798
Views
72
CrossRef citations to date
0
Altmetric
Review Article

Enzymes from solvent-tolerant microbes: Useful biocatalysts for non-aqueous enzymology

&
Pages 44-54 | Accepted 12 Nov 2008, Published online: 01 Mar 2009

References

  • Aono, R. (1998). Improvement of organic solvent tolerance level of Escherichia coli by overexpression of stress-responsive genes. Extremophiles, 2: 239–248.
  • Aono, R., Aibe, K., Inoue, A. and Horikoshi, K. (1991). Preparation of organic solvent-tolerant mutants from Escherichia coli K-12. Agric. Biol. Chem., 55: 1935–1938.
  • Aono, R., Ito, M., Inoue, A. and Horikoshi, K. (1992). Isolation of novel toluene-tolerant strain of Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 56: 145–146.
  • Aono, R., Doukyu, N., Kobayashi, H., Nakajima, H. and Horikoshi, K. (1994). Oxidative bioconversion of cholesterol by Pseudomonas sp. strain ST-200 in a water-organic solvent two-phase system. Appl. Environ. Microbiol., 60: 2518–2523.
  • Arnold, F.H. and Moore, J.C. (1997). Optimizing industrial enzymes by directed evolution. Adv. Biochem. Eng. Biotechnol., 58: 1–14.
  • Asako, H., Nakajima, H., Kobayashi, K., Kobayashi, M. and Aono, R. (1997). Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl. Environ. Microbiol., 63: 1428–1433.
  • Bong, O.K., Mar, W. and Chang, I.M. (2001). Biodegradation of hydrocarbons by an organic solvent-tolerant fungus, Cladosporium resinae NK-1. J. Microbiol. Biotechnol., 11: 56–60.
  • Bornscheuer, U.T. (2002). Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev., 26: 73–81.
  • Bosley, J. (1997). Turning lipases into industrial biocatalysts. Biochem. Soc. Transc., 25: 174–178.
  • Bustard, M.T., McEvoy, E.M., Goodwin, J.A.S., Burgess, J.G., Wright, P.C., Bustard, M.T., Whiting, S., Cowan, D.A. and Wright, P.C. (2000). Biodegradation of propanol and isopropanol by a mixed microbial consortium. Appl. Microbiol. Biotechnol., 54: 424–431.
  • Bustard, M.T., McEvoy, E.M., Goodwin, J.A.S., Burgess, J.G., Wright, P.C., Bustard, M.T., Whiting, S., Cowan, D.A. and Wright, P.C. (2002). Biodegradation of high concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus. Extremophiles, 6: 319–323.
  • Carrea, G. and Riva, S. (2000). Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. Ed. Engl., 39: 2226–2254.
  • Claon, P.A. and Akoh, C.C. (1994). Lipase-catalyzed synthesis of terpene esters by transesterification in n-hexane. Biotechnol Lett., 16: 235–240.
  • Cruden, D.L., Wolfram, J.H., Rogers, R.D. and Gibson, D.T. (1992). Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl. Environ. Microbiol., 58: 2723–2729.
  • de Bont, J.A.M. (1998). Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol., 16: 493–499.
  • Dordick, J.S. (1992). Designing enzymes for use in organic solvents. Biotechnol. Prog., 8: 259–267.
  • Doukyu, N. and Aono, R. (1998). Purification of extracellular cholesterol oxidase with high activity in the presence of organic solvents from Pseudomonas sp. strain ST-200. Appl. Environ. Microbiol., 64: 1929–1932.
  • Doukyu, N. and Aono, R. (2001). Cloning, sequence analysis and expression of a gene encoding an organic solvent- and detergent-tolerant cholesterol oxidase of Berkholderia cepacia strain ST-200. Appl. Microbiol. Biotechnol., 57: 146–152.
