755
Views
48
CrossRef citations to date
0
Altmetric
Review Article

Trends in inulinase production – a review

, , &
Pages 67-77 | Accepted 12 Dec 2008, Published online: 01 Mar 2009

References

  • Allais, J.J., Hoyos, L.G., Kammoun, S., and Baratti, J.C. 1987a. Isolation and characterization of thermophilic bacterial strains with inulinase activity. Appl. Environ. Microbiol., 53(5): 942–945.
  • Allais, J.J., Hoyos, L.G., and Baratti, J. 1987b. Characterization and properties of an inulinase from a thermophilic bacteria. Carbohyd. Pol., 7(4): 277–290.
  • Alma, C.G., Ines, G.P., Eduardo, B., Mariano, G.G., and Lorena, G.R. 1995. Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J. Ferment. Bioeng., 80(2): 159–163.
  • Alma, C.G., Jose, O., Mariano, G.G., and Lorena, G.R. 2006. Inulinase hyperproducing strains of Kluyveromyces sp. isolated from aguamiel (Agave sap) and pulque. World J. Microbiol. Biotech., 22(2): 115–117.
  • Anil, K.G., Arvind, G., and Narinder, K. 1998. A HgCl2 insensitive and thermally stable inulinase from Aspergillus oryzae. Phytochemistry, 49(1): 55–58.
  • Anil, K.G., Narinder, K., and Rangil, S. 1989. Fructose and inulinase production from waste Cichorium intybus roots. Biolog. Wastes, 29(1): 73–77.
  • Anna, A.K., Michael, A., Elena, V.E., Dina, R.I., Konstantin, A.S., Sergei, M.S., Andrew, N.S., Olga, S.K., and Kirill, N.N. 2003. Biochemical characterization of Aspergillus awamori exo-inulinase: substrate binding characteristics and regioselectivity of hydrolysis. Biochim. Biophys. Acta (BBA) – Prot. Proteomics, 1650(1–2): 22–29.
  • Arnold, W.N. 1987. Hydrolytic enzymes. In: Yeast Biotechnology (Eds. Berry, D.R., Russell, I., and Stewart, G.G.), 2nd edn: London, Allen & Unwin.
  • Arun, D.S., and Prabhjot, K.G. 2007. Purification and characterization of heat stable exo-inulinase from Streptomyces sp. J. Food Engng., 79(4): 1172–1178.
  • Arun, D.S., Jagpreet, S.N., Prabhjot, K.G., Sukdev, S.B., Prabhjeet, S., and Dhiraj, V. 2002. Enhancement in inulinase production by mutagenesis in Penicillium purpurogenum. Ind. J. Biotechnol., 1(3): 270–274.
  • Arun, D.S., Sandeep, K., and Prabhjot, K.G. 2006. Inulinase production using garlic (Allium sativum) powder as a potential substrate in Streptomyces sp. J. Food Engng., 77(3): 486–491.
  • Ayyachamy, M., Khelawan, K., Pillay, D., Permaul, K., and Singh, S. 2007. Production of inulinase by Xanthomonas campestris pv phaseoli using onion (Allium cepa) and garlic (Allium sativum) peels in solid state cultivation. Letts. Applied Microbiol., 45(4): 439–444.
  • Barthomeuf, C., Regerat, F., and Pourrat, H. 1991. Production of inulinase by a new mold of Penicillium rugulosum. J. Ferment. Bioengng., 72(6): 491–494.
  • Beluche, I., Guiraud, J.P., and Galzy, P. 1980. Inulinase activity of Debaryomyces cantarellii. Folia Microbiol. 25: 32–39.
  • Bernardo, O., Yépez, S.S., and Francisco, M.F. 2005. Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme Microb. Technol., 36(5–6): 717–724.
  • Bourgi, J., Guiraud, J.P., and Galzy, P. 1986. Isolation of a Kluyveromyces fragilis derepressed mutant hyperproducer of inulinase for ethanol production from Jerusalem artichoke. J. Ferment. Technol., 64(3): 239–243.
