains of mesophilic lactobacilli as adjunct cultures using a Caciotta cheese model system. Int. Dairy J. 2006; 16: 119–130, [CROSSREF], [CSA]
  • Dillon J. C., Berthier A. M. Cheese in diet. Cheesemaking: From Science to Quality Assurance, 2nd Ed., A. Eck, J. C. Gillis, LavoisierFrance 2000; 663–683
  • Eck A. What is cheese?. Cheesemaking: From Science to Quality Assurance, 2nd Ed., A. Eck, J. C. Gillis, LavoisierFrance 2000; 661–662
  • El Abboudi M., Pandian S., Trépanier G., Simard R. E., Lee B. H. Heat-shocked lactobacilli for acceleration of Cheddar cheese ripening. J. Food Sci. 1991; 56: 948–953, [CSA]
  • El Soda M. Acceleration of cheese ripening: Recent advances. J. Food Prot. 1986; 49: 395–399, [CSA]
  • El Soda M., Pandian S. Recent developments in accelerated cheese ripening. J. Dairy Sci. 1991; 74: 2317–2335, [CSA]
  • Farkye N., Fox P. F. Contribution of plasmin to Cheddar cheese ripening: Effect of added plasmin. J. Dairy Res. 1992; 59: 209–216, [CSA]
  • Fedrick I. A., Aston J. W., Durward I. G., Dulley J. R. The effect of elevated ripening temperature on proteolysis and flavor development in Cheddar cheese: II. High temperature storage midway through ripening. N. Z. J. Dairy Sci. Technol. 1986; 18: 253–260, [CSA]
  • Fenster K. M., Parkin K. L., Steele J. L. Intracellular esterase from Lactobacillus casei LILA: Nucleotide sequencing, purification, and characterization. J. Dairy Sci. 2003a; 86: 1118–1129, [INFOTRIEVE], [CSA]
  • Fenster K. M., Parkin K. L., Steele J. L. Nucleotide sequencing, purification, and biochemical properties of an arylesterase from Lactobacillus casei LILA. J. Dairy Sci. 2003b; 86: 2547–2557, [INFOTRIEVE], [CSA]
  • Fernández-Esplá M. D., Fox P. F. Effect of adding Propionibacterium shermanii NCDO 853 or Lactobacillus casei ssp. casei IFPL 731 on proteolysis and flavor development of Cheddar cheese. J. Agric. Food Chem. 1998; 46: 1228–1234, [CROSSREF], [CSA]
  • Fernández L., Beerthuyzen M. M., Brown J., Siezen R. J., Coolbear T., Holland R., Kuipers O. P. Cloning, characterization, controlled overexpression, and inactivation of the major tributyrin esterase gene of Lactococcus lactis. Appl. Environ. Microbiol. 2000; 66: 1360–1368, [CROSSREF], [CSA]
  • Forde A., Fitz-Gerald G. F. Biotechnological approaches to the understanding and improvement of mature cheese flavor. Curr. Opinion Biotechnol. 2000; 11: 484–489, [CROSSREF], [CSA]
  • Fox P. F. The milk protein system. Developments in Dairy Chemistry, P. F. Fox. Elsevier Applied Science, London 1989a; Volume 4: 1–53
  • Fox P. F. Proteolysis during cheese manufacture and ripening. J. Dairy Sci. 1989b; 72: 1379–1400, [CSA]
  • Fox P. F. Cheese: An overview. Cheese: Chemistry, Physics, and Microbiology, 2nd Ed., P. F. Fox. Elsevier Applied Science, London 1993; Volume I: 1–35
  • Fox P. F., Law J. Enzymology of cheese ripening. Food Biotechnol. 1991; 5: 239–262, [CSA]
  • Fox P. F., Stepaniak L. Enzymes in cheese technology. Int. Dairy J. 1993; 3: 509–530, [CSA]
  • Fox P. F., Wallace J. M. Formation of flavor compounds in cheese. Adv. Appl. Microbiol. 1997; 45: 17–85, [INFOTRIEVE], [CSA]
  • Fox P. F., McSweeney P. L. H., Lynch C. M. Significances of non-starter lactic acid bacteria in Cheddar cheese. Aust. J. Dairy Technol. 1998; 53: 83–89, [CSA]
  • Fox P. F., O'Connor T. P., McSweeney P. L. H., Guinee T. P., O'Brien N. M. Cheese: physical, biochemical, and nutritional aspects. Adv. Food Nutr. Res. 1996; 39: 163–328, [INFOTRIEVE], [CSA]
  • Fresta M., Puglisi G. Enzyme loaded liposomes for cheese ripening. Microspheres, Microcapsules and Liposomes. Med. Biotechnol. Appl. 1999; 2: 639–670, [CSA]