  • Doukyu, N., Kuwahara, H. and Aono, R. (2003). Isolation of Paenibacillus illinoisensis that produces cyclodextrin glucanotransferase resistant to organic solvents. Biosci. Biotechnol. Biochem., 67: 334–340.
  • Doukyu, N., Yamagishi, W., Kuwahara, H., Ogino, H. and Furuki, N. (2007). Purification and characterization of a maltooligosaccharide forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25. Extremophiles, 11: 781–788.
  • Eichhorn, U., Beck-Piotraschke, K., Schaf, H. and Jakubke, H.D. (1997). Solid-phase acyl donor as a substrate pool in kinetically controlled protease-catalysed peptide synthesis. J. Pept. Sci., 3: 261–266.
  • Fagain, C.O., Fang, Y., Lu, Z., Lv, F., Bie, X., Liu, S., Ding, Z. and Xu, W. (2003). Enzyme stabilization – recent experimental progress. Enzyme Microbiol. Technol, 33: 137–149.
  • Fang, Y., Lu, Z., Lv, F., Bie, X., Liu, S., Ding, Z. and Xu, W. (2006). A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase. Curr. Microbiol., 53: 510–515.
  • Fojan, P., Jonson, P.H., Petersen, M.T. and Petersen, S.B. (2000). What distinguishes an esterase from a lipase: a novel structural approach. Biochimie, 82: 1033–1041.
  • Fukushima, T., Mizuki, T., Echigo, A., Inoue, A. and Usami, R. (2005). Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. Strain S-1. Extremophiles, 9: 85–89.
  • Gaur, R., Gupta, A. and Khare, S.K. (2008). Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresorce Technol., 99: 4796–4802.
  • Gentili, A.R., Cubitto, M.A., Ferrero, M. and Rodriguez, M.S. (2006). Bioremediation of crude oil polluted seawater by a hydrocarbon degrading bacterial strain immobilized on chitin and chitosan flakes. Int. Biodeter. Biodegrad., 57: 222–228.
  • Geok, L.P., Razak, C.N.A., Rahman, R.N.Z.A., Basri, M. and Salleh, A.B. (2003). Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J., 13: 73–77.
  • Ghorbel, B., Kamoun, A.S. and Nasri, M. (2003). Stability studies of protease from Bacillus cereus BG1. Enzyme Microb. Technol., 32: 513–518.
  • Gill, I., Fandin´o, R.L., Jorba, X. and Vulfson, E.N. (1996). Biologically active peptides and enzymatic approaches to their production, Enzyme Microb. Technol., 18: 162–183.
  • Gupta, A. and Khare, S.K. (2006). A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa. Bioresource Technol., 97: 1788–1793.
  • Gupta, A., Roy, I., Khare, S.K. and Gupta, M.N. (2005). Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. J. Chromatography A, 1069: 155–161.
  • Gupta, A., Singh, R., Khare, S.K. and Gupta, M.N. (2006). A solvent tolerant isolate of Enterobacter aerogenes. Bioresource Technol., 97: 99–103.
  • Gupta, A., Ray, S., Kapoor, S. and Khare, S.K. (2007). Solvent-stable Pseudomonas aeruginosa PseA protease gene: identification, molecular characterization, phylogenetic and bioinformatic analysis to study reasons for solvent stability. J. Mol. Microbiol. Biotechnol. (in press, available online).
  • Gupta, M.N. (1992). Enzyme function in organic solvents. Eur. J. Biochem., 203: 25–32.
  • Gupta, M.N. (2000). Methods in non-aqueous enzymology. Basel, Switzerland: Birkhäuser-Verlag.
  • Gupta, M.N. and Roy, I. (2004). Enzymes in organic media: forms, functions and applications. Eur. J. Biochem., 271: 2575–2583.
  • Harvie, N.R. (1977). Cholesteryl de-esterifying enzyme from Staphylococcus aureus: separation from alpha toxin, purification, and some properties. Infect. Immun., 15: 863–870.