  • Burne, R.A., Schilling, K., Bowen, W., Yasbin, R.E. 1987. Expression, purification and characterization of an exo-β-D-fructosidase of Streptococcus mutans. J. Bacteriol. 169(10): 4507–4517.
  • Catana, R., Eloy, M., Rocha, J.R., Ferreira, B.S., Cabral, J.M.S., and Fernandes, P. 2007. Stability evaluation of an immobilized enzyme system for inulin hydrolysis. Food Chem., 101(1): 260–266.
  • Catana, R., Ferreira, B.S., Cabral, J.M.S., and Fernandes, P. 2005. Immobilization of inulinase for sucrose hydrolysis. Food Chem., 91(3): 517–520.
  • Cazetta, M.L., Martins, P.M.M., Monti, R., and Contiero, J. 2005. Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. J. Food Engng., 66(3): 301–305.
  • Chabbert, N., Braun, P., Guiraud, J.P., Arnoux, M., and Galzy, P. 1983. Productivity and fermentability of Jerusalem artichoke according to harvesting date. Biomass. 3(3): 209–224.
  • Chen, X., Wang, J., and Li, D. 2007. Optimization of solid-state medium for the production of inulinase by Kluyveromyces S120 using response surface methodology. Biochem. Engng. J., 34(2): 179–184.
  • Damian, F., Van Den Mooter, G., Samyn, C., and Kinget, R. 1999. In vitro biodegradation study of acetyl and methyl inulins by Bifidobacteria and inulinase. Europ. J. Pharm. Biopharm., 47(3): 275–282.
  • Dorotea, L.M., María, D.N.M., Francisco, R.M., Alexander, N.P.H., Soledad, C., and José, N.R.L. 2005. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry. 66(12): 1476–1484.
  • Edelman, J., and Jefford, T.G. 1964. The metabolism of fructose polymer in plants 4-β-fructosidases of tubers of Helianthus tuberosus. Biochem. Engng. J., 93: 148–161.
  • Esteban, B.F., Mariano, G.G., Lorena, G.R., and Alejandro, A. 2001. Immobilization system of Kluyveromyces marxianus cells in barium alginate for inulin hydrolysis. Process Biochem., 37(5): 513–519.
  • Ettalibi, M., and Baratti, J.C. 2001. Sucrose hydrolysis by thermostable immobilized inulinases from Aspergillus ficuum. Enzyme Microb. Technol., 28(7–8): 596–601.
  • Fleming, S.E., and Grootwassink, J.W.D. 1979. Preparation of high fructose syrup from the tubers of the Jerusalem artichoke (Helianthus tuberorus L.). Crit. Rev. Food Sci. Nutr., 12: 1–28.
  • Flood, A.E., Rutherford, P.P., and Weston, E.W. 1967. Effects of 2:4 dichlorophenoxyacetic acid on enzyme systems in Jerusalem artichoke tubers and chicory roots. Nature, 214: 1049–1050.
  • Fuchs, A., de Bruijn, J.M., and Niedeveld, C.J. 1985. Bacteria and yeast as possible candidates for the production of inulinases and levanases. Antonie van Leeuwenhoek J. Microbiol., 51(3): 333–351.
  • Ge, X.Y., and Zhang, W.G. 2005. Effects of octadecanoylsucrose derivatives on the production of inulinase by Aspergillus niger SL-09. World J. Microbiol. Biotechnol., 21(8–9): 1633–1638.
  • Grootwassink, J.W.D., and Fleming, S.E. 1980. Non-specific β fructofuranoside (inulase) from Kluyveromyces fragilis: batch and continuous fermentations, simple recovery method and some industrial properties. Enzyme Microb. Technol., 2(1): 45–53.
  • GrootWassink, J.W.D., and Hewitt, G.M. 1983. Inducible and constitutive formation of β-fructofuranosidase (inulase) in batch and continuous cultures of the yeast Kluyveromyces fragilis. J. Gen. Microbiol., 129: 31–41.
  • Guillermo, R.C., Mario, D.B., and Faustino, S. 1995. A plate technique for screening of inulin degrading microorganisms. J. Microbiol. Methods, 22(1): 51–56.