  • Fresta M., Wehrli E., Puglisi G. Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening. J. Microencapsul. 1995; 12: 307–325, [CSA]
  • Gooda E., Bednarski W., Ponznaòski S. The protein degradation in Cheddar cheese manufactured from milk treated with lactase. Milchwissenschaft. 1983; 38: 83–86, [CSA]
  • Green M. L., Angal S., Lowe P. A., Marston F. A. O. Cheddar cheesemaking with recombinant calf chymosin synthesized in Esherichia coli. J. Dairy Res. 1985; 52: 281–286, [CSA]
  • Grosswasser A. B., Ugazio S., Gauffre F., Viratelle O., Mahy P., Roux D. Spherulites: A new vesicular system with promising applications. An example: Enzyme microencapsulation. J. Chem. Phys. 2000; 112: 3424–3430, [CROSSREF], [CSA]
  • Guinee T. P. Role of protein in cheese and cheese products. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 1083–1174
  • Guinee T. P., Wilkinson M., Mulholland E., Fox P. F. Influence of ripening temperature, added commercial enzyme preparations and attenuated, mutant (lac−) Lactococcus lactis starter on the proteolysis and maturation of Cheddar cheese. Irish J. Food Sci. Technol. 1992; 15: 27–51, [CSA]
  • Haandrikman A. J., Meesters R., Laan H., Konings W. N., Kok J., Venema G. Processing of the lactococcal extracellular serine proteinase. Appl. Environ. Microbiol. 1991; 57: 1899–1904, [INFOTRIEVE], [CSA]
  • Habibi-Najafi M. B., Lee B. H. Purification and characterization of x-prolyldipeptidyl peptidase from Lactobacillus casei ssp. casei LLG. Appl. Microbiol. Biotech. 1994; 42: 280–286, [CSA]
  • Habibi-Najafi M. B., Lee B. H. Purification and characterization of proline iminopeptidase from Lactobacillus casei ssp. casei LLG. J. Dairy Sci. 1995; 78: 251–259, [CSA]
  • Hannon J. A., Wilkinson M. G., Delahunty C. M., Wallace J. M., Morrissey P. A., Beresford T. P. Application of descriptive sensory analysis and key chemical indices to assess the impact of elevated ripening temperatures on the acceleration of Cheddar cheese ripening. Int. Dairy J. 2005; 15: 263–273, [CROSSREF], [CSA]
  • Hannon J. A., Wilkinson M. G., Delahunty C. M., Wallace J. M., Morrissey P. A., Beresford T. P. Use of autolytic starter systems to accelerate the ripening of Cheddar cheese. Int. Dairy J. 2003; 13: 313–323, [CROSSREF], [CSA]
  • Harboe M. K. Chymogen, a chymosin rennet manufactured by fermentation of Aspergillus niger. International Dairy Federation Bulletin. 1992; 269: 3–7, [CSA]
  • Hayashi K., Revell D. F., Law B. A. Accelerated ripening of Cheddar cheese with the aminopeptidase of Brevibacterium linens and a commercial neutral proteinase. J. Dairy Res. 1990; 57: 571–577, [CSA]
  • Holmquist M., Tessier D. C., Cygler M. High-level production of recombinant Geotrichum candidum lipases in yeast Pichia pastoris. Protein Express. Purif. 1997; 11: 35–40, [CROSSREF], [CSA]
  • Hyslop D. B. Enzymatic coagulation of milk. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 839–878
  • Jordan K. N., Cogan T. M. Identification and growth of non-starter lactic acid bacteria in Irish Cheddar cheese. Irish J. Agric. Food Res. 1993; 32: 47–55, [CSA]
  • Kailasapathy K., Lam S. H. Application of encapsulated enzymes to accelerate cheese ripening. Int. Dairy J. 2005; 15: 929–939, [CROSSREF], [CSA]
  • Kelly A. L., McSweeney P. L. H. Indigenous proteinases in milk. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 495–521
  • Kenny O., Fitz-Gerald R. J., O'Cuinn G., Beresford T., Jordan K. Autolysis of selected Lactobacillus helveticus adjunct strains during Cheddar cheese ripening. Int. Dairy J. 2006, In press[CSA]