  • Heidari, H.R.K., Ziaee, A.A. and Amoozegar, M.A. (2007). Purification and biochemical characterization of a protease secreted by the Salinivibrio sp. strain AF-2004 and its behavior in organic solvents. Extremophiles, 11: 237–243.
  • Heipieper, H.J., Keweloh, H. and Rehm, H.J. (1991). Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl. Environ. Microbiol., 57: 1213–1217.
  • Heipieper, H.J., Loffeld, B., Keweloh, H. and de Bont, J.A.M. (1995). The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere, 30: 1041–1051.
  • Heipieper, H.J., Neumann, G., Cornelissen, S. and Meinhardt, F. (2007). Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol., 74: 961–973.
  • Huertus, M. and Duque, E. (1998). Survival in soil of different toluene degrading Pseudomonas strains after solvent shock. Appl. Environ. Microbiol., 64: 38–42.
  • Hun, C.J., Rahman, R.N.Z.A., Salleh, A.B. and Basri, M. (2003). A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J., 15: 147–151.
  • Ikura, Y., Yoshida, Y. and Kudo, T. (1997). Physiological properties of two Pseudomonas mendocina strains which assimilate styrene in a two-phase (solvent-aqueous) system under static culture conditions. J. Ferment. Bioeng., 83: 604–607.
  • Inoue, A. and Horikoshi, K. (1989). A Pseudomonas thrives in high concentrations of toluene. Nature, 338: 264–266.
  • Inoue, A. and Horikoshi, K. (1991). Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J. Ferment. Bioeng., 71: 194–196.
  • Isken, S., de Bont, J.A.M. and Isowa, Y. (1998). Bacteria tolerant to organic solvents. Extremophiles, 2: 229–238.
  • Ichikawa, T. (1979). Synthesis of N-acyl dipeptide derivatives by metalloproteinases. Bull. Chem. Soc. Jpn., 52: 796–800.
  • Ito, T., Kikuta, H., Nagamori, E., Honda, H., Ogino, H., Ishikawa, H. and Kobayashi, T. (2001). Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng., 91: 245–250.
  • Jae, K.S. and Joon, S.R. (2001). Enhancement of stability and activity of phospholipase A1 in organic solvents by directed evolution. Biochim. Biophys. Acta, 1547: 370–378.
  • Jager, K.E. and Reetz, M.T. (1998). Microbial lipases form versatile tools for biotechnology. Trends Biotechnol., 16: 396–403.
  • Jakubke, H.D., Kuhl, P. and Könnecke, A. (1985). Basic principles of protease catalyzed peptide bond formation. Angew. Chem. Int. Ed. Engl., 24: 85–93.
  • Jiang, Y. and Dalton. (1994). Chemical modification of the hydroxylase of soluble methane monooxygenase gives one form of the protein with significantly increased thermostability and another that functions well in organic solvents. Biochim. Biophys. Acta, 1201: 76–84.
  • Jönsson, A., Adlercreutz, P. and Mattiasson, B. (1996). Temperature effects on protease catalyzed acyl transfer reactions in organic media. J. Mol. Catal., B Enzym., 2: 43–51.
  • Karadzic, I., Masui, A. and Fujiwara, N. (2004). Purification and characterization of a protease from Pseudomonas aeruginosa grown in cutting oil. J. Biosci. Bioeng., 98: 145–152.
  • Karadzic, I., Masui, A., Zivkovic, L.I. and Fujiwara, N. (2006). Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng., 102: 82–89.
  • Kato, C., Inoue, A. and Horikoshi, K. (1996). Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol., 14: 6–12.
  • Khan, S.A., Hamayun, M. and Ahmed, S. (2006). Degradation of 4-aminophenol by newly isolated Pseudomonas sp. strain ST-4. Enzyme Microb. Technol., 38: 10–13.