  • Guiraud, J.P., Bajon, A.M., Chautard, P., and Galzy, P. 1983. Inulin hydrolysis by an immobilized yeast-cell reactor. Enzyme Microb. Technol., 5(3): 185–190.
  • Guiraud, J.P., Bernit, C., and Galzy, P. 1982. Inulinase of Debaryomyces cantarellii. Folia Microbiol., 27: 19–24.
  • Hewitt, G.M., and GrootWassink, J.W.D. 1984. Simultaneous production of inulase and lactase in batch and continuous cultures of Kluyveromyces fragilis. Enzyme Microb. Technol., 6: 263–270.
  • Igarashi, T., Takahashi, M., Yamamoto, A., Etoh, Y., and Takamori, K. 1987. Purification and characterization of levanase from Actinomyces viscosus ATCC 19246. Infect. Immun., 55: 3001–3005.
  • Jing, W., Zhengyu, J., Bo, J., and Augustine, A. 2003. Production and separation of exo and endo-inulinase from Aspergillus ficuum. Proc. Biochem., 39(1): 5–11.
  • Jun, S., Zhenming, C., Jing, L., Lingmei, G., and Fang, G. 2007. Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Proc. Biochem., 42(5): 805–811.
  • Kalil, S.J., Suzan, R., Maugeri, F., and Rodrigues, M.I. 2001. Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl. Biochem. Biotech., 94: 257–264.
  • Kang, S.I., and Kim, S.I. 1999. Molecular cloning and sequence analysis of an endo-inulinase gene from Arthrobacter sp. Biotechnol. Letts., 21(7): 569–574.
  • Kierstan, M. 1983. Studies on enzymic methods for extraction of inulin from Jerusalem artichokes. Enzyme Microb. Technol., 5(6): 445–448.
  • Kierstan, M.P.J. 1978. Production of fructose syrups from inulin containing plants. Biotechnol. Bioeng., 20: 447–450.
  • Kim, K.Y., Nascimento, A.S., Golubev, A.M., Polikarpov, I., Kim, C.S., Kang, S.I., and Kim, S.I. 2008. Catalytic mechanism of inulinase from Arthrobacter sp. S37. Biochem. Biophys. Res. Commun., 371(4): 600–605.
  • Kim, W.Y., Byun, S.M., and Uhm, T.B. 1982. Hydrolysis of inulin from Jerusalem artichoke by inulinase immobilized on aminoethylcellulose. Enzyme Microb. Technol., 4(4): 239–244.
  • Kovaljova, N.S., and Yurkevich, V.V. 1978. On the existence of β-fructofuranosidases of inulinase type in yeast p. SV3. In: Proceedings of the VIth International specialized symposium on yeasts: metabolism and regulation of cellular processes. (Eds. Galzy, P., Arnaud, A., Bizeau, C., and Moulin, G.), ENSAM-CRAM, Montpellier, France.
  • Kumar, G., Kunamneni, A., Prabhakar, T., and Ellaiah, P. 2005. Optimization of process parameters for the production of inulinase from a newly isolated Aspergillus niger AUP19. World J. Microbiol. Biotechnol., 21(8–9): 1359–1361.
  • Kunst, F., Steinmetz, M., Lepesant, A., and Dedonder, R. 1977. Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. Biochimie, 59: 287–292.
  • Laloux, O., Cassart, J.P., Delcour, J., Van Beeumen, J., and Vandenhaute, J. 1991. Cloning and sequencing of the inulinase gene of Kluyveromyces marxianus var. marxianus ATCC 12424. FEBS Letts., 289(1): 64–68.
  • Leclercq, E., and Hageman, G.J. 1985. Release of inulin by enzymatic liquefaction of chicory roots. Food Chem., 18(2): 131–138.
  • Marcio, M., João, P.B., Helen, T., and Marco, D.L. 2006. Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme Microb. Technol., 39(1): 56–59.
  • Marco, C.M.H., Johannes, S.V., Chris, H., Johannes, P.V.D., and Jack, T.P. 1995. Use of chemostat data for modelling extracellular-inulinase production by Kluyveromyces marxianus in a high-cell-density fed-batch process. J. Ferment. Bioengng., 79(1): 54–58.