  • Khalid N., El Soda M., Marth E. Peptide hydrolases of Lactobacillus helveticus and Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Sci. 1991; 74: 29–45, [CSA]
  • Kheadr E. E., Vuillemard J. C., El Deeb S. A. Accelerated Cheddar cheese ripening with encapsulated proteinases. Int. J. Food Sci. Technol. 2000; 35: 483–495, [CROSSREF], [CSA]
  • Kheadr E. E., Vuillemard J. C., El-Deeb S. A. Impact of liposome-encapsulated enzyme cocktails on Cheddar cheese ripening. Food Res. Intern. 2003; 36: 241–252, [CROSSREF], [CSA]
  • Kieronczyk A., Skeie S., Langsrud T., Yvon M. Cooperation between Lactobacillus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl. Environ. Microbiol. 2003; 69: 734–739, [INFOTRIEVE], [CROSSREF], [CSA]
  • Kilcawley K. N., Wilkinson M. G., Fox P. F. Enzyme modified cheese. Int. Dairy J. 1998; 8: 1–10, [CROSSREF], [CSA]
  • Kilcawley K. N., Wilkinson M. G., Fox P. F. A survey of the composition and proteolytic indices of commercial enzyme-modified Cheddar cheese. Int. Dairy J. 2000; 10: 181–190, [CROSSREF], [CSA]
  • Kilcawley K. N., Wilkinson M. G., Fox P. F. A survey of lipolytic and glycolytic end-products in commercial Cheddar enzyme-modified cheese. J. Dairy Sci. 2001; 84: 66–73, [INFOTRIEVE], [CSA]
  • Kim S. C., Olson N. F. Production of methanethiol in milk fat-coated microcapsules containing Brevibacterium linens and methionine. J. Dairy Res. 1989; 56: 799–811, [CSA]
  • Kimula K., Nagasawa A., Fujii M., Itoh Y. Cloning of the pepX gene of Lactobacillus helveticus IF03809 encoding salt tolerant X-prolyl dipeptidyl aminopeptidase and characterization of the enzyme. J. Biosci. Bioeng. 2002; 93: 589–594, [CSA]
  • Kirby C. J., Brooker B. E., Law B. A. Accelerated ripening of cheese using liposome-encapsulated enzyme. Int. J. Food Sci. Technol. 1987; 22: 355–375, [CSA]
  • Kohno M., Enatsu M., Yoshiizumi M., Kugimiya W. High-level expression of Rhizopus niveus lipase in the yeast Saccharomyces cerevisiae and structural properties of the expressed enzyme. Protein Express. Purif. 1999; 15: 327–335, [CROSSREF], [CSA]
  • Kosikowski F. V., Mistry V. V. Cheese and Fermented Milk Foods, 3rd Ed., F. V. Kosikowski. AUI Publishing, Westport, CT 1997; Volume I: 204–225
  • Kunji E. R. S., Mierau L., Hagting A., Poolman B., Konings W. N. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek. 1996; 76: 187–221, [CROSSREF], [CSA]
  • Kwak H. S., Ju Y. S., Ahn H. J., Ahn J., Lee S. Microencapsulated iron fortification and flavor development in Cheddar cheese. Asian-Austral J. Anim. 2003; 16: 1205–1211, [CSA]
  • Laleye L. C., Simard R. E., Gosselin C., Lee B. H., Giroux R. N. Assessment of Cheddar cheese quality by chromatographic analysis of free amino acids and biogenic amines. J. Food Sci. 1987; 52: 303–307, 311[CSA]
  • Law B. A. Proteolysis in relation to normal and accelerated cheese ripening. Cheese: Chemistry, Physics, and Microbiology, 2nd Ed., P. F. Fox. Elsevier Applied Science, London 1987; Vol. I: 365–392
  • Law B. A. Cheese ripening and cheese flavor technology. Technology of Cheesemaking, B. A. Law. Sheffield Academic Press Ltd., Sheffield, UK 1999; 163–192
  • Law B. A. Controlled and accelerated cheese ripening: the research base for new technologies. Int. Dairy J. 2001; 11: 383–398, [CROSSREF], [CSA]
  • Law B. A., Wigmore A. S. Accelerated cheese ripening with food grade proteinases. J. Dairy Res. 1982; 49: 137–146, [CSA]
  • Law B. A., Wigmore A. S. Accelerated ripening of Cheddar cheese with a commercial proteinase and intracellular enzymes from streptococci. J. Dairy Res. 1983; 50: 519–525, [CSA]