  • Khare, S.K., Nabetani, H. and Nakajima, M. (2000a). Lipase catalyzed interesterification reaction and their industrial applications. Ind. Food Industry, 19: 29–35.
  • Khare, S.K., Snape, J. and Nakajima, M. (2000b). Application of enzyme and membrane technology in the processing of fats and oils. In: Methods in Non-aqueous Enzymology. (Ed. Gupta, M. N.), Basel: Birkhauser-Verlag, pp. 52–69.
  • Kieboom, J., Dennis, J.J., deBont, J.A.M. and Zylstra, G.J. (1998). Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem., 273: 85–91.
  • Kim, M.K. and Rhee, J.S. (1993). Lipid hydrolysis by Pseudomonas putida 3SK cultured in organic-aqueous two-phase system. Enzyme Microbiol. Technol., 15: 612–616.
  • Kim, K., Lee, S., Lee, K. and Lim, D. (1998). Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J. Bacteriol., 180: 3692–3696.
  • Klibanov, A.M. (1986). Enzymes that work in organic solvents. Chem. Tech., 16: 354–359.
  • Klibanov, A.M. (2001). Improving enzymes by using them in organic solvents. Nature, 409: 241–246.
  • Kobayashi, K., Tsukagoshi, N. and Aono, R. (2001). Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 or IS2 element. J. Bacteriol., 183: 2646–2653.
  • Komatsu, T., Moriya, K. and Horikoshi, K. (1994). Preparation of organic solvent-tolerant mutants from Pseudomonas aeruginosa strain PAO1161. Biosci. Biotechnol. Biochem., 59: 1754–1755.
  • Kulkarni, M. and Chaudhary, A. (2006). Biodegradation of p-nitrophenol by P. putida. Biores. Technol., 97: 982–988.
  • Lee, Y.D. and Kim, H.S. (1991). Enhancement of enzymatic production of cyclodextrins by organic solvents. Enzyme Microb. Technol., 13: 499–503.
  • Leon, R., Fernandes, P., Pinheiro, H.M. and Cabralet, J.M.S. (1998). Whole-cell biocatalysis in organic media. Enzyme Microb. Technol., 23: 483–500.
  • Li, X., Zhang, L. and Poole, K. (1998). Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J. Bacteriol., 180: 2987–2991.
  • Lin, S.F. (1996). Production and stabilization of a solvent-tolerant alkaline lipase from Pseudomonas pseudoalcaligenes F-111. J. Ferment. Bioeng., 82: 448–451.
  • Martinez, P. and Arnold, F.H. (1991). Surface charge substitutions increase the stability of α-lytic protease in organic solvents. J. Am. Chem. Soc., 113: 6336–6337.
  • McEvoy, E., Wright, P.C. and Bustard, M.T. (2004). The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris. Enzyme Microb. Technol., 35: 140–146.
  • Mohammad, B.T., Wright, P.C. and Bustard, M.T. (2006). Bioconversion of isopropanol by a solvent-tolerant Sphingobacterium mizutae strain. J. Ind. Microbiol. Biotechnol., 33: 975–983.
  • Moriya, K. and Horikoshi, K. (1993). Isolation of a benzene-tolerant bacterium and its hydrocarbon degradation. J. Ferment. Bioeng., 76: 168–173.
  • Moriya, K., Yanigitani, S., Usami, R. and Horikoshi, K. (1995). Isolation and some properties of an organic solvent tolerant marine bacterium degrading cholesterol. J. Mar. Biotechnol., 2: 131–133.
  • Na, K.S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H. and Kato, J. (2005). Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J. Biosci. Bioeng., 99: 378–382.
  • Nakajima, H., Kobayashi, K., Kobayashi, M., Asako, H. and Aono, R. (1995a). Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl. Environ. Microbiol., 61: 2302–2307.
  • Nakajima, H., Kobayashi, M., Negishi, T. and Aono, R. (1995b). SoxRS gene increased the level of organic solvent tolerance in Escherichia coli. Biosci. Biotechnol. Biochem., 59: 1323–1325.