  • Miller, C.H., and Somers, P.J.B. 1978. Degradation of levan by Actinomyces viscosus. Infect. Immun., 22: 266–274.
  • Moriyama, S., Muguruma, M., and Ohta, K. 2006. Quantitative expression analysis of inulinase gene cluster of Penicillium sp. strain TN-88. J. Biosci. Bioengng., 101(3): 277–279.
  • Nagem, R.A.P., Rojas, A.L., Golubev, A.M., Korneeva, O.S., Eneyskaya, E.V., Kulminskaya, A.A., Neustroev, K.N., and Polikarpov, I. 2004. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J. Mol. Biol., 344(2): 471–480.
  • Nakamura, T., and Nakatsu, S. 1977a. Studies on microbial inulase II. General properties of extracellular inulase from Penicillium. J. Agric. Chem. Soc. Jpn., 51: 681–689.
  • Nakamura, T., and Nakatsu, S. 1977b. General properties of extracellular inulase from Penicillium. Nippon Nogeikagaku Kaishi, 51: 681–689.
  • Nakamura, T., Kurokawa, T., Nakatsu, S., Ueda, S. 1978a. Crystallization and general properties of an extracellular inulase from Aspergillus sp. J. Agric. Chem. Soc. Jpn., 52: 159–166.
  • Nakamura, T., Hoashi, S., and Nakatsu, S. 1978b. Culture conditions for inulase production by Aspergillus. Nippon Nogeikagaku Kaishi, 52: 105–110.
  • Nakamura, T., Nagatomo, Y., Hamada, S., Nishino, Y., and Ohta, K. 1994. Occurrence of two forms of extracellular endo-inulinase from Aspergillus niger mutant 817. J. Ferment. Bioengng, 78(2): 134–139.
  • Nakamura, T., Ogata, Y., Shitara, A., Nakamura, A., and Ohta, K. 1995. Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J. Ferment. Bioengng., 80(2): 164–169.
  • Nakamura, T., Shitara, A., Matsuda, S., Matsuo, T., Suiko, M., and Ohta, K. 1997. Production and purification, properties of an endo-inulinase of Penicillium sp. TN-88 that liberates inulotriose. J. Ferment. Bioengng., 84(4): 313–318.
  • Naveen, K. 2008. Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J. Food Engng., 85(3): 473–478.
  • Negoro, H. 1978. Inulase from Kluyveromyces fragilis. J. Ferment. Technol., 56: 102–107.
  • Negoro, H., and Kito, E. 1973. β-Fructofuranosidase from Candida kefyr. J. Ferment. Technol., 51: 96–102.
  • Ohta, K., Suetsugu, N., and Nakamura, T. 2002. Purification and properties of an extracellular inulinase from Rhizopus sp. strain TN-96. J. Biosci. Bioengng., 94(1): 78–80.
  • Pandey, A., Carlos, R., Selvakumar, P., Vanete, T., Krieger, N., and Jose, D. 1999. Recent developments in microbial inulinases. Appl. Biochem. Biotechnol., 81: 35–52.
  • Paula, F.C., Cazetta, M.L., Monti, R., and Contiero, J. 2008. Sucrose hydrolysis by gelatin-immobilized inulinase from Kluyveromyces marxianus var. bulgaricus. Food Chem., 111(3): 691–695.
  • Pessoa, A., and Vitolo, M. 1998a. Evaluation of cross-flow microfiltration membranes using a rotary disc-filter. Proc. Biochem., 33(1): 39–45.
  • Pessoa, A., and Vitolo, M. 1998b. Recovery of inulinase using BDBAC reversed micelles. Proc. Biochem., 33(3): 291–297.
  • Pessoa, A., Hartmann, R., Vitolo, M., and Hustedt, H. 1996. Recovery of extracellular inulinase by expanded bed adsorption. J. Biotechnol., 51(1): 89–95.