  • Law B. A., King J. S. Use of liposomes for proteinase addition to Cheddar cheese. J. Dairy Res. 1985; 52: 183–188, [CSA]
  • Lee B. H. Biochemistry, molecular biology and application of Lactobacillus casei enzymes. Proceedings of Lactic Acid Bacteria Symposium. University of Alberta, Edmonton, AlbertaCanada 1994; 234–244
  • Lee B. H. Methods of enzyme incorporation into cheese. Biotechnology: The future possibilities for enzyme incorporation and release in cheese. 2005, Chapter 4: IDF Monograph. In press
  • Lee B. H., Robert N. Overproduction of Lactobacillus rhamnosus aminopeptidase in E. coli. U.S. Patent, AAFC Invention no. 60/025, 172, 1997
  • Lee B. H., Robert N. Cloning and overexpression of a Lactobacillus rhamnosus PepX in E. coli. Appl. Environ. Microbiol 2005, (Submitted)[CSA]
  • Lee B. H., Robert N., Choi Y. Production of cheese ripening Lactobacillus casei recombinant enzymes, aminopeptidase and esterase. IDF Symposium on Cheese: Ripening, Characterization and Technology, L. Houdek, N. Galén. Czech Republic, Prague 2004; 127, Book of Abstracts. 1st Ed.
  • Lee B. H., Laleye L. C., Simard R. E., Munsch M. H., Holley R. A. Influence of homofermentative lactobacilli cultures on the evolution of the microflora and soluble nitrogen compounds in Cheddar cheese. J. Food Sci. 1990a; 55: 391–397, [CSA]
  • Lee B. H., Laleye L. C., Simard R. E., Holley R. A., Emmons D. B., Giroux R. N. Influence of homofermentative lactobacilli cultures on physico-chemical and sensory properties of Cheddar cheese. J. Food Sci. 1990b; 55: 386–390, [CSA]
  • Le Graët Y., Gaucheron F. pH-Induced solubilization of minerals from casein micelles: Influence of casein concentration and ionic strength. J. Dairy Res. 1999; 66: 215–224, [CROSSREF], [CSA]
  • Liu S. Q., Holland R., Crow V. L. Purification and properties of intracellular esterases from Streptococcus thermophilus. Int. Dairy J. 2001; 11: 27–35, [CROSSREF], [CSA]
  • Lortal S., Chapot-Chartier M.-P. Role, mechanisms and control of lactic acid bacteria lysis in cheese. A review. Int. Dairy J. 2005; 15: 857–871, [CROSSREF], [CSA]
  • Lucey J. A., Singh H. Acid coagulation of milk. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 1001–1025
  • Lucey J. A., Johnson M. E., Horne D. S. Invited review: Perspectives on the basis of the rheology and texture properties of cheese. J. Dairy Sci. 2003; 86: 2725–2743, [INFOTRIEVE], [CSA]
  • Madkor S. A., Tong P. S., El Soda M. Ripening of Cheddar cheese with added attenuated adjunct cultures of lactobacilli. J. Dairy Sci. 2000; 83: 1684–1691, [INFOTRIEVE], [CSA]
  • Madziva H., Kailasapathy K., Phillips M. Evaluation of alginate–pectin capsules in Cheddar cheese as a food carrier for the delivery of folic acid. LWT 2006; 39: 146–151, [CROSSREF], [CSA]
  • Magee E. L., Jr., Olson N. F. Microencapsulation of cheese ripening systems: Formation of microcapsules. J. Dairy Sci. 1981a; 64: 600–610, [CSA]
  • Magee E. L., Jr., Olson N. F. Microencapsulation of cheese ripening systems: Stability of microcapsules. J. Dairy Sci. 1981b; 64: 611–615, [CSA]
  • Magee E. L., Jr., Olson N. F. Microencapsulation of cheese ripening systems: Production of diacetyl and acetoin in cheese by encapsulated bacterial cell-free extract. J. Dairy Sci. 1981c; 64: 616–621, [CSA]
  • Martley F. G., Michel V. Pinkish coloration in Cheddar cheese—description and factors contributing to its formation. J. Dairy Res. 2001; 68: 327–332, [INFOTRIEVE], [CSA]
  • Matsui E., Kawasaki S., Ishida H., Ishikawa K., Kosugi Y., Kikuchi H. Thermostable aminopeptidase from Pyrococcus horikoshii. J. Mol. Chem. 2000; 275: 4871–4879, [CSA]