  • Neumann, G., Veeranagouda, Y., Karegoudar, T.B., Sahin, O., Mausezahi, I., Kabelitz, N., Kappelmeyer, U. and Heipiper, H.J. (2005). Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles, 9: 163–168.
  • Nielsen, L.E., Kadavy, D.R., Rajagopal, S., Drijber, R. and Nickerson, K.W. (2005). Survey of extreme tolerance in Gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl. Environ. Microbiol., 71: 5171–5176.
  • Ogino, H. and Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng., 91: 109–116.
  • Ogino, H., Miyamoto, K. and Ishikawa, H. (1994). Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme. Appl. Environ. Microbiol., 60: 3884–3886.
  • Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. (1995). Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol., 61: 4258–4262.
  • Ogino, H., Watanabe, F., Yamada, M., Nakagawa, S., Hirose, T., Noguchi, A., Yasuda, M. and Ishikawa, H. (1999a). Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J. Biosci. Bioeng., 87: 61–68.
  • Ogino, H., Yamada, M., Watanabe, F., Ichinose, H., Yasuda, M. and Ishikawa, H. (1999b). Peptide synthesis catalyzed by organic solvent-stable protease from Pseudomonas aeruginosa PST-01 in monophasic aqueous-organic solvent systems. J. Biosci. Bioeng., 88: 513–518.
  • Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasuda, M. and Ishikawa, H. (2000). Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng., 89: 451–457.
  • Ogino, H., Uchiho, T., Yokoo, J., Kobayashi, R., Ichise, R. and Ishikawa, H. (2001). Role of intermolecular disulfide bonds of the organic solvent-stable PST-01 protease in its organic solvent stability. Appl. Environ. Microbiol., 67: 942–947.
  • Ogino, H., Uchiho, T., Doukyu, N., Yasuda, M., Ishimi, K. and Ishikawa, H. (2007). Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem. Biophy. Res. Comm., 358: 1028–1033.
  • Oka, T. and Morihara, K. (1978). Peptide bond synthesis catalyzed by α-chymotrypsin. J. Biochem., 84: 1277–1283.
  • Oka, T. and Morihara, K. (1980). Peptide bond synthesis catalyzed by thermolysin. J. Biochem., 88: 807–813.
  • Paje, M.L.F., Neilan, B.A. and Couperwhite, I. (1997). A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology, 143: 2975–2981.
  • Pauchon, V., Besson, C., Saulnier, J. and Wallach, J. (1993). Peptide synthesis catalyzed by Pseudomonas aeruginosa elastase. Biotechnol. Appl. Biochem., 17: 217–221.
  • Perrone, G.G., Barrow, K.D., McFarlane, I.J. (1999). The selective enzymatic synthesis of lipophilic esters of swainsonine. Bioorg. Med. Chem., 7: 831–835.
  • Persson, M., Wehtje, E. and Adlercreutz, P. (2002). Factors governing the activity of lyophilized and immobilized lipase preparations in organic solvents. Chembiochem, 3: 566–571.
  • Pieper, D. H. and Reineke, W. (2000). Engineering bacteria for bioremediation. Curr. Opin. Biotechnol., 11: 262–270.
  • Pinkart, H.C., Wolfrom, J.W., Rogers, R. and White, D.C. (1996). Cell envelope changes in solvent-tolerant and solvent sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol., 62: 1129–1132.
  • Rahman, R.N.Z.R.A., Baharum, S.N., Basri, M. and Salleh, A.B. (2005). High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal. Biochem., 341: 267–274.
  • Rahman, R.N.Z.R.A., Geok, L.P., Basri, M. and Salleh, A.B. (2006). An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzyme Microbial Technol., 39: 1484–1491.