  • Pessoni, R.A.B. 2007. Purification and properties of exo-inulinases from Penicillium janczewskii growing on distinct carbon sources. Mycologia, 99(4): 493–503.
  • Poorna, V., and Kulkarni, P.R. 1995a. Full factorial design to study fermentative production of inulinase using inulin from kuth (Saussurea lappa) root power by Aspergillus niger van Teighem UV11 mutant. Biores. Technol., 54(2): 117–121.
  • Poorna, V., and Kulkarni, P.R. 1995b. Saussurea lappa (kuth) as a new source of inulin for fermentative production of inulinase in a laboratory stirred fermenter. Biores. Technol., 52(2): 181–184.
  • Poorna, V., and Kulkarni, P.R. 1995c. A study of inulinase production in Aspergillus niger using fractional factorial design. Biores. Technol., 54(3): 315–320.
  • Prabhjot, K.G., Arun, D.S., Rajesh, K.H., and Prabhjeet, S. 2003. Effect of media supplements and culture conditions on inulinase production by an Actinomycete strain. Biores. Technol., 87(3): 359–362.
  • Prabhjot, K.G., Rajesh, K.M., and Prabhjeet, S. 2006a. Hydrolysis of inulin by immobilized thermostable extracellular exo-inulinase from Aspergillus fumigatus. J. Food Engng., 76(3): 369–375.
  • Prabhjot, K.G., Rajesh, K.M., and Prabhjeet, S. 2006b. Purification and properties of a heat-stable exo-inulinase isoform from Aspergillus fumigatus. Biores. Technol., 97(7): 894–902.
  • Prabhjot, K.G., Rajesh, K.M., and Prabhjeet, S. 2006c. Comparative analysis of thermostability of extracellular inulinase activity from Aspergillus fumigatus with commercially available (Novozyme) inulinase. Biores. Technol., 97(2): 355–358.
  • Pratima, B., and Argyrios, M. 1985a. Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: II. Application for high fructose syrup production. Enzyme Microb. Technol., 7(9): 459–461.
  • Pratima, B., and Argyrios, M. 1985b. Improvement of inulinase stability of calcium alginate immobilized Kluyveromyces marxianus cells by treatment with hardening agents. Enzyme Microb. Technol., 7(1): 34–36.
  • Pratima, B., and Argyrios, M. 1985c. Immobilization of Kluyveromyces marxianus cells containing inulinase activity in open pore gelatin matrix: I. Preparation and enzymatic properties. Enzyme Microb. Technol., 7(8): 3734–376.
  • Pratima, B., and Argyrios, M. 1987. Characterization of molecular-sieve-bound inulinase. J. Ferment. Technol., 65(2): 239–242.
  • Rocha, J.R., Catana, R., Ferreira, B.S., Cabral, J.M.S., and Fernandes, P. 2006. Design and characterisation of an enzyme system for inulin hydrolysis. Food Chem., 95(1): 77–82.
  • Rouwenhorst, R.J., Vander Baan, A.A., Scheffers, W.A., and Van Dijken, J.P. 1991. Production and localization of β-fructosidase in asynchronous and synchronous chemostat cultures of yeasts. Appl. Environ. Microbiol., 57(2): 557–562.
  • Rouwenhorst, R.J., Visser, L.E., Vander Baan, A.A., Scheffers, W.A., and Van Dijken, J.P. 1988. Production, distribution and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS 6556. Applied Environ. Microbiol., 54(5): 1131–1137.
  • Rutherford, P.P., and Deacon, A.C. 1972. β-Fructofuranosidases from roots of dandelion (Taraxacum officinale Weber). Biochem. Engng. J., 126: 529–573.
  • Sabine, B., Thomas, G.D., Werner, P., and Heinz, F. 2000. Characterisation of the high molecular weight fructan isolated from garlic (Allium sativum L.). Carbohyd. Res., 328(2): 177–183.
  • Santos, A.M.P., Oliveira, M.G., and Maugeri, F. 2007. Modelling thermal stability and activity of free and immobilized enzymes as a novel tool for enzyme reactor design. Biores. Technol., 98(16): 3142–3148.