  • McGarry A., Law J., Coffey A., Daly C., Fox P. F., Fitz-Gerald G. F. Effect of genetically modifying the lactococcal proteolytic system on ripening and flavour development in Cheddar cheese. Appl. Environ. Microbiol. 1994; 60: 4226–4233, [INFOTRIEVE], [CSA]
  • McSweeney P. L. H., Sousa M. J. Biochemical pathways for the production of flavor compounds in cheese during ripening: A review. Le Lait 2000; 80: 293–324, [CROSSREF], [CSA]
  • McSweeney P. L. H., Fox P. F, Lucey J. A., Jordan K. N., Cogan T. M. Contribution of the indigenous microflora to the maturation of Cheddar cheese. Int. Dairy J. 1993; 3: 613–634, [CROSSREF], [CSA]
  • Meijer W., Kingma F., van Schalkwijk S., Brandsma H., Hugenholtz J. Role of starter lysis in cheese production. IDF Symposium on Cheese; Ripening, Characterization and Technology, L. Houdek, N. Galén. Czech Republic, Prague 2004; 40, Book of Abstracts. 1st Ed. (Abstr.)
  • Minning S., Serrano A., Ferrer P., Solá C., Schmid R. D., Valero F. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J. Biotechnol. 2001; 86: 59–70, [INFOTRIEVE], [CROSSREF], [CSA]
  • Morgan S., Ross R. P., Hill C. Increasing starter cell lysis in Cheddar cheese using a bacteriocin-producing adjunct. J. Dairy Sci. 1997; 80: 1–10, [CSA]
  • Mukherjee K. K., Hutkins R. W. Isolation of galactose-fermenting thermophilic cultures and their use in the manufacture of low-browning mozzarella cheese. J. Dairy Sci. 1994; 77: 2839–2849, [CSA]
  • Mulvihill D. M., Ennis M. P. Functional milk protein: production and utilization. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 1175–1228
  • Olson N. F. The impact of lactic acid bacteria on cheese flavor. FEMS Microbiol. Rev. 1990; 87: 131–148, [CROSSREF], [CSA]
  • Ong L., Henriksson A., Shah N. P. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int. Dairy J. 2006; 16: 446–456, [CROSSREF], [CSA]
  • O'Riordan P. J., Delahunty C. M. Characterization of commercial Cheddar cheese flavor. 1: Traditional and electronic nose approach to quality assessment and market classification. Int. Dairy J. 2003a; 13: 355–370, [CROSSREF], [CSA]
  • O'Riordan P. J., Delahunty C. M. Characterization of commercial Cheddar cheese flavor. 2: Study of Cheddar cheese discrimination by composition, volatile compounds and destructive flavor assessment. Int. Dairy J. 2003b; 13: 371–389, [CROSSREF], [CSA]
  • Pastorino A. J., Hansen C. L., McMahon D. J. Effect of pH on the chemical composition and structure-function relationships of Cheddar cheese. J. Dairy Sci. 2003; 86: 2751–2760, [INFOTRIEVE], [CSA]
  • Peterson S. D., Marshall R. T., Heymann H. Peptidase profiling of lactobacilli associated with Cheddar cheese and its application to identification and selection of strains for cheese-ripening studies. J. Dairy Sci. 1990; 73: 1454–1464, [CSA]
  • Perotti M. C., Bernal S. M., Meinardi C. A., Zalazar C. A. Free fatty acid profiles of Reggianito Argentino cheese produced with different starters. Int. Dairy J. 2005; 15: 1150–1155, [CROSSREF], [CSA]
  • Picon A., de Torres B., Gaya P., Nuňez M. Cheesemaking with a Lactococcus lactis strain expressing a mutant oligopeptide binding protein as starter results in a different peptide profile. Int. J. Food Microbiol. 2005; 104: 299–307, [INFOTRIEVE], [CROSSREF], [CSA]
  • Praaning-van Dalen D. P. Application and regulatory position of Maxiren. International Dairy Federation Bulletin 1992; 269: 8–12, [CSA]
  • Reid J. R., Coolbear T. Altered specificity of lactococcal proteinase P1 (lactocepin I) in humectant systems reflecting the water activity and salt content of Cheddar cheese. Appl. Environ. Microbiol. 1998; 64: 588–593, [INFOTRIEVE], [CSA]