  • Satoshi, M., and Kazuyoshi, O. 2007. Functional characterization and evolutionary implication of the internal 157-amino-acid sequence of an exo-inulinase from Penicillium sp. strain TN-88. J. Biosci. Bioengng., 103(4): 293–297.
  • Schorgendorfer, K., Schwab, H., and Lafferty, R.M. 1988. Molecular characterization of Bacillus subtilis levanase and a C-terminal deleted derivative. J. Biotechnol., 7: 247–258.
  • Sébastien, N.R., Christophe, S.B., Hélène, F., Christian, F., Claude, D., Jean Claude, V.H., and Michel, P. 2007. Isolation and identification of inulooligosaccharides resulting from inulin hydrolysis. Analyt. Chim. Acta, 604(1): 81–87.
  • Selvakumar, P., and Pandey, A. 1999a. Solid-state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Proc. Biochem., 34(8): 851–855.
  • Selvakumar, P., and Pandey, A. 1999b. Partially purified intracellular inulinase from Kluyveromyces sp. Y-85 was immobilized covalently by adsorb cross linking onto a macroporus ionic polystyrene beads – comparative studies on inulinase synthesis by Staphylococcus sp. and Kluyveromyces marxianus in submerged culture. Biores. Technol., 69(2): 123–127.
  • Singh, R.S., and Bhermi, H.K. 2008. Production of extracellular exo-inulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Biores. Technol., 99(15): 7418–7423.
  • Singh, R.S., Dhaliwal, R., and Puri, M. 2006. Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Proc. Biochem., 41(7): 1703–1707.
  • Singh, R.S., Sooch, B.S., and Puri, M. 2007. Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Biores. Technol., 98(13): 2518–2525.
  • Skowronek, M., and Fiedurek, J. 2003. Selection of biochemical mutants of Aspergillus niger resistant to some abiotic stresses with increased inulinase production. J. Appl. Microbiol., 95(4): 686–692.
  • Skowronek, M., and Fiedurek, J. 2006. Inulinase biosynthesis using immobilized mycelium of Aspergillus niger. Enzyme Microb. Technol., 38(1–2): 162–167.
  • Snyder, H.E., and Phaff, H.J. 1960. Studies on a beta-fructosidase (inulinase) produced by Saccharomyces fragilis. Antonie van Leeuwenhoek J. Microbiol., 26(1): 433–452.
  • Susana, J.K., Francisco, M.F., and Maria, I.R. 2005. Ion exchange expanded bed chromatography for the purification of an extracellular-inulinase from Kluyveromyces marxianus. Proc. Biochem., 40(2): 581–586.
  • Takahashi, N., Mizuno, F., and Takamori, K. 1983. Isolation and properties of levanase from Streptococcus salivarius KTA-19. Infect. Immun., 42: 231–236.
  • Tanaka, K., Uchiyama, T., and Ito, A. 1972. Formation of di-D-fructofuranose 1,2′: 2–3′-dianhydride form by an extracellular-inulase of Arthrobacter ureafaciens. Biochim. Biophys. Acta, 284: 248–256.
  • Toran, D.I., Jain, V.K., Allais, J.J., and Baratti, J.C. 1985. Effect of acid or enzymatic hydrolysis on ethanol production by Zymomonas mobilis growing on Jerusalem artichoke juice. Biotech. Lett., 7: 527–530.
  • Uchiyama, T. 1975. Action of Arthrobacter ureafaciens inulinase II on several oligofructances and bacterial levans. Biochim. Biophys. Acta, 397: 153–163.
  • Uhm, T.B., Jeon, D.Y., Byun, S.M., Hong, J.S., and Groot Wassink, J.W.D. 1987. Purification and properties of β-fructofuranosidase from Aspergillus niger. Biochim. Biophys. Acta, 926(2): 119–126.
  • Uzunova, K., Vassileva, A., Ivanova, V., Spasova, D., and Tonkova, A. 2002. Thermostable exo-inulinase production by semicontinuous cultivation of membrane immobilized Bacillus sp. 11 cells. Proc. Biochem., 37(8): 863–868.