  • Renner E. Nutritional aspects of cheese. Cheese: Chemistry, Physics, and Microbiology, 2nd Ed., P. F. Fox. Elsevier Applied Science, London 1993; Volume I: 557–579
  • Ridha S., Crawford R., Tamime A. The quality of Cheddar cheese produced from lactose hydrolyzed milk. Dairy Indust. 1983; 48: 17–31, [CSA]
  • Shakeel U. R., McSweeney P. L. H., Fox P. F. A study on the role of indigenous microflora of raw milk on the ripening of Cheddar cheese. Milchwissenschaft 1999; 54: 388–392, [CSA]
  • Shin J. Y., Jeon W. M., Kim G. B., Lee B. H. Purification and characterization of intracellular proteinase from Lactobacillus casei ssp.casei LLG. J. Dairy Sci. 2004; 87: 4097–4103, [INFOTRIEVE], [CSA]
  • Skeie S. Developments in microencapsulation science applicable to cheese research and development. A review. Int. Dairy J. 1994; 4: 573–595, [CROSSREF], [CSA]
  • Sørensen K. I., Larsen R., Kibenich A., Junge M. P., Johansen E. A food-grade cloning system for industrial strains of Lactococcus lactis. Appl. Environ. Microbiol. 2000; 66: 1253–1258, [CROSSREF], [CSA]
  • Smit G., Smit B. A., Engels W. J. M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005; 29: 591–610, [INFOTRIEVE], [CROSSREF], [CSA]
  • Sousa M. J., Ardö Y., McSweeney P. L. H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001; 11: 327–345, [CROSSREF], [CSA]
  • Spreer E. Milk and Dairy Product Technology. Marcel Dekker, Inc., New York 1998; 11–48
  • St-Gelais D., Haché S. Effect of ß-casein concentration in cheese milk on rennet coagulation properties, cheese composition and cheese ripening. Food Res. Inter. 2005; 38: 523–531, [CROSSREF], [CSA]
  • Swaisgood H. E. Chemistry of the caseins. Advanced Dairy Chemistry, 3rd Ed., P. F. Fox, P. L. H. McSweeney. Kluwer Academic/Plenum Publishers, New York 2003; Volume 1: 139–201
  • Swearingen P. A., O'Sullivan D. J., Warthesen J. J. Isolation, characterization, and influence of native, nonstarter lactic acid bacteria on Cheddar cheese quality. J. Dairy Sci. 2001; 84: 50–59, [INFOTRIEVE], [CSA]
  • Thomson C. A., Delaquis P. J., Mazza G. Detection and measurement of microbial lipase activity: A review. Crit. Rev. Food Sci. and Nut. 1999; 39: 165–187, [CROSSREF], [CSA]
  • Trépanier G., Simard R. E., Lee B. H. Effect of added lactobacilli on composition and texture of Cheddar cheese during accelerated maturation. J. Food Sci. 1991a; 56: 696–700, [CSA]
  • Trépanier G., Simard R. E., Lee B. H. Lactic acid bacteria relation to accelerated maturation of Cheddar cheese. J. Food Sci. 1991b; 56: 1238–1240, 1254[CSA]
  • Trépanier G., El Abboudi M., Lee B. H., Simard R. E. Accelerated maturation of Cheddar cheese: Microbiology of cheeses supplemented with Lactobacillus casei subsp. casei L2A. J. Food Sci. 1992a; 57: 345–349, [CSA]
  • Trépanier G., El Abboudi M., Lee B. H., Simard R. E. Accelerated maturation of Cheddar cheese: Influence of added lactobacilli and commercial protease on composition and texture. J. Food Sci. 1992b; 57: 898–902, [CSA]
  • Tuler T. R., Callanan M. J., Klaenhammer T. R. Overexpression of peptidases in Lactococcus and evaluation of their release from leaky cells. J. Dairy Sci. 2002; 85: 2438–2450, [INFOTRIEVE], [CSA]
  • Upadhyay V. K., Sousa M. J., Ravn P., Israelsen H., Kelly A. L., McSweeny P. L. H. Acceleration of proteolysis in cheese using streptokinase, a plasminogen activator. IDF Symposium on Cheese: Ripening, Characterization and Technology, L. Houdek, L. Galén. Czech Republic, Prague 2004; 42, Book of Abstracts. 1st Ed.