  • Vandamme, E.J., and Derycke, D.G. 1983. Microbial inulinases: fermentation process, properties, applications. Adv. Appl. Microbiol. 29: 139–176.
  • Vullo, D.L., Coto, C.E., and Sineriz, F. 1991. Characteristics of an inulinase produced by Bacillus subtilis 430A a strain isolated from the rhizosphere of Vernonia herbacea (Vell Rusby). Appl. Env. Microbiol., 57(8): 2392–2394.
  • Wallis, G.L.F., Hemming, F.W., and Peberdy, J.F. 1997. Secretion of two β-fructofuranosidases by Aspergillus niger growing in sucrose. Arch. Biochem. Biophys., 345(2): 214–222.
  • Warchol, M., Perrin, S., Grill, J.P., and Schneider, F. 2002. Characterization of a purified β-fructofuranosidase from Bifidobacterium infantis ATCC 15697. Letts. Appl. Microbiol., 35(6): 462–467.
  • Wei, W., Wang, S., Zhu, X., and Wan, W. 1999. Isolation of a mutant of Kluyveromyces sp. Y-85 resistant to catabolite repression. J. Biosci. Bioengng., 87(6): 816–818.
  • Wenling, W., Wuguang, W., Huiying, L., and Shiyuan, W. 1999. Continuous preparation of fructose syrups from Jerusalem artichoke tuber using immobilized intracellular inulinase from Kluyveromyces sp. Y-85. Proc. Biochem., 34(6–7): 643–646.
  • Wenling, W., Zhonghui, Z., Yueying, L., and Xinsheng, Z. 1998. Optimizing the culture conditions for higher inulinase production by Kluyveromyces sp. Y-85 and scaling-up fermentation. J. Ferment. Bioengng., 86(4): 395–399.
  • Wesley, E.W., and Donal, F.D. 1983. Purification and properties of the β-fructofuranosidase from Kluyveromyces fragilis. FEBS Letts., 160(1–2): 16–20.
  • Wim, J.D., and Jan, C.G. 1991. Fermentation of inulin by a new strain of Clostridium thermoautotrophicum isolated from dahlia tubers. FEMS Microbiol. Letts., 78(2–3): 285–291.
  • Workman, W.E., and Day, D.F. 1984. The cell wall associated inulinase of Kluyveromyces fragilis. Antonie van Leeuwenhoek J. 50(4): 349–353.
  • Xiao, R., Tanida, M., and Takao, S. 1988. Inulinase from Chrysosporium pannorum. J. Ferment. Technol., 66(5): 553–558.
  • Xiao, R., Tanida, M., and Takao, S. 1989. Purification and characteristics of two exo-inulinases from Chrysosporium pannorum. J. Ferment. Bioengng., 67(5): 331–334.
  • Zhang, L., Wangjing, G., Ohta, Y., and Wang, Y. 2003. Expression of the inulinase gene from Aspergillus niger in Pichia pastoris. Proc. Biochem., 38(8): 1209–1212.
  • Zhang, L., Zhao, C., Ohta, W.Y., and Wang, Y. 2005. Inhibition of glucose on an exo-inulinase from Kluyveromyces marxianus expressed in Pichia pastoris. Proc. Biochem., 40(5): 1541–1545.
  • Zhang, L., Zhao, C., Zhu, D., Ohta, Y., and Wang, Y. 2004. Purification and characterization of inulinase from Aspergillus niger AF10 expressed in Pichia pastoris. Prot. Expres. Purif., 35(2): 272–275.
  • Zherebtsov, N.A., Abramova, I.N., Shelamova, S.A., and Popova, T.N. 2003. Identification of catalytically active groups in inulinase from Bacillus polymyxa 722. Prikl. Biokhim. Mikrobiol., 39(6): 619–624.
  • Zherebtsov, N.A., Shelamova, S.A., and Abramova, I.N. 2002. Biosynthesis of inulinases by Bacillus bacteria. Appl Biochem. Microbiol., 38(6): 544–548.
  • Zittan, L. 1981. Enzymatic hydrolysis of inulin: an alternative way to fructose production. Starch, 33: 373–377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.