  • Van Alen-Boerrigter I. J., Baankreis R., de Vos W. M. Characterization and overexpression of the Lactobacillus lactis PepN gene and localization of its products, aminopeptide N. Appl. Environ. Microbiol. 1991; 57: 2555–2561, [INFOTRIEVE], [CSA]
  • van de Guchte M., Kodde J., van der Vossen J. M. B. M., Kok J., Venema G. Heterologous gene expression in Lactococcus lactis subsp. lactis: Synthesis, secretion, and processing of the Bacillus subtilis neutral protease. Appl. Environ. Microbiol. 1990; 56: 2606–2611, [INFOTRIEVE], [CSA]
  • Varmanen P., Savijoki K., Åvall S., Palva A., Tynkkynen S. X-prolyl dipeptidyl aminopeptidase gene (pepX) is part of the glnRA operon in Lactobacillus rhamnosus. J. Bacteriol. 2000; 182: 146–154, [INFOTRIEVE], [CSA]
  • Visser S. Proteolytic enzymes and their relation to cheese ripening and flavor: An overview. J. Dairy Sci. 1993; 76: 329–350, [CSA]
  • Walstra P., Geurts T. J., Noomen A., Jellema A., Van Boekel M. A. J. S. Dairy Technology. Principles of Milk Properties and Processes. Marcel Dekker, Inc., New York 1999; 3–147
  • Weimer B., Seefeldt K., Dias B. Sulphur metabolism in bacteria associated with cheese. Antonie van Leeuwenhoek. 1999; 74: 247–264, [CROSSREF], [CSA]
  • Weimer B., Dias B., Ummadi M., Broadbent J., Brennand C., Jaegi J., Johnson M., Milani F., Steele J., Sisson D. V. Influence of NaCl and pH on intracellular enzymes that influence Cheddar cheese ripening. Le Lait. 1997; 77: 383–398, [CSA]
  • Wijesundera C., Drury L. Role of milkfat in production of Cheddar cheese flavor using a fat-substituted cheese model. Aust. J. Dairy Technol. 1999; 54: 28–35, [CSA]
  • Wilkinson M. G. Acceleration of cheese ripening. Cheese: Chemistry, Physics, and Microbiology, 2nd Ed., P. F. Fox. Elsevier Applied Science, London 1993; Volume I: 523–555
  • Wilkinson M. G., Kilcawley K. N. Technology of enzyme-modified cheese and natural cheese. International Dairy Federation Bulletin 2002; 371: 10–15, [CSA]
  • Wilkinson M. G. Mechanisms of incorporation and release of enzymes into cheese during ripening. IDF Symposium on Cheese: Ripening, Characterization and Technology, L. Houdek, L. Galén. Czech Republic, Prague 2004; 41, Book of Abstracts. 1st Ed.
  • Wilkinson M. G., Kilcawley K. N. Mechanisms of incorporation and release of enzymes into cheese during ripening. Int. Dairy J. 2005; 15: 817–830, [CROSSREF], [CSA]
  • Wilkinson M. G., Guinee T. P., O'Callaghan D. M., Fox P. F. Autolysis and proteolysis in different strains of starter bacteria during Cheddar cheese ripening. J. Dairy Res. 1994; 61: 249–262, [CSA]
  • Xin M., Li Y., Lin J., Min D., Liu J. An x-prolyl dipeptidyl aminopeptidase from Lactobacillus lactis: Cloning, expression in Escherichia. coli, and application for removal of N-terminal pro-pro from recombinant proteins. Protein Express. Purif. 2002; 24: 530–538, [CROSSREF], [CSA]
  • Yang H. Y., Kim Y. W., Chang H. I. Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage variant øFC1. J. Bacteriol. 2002; 184: 1859–1864, [INFOTRIEVE], [CROSSREF], [CSA]
  • Yüksel G. Ü., Steele J. L. DNA sequence analysis, expression, distribution, and physiological role of the Xaa-prolyldipeptidyl aminopeptidase gene from Lactobacillus helveticus CNRZ32. Appl. Microbiol. Biotechnol. 1996; 44: 766–773, [CSA]
  • Yvon M., Rijnen L. Cheese flavor formation by amino acid catabolism. Int. Dairy J. 2001; 11: 185–201, [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.