  • Rahman, R.N.Z.R.A., Mahamad, S., Salleh, A.B. and Basri, M. (2007). A new organic solvent tolerant protease from Bacillus pumilus 115b. J. Ind. Microbiol. Biotechnol., 34: 509–517.
  • Ramos, J.L., Duque, E., Huertas, M.J. and Haïdour, A. (1995). Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol., 177: 3911–3916.
  • Ramos, J.L., Duque, E., Rodoriguez-Herva, J.J., Godoy, P., Haïdour, A., Reyes, F. and Fernandez-Barrero, A. (1997). Mechanisms for solvent tolerance in bacteria. J. Biol. Chem., 272: 3887–3890.
  • Ramos, J.L., Duque, E., Godoy, P. and Segura, A. (1998). Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol., 180: 3323–3329.
  • Ramos, J.L., Duque, E., Gallegos, M.T., Godoy, P., Ramos-González, M.I., Rojas, A., Terán, W. and Segura, A. (2002). Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol., 56: 743–768.
  • Salter, G.J. and Kell, D.B. (1995). Solvent selection for whole cell biotransformation in organic media. Crit. Rev. Biotechnol., 15: 139–177.
  • Sana, B., Ghosh, D., Saha, M. and Mukherjee, J. (2006). Purification and characterization of a salt, solvent, detergent and bleach tolerant protease from a new gamma-Proteobacterium isolated from the marine environment of the Sundarbans. Process Biochem., 41: 208–215.
  • Sardessai, Y. and Bhosle, S. (2002). Tolerance of bacteria to organic solvents. Res. Microbiol., 153: 263–268.
  • Sardessai, Y. and Bhosle, S. (2003). Isolation of an organic solvent tolerant cholesterol transforming Bacillus species BC1, from coastal sediment. Mar. Biotechnol., 5: 116–118.
  • Sardessai, Y. and Bhosle, S. (2004). Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog., 20: 655–660.
  • Sareen, R., Bornscheuer, U.T. and Mishra, P. (2004). Synthesis of kyotorphin precursor by an organic solvent-stable protease from Bacillus licheniformis RSP-09-37. J. Mol. Catal., B Enzym., 32: 1–5.
  • Sharma, R., Chisti, Y. and Banerjee, U.C. (2001). Production, purification, characterization and applications of lipases. Biotechnol. Adv., 19: 627–662.
  • Shabtai, Y. and Daya-Mishne, N. (1992). Production, purification and properties of lipase from a bacterium (Ps. aeruginosa YS-7) capable of growing in water-restricted environments. Appl. Environ. Microbiol., 58: 174–180.
  • Shima, H., Kudo, T. and Horikoshi, K. (1991). Isolation of toluene-resistant mutants from Pseudomonas putida PpG1 (ATCC 17453). Agric. Biol. Chem., 55: 1197–1199.
  • Shimada, Y., Koga, C., Sugihara, A., Nagao, T., Takada, N., Tsunasawa, S. and Tominaga, Y. (1993). Purification and characterization of a novel solvent-tolerant lipase from Fusarium heterosporum. J. Ferment. Bioeng., 75: 349–352.
  • Sikkema, J., de Bont, J. and Poolman, B. (1994). Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem., 269: 8022–8028.
  • Sugihara, A., Shimada, Y., Nomura, A., Terai, T., Imayasu, M., Nagai, Y., Nagao, T., Watanabe, Y. and Tominaga, Y. (2002). Purification and characterization of a novel cholesterol esterase from Pseudomonas aeruginosa, with its application to cleaning lipid-stained contact lenses. Biosci. Biotechnol. Biochem., 66: 2347–2355
  • Sulong, M.R., and Rahman, R.N.Z.R.A., Salleh, A.B., and Basri, M. (2006). A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: extracellular expression of a novel OST-lipase gene. Protein Exp. Puri., 49: 190–195.
  • Takeda, Y., Aono, R. and Doukyu, N. (2006). Purification, characterization and molecular cloning of organic solvent tolerant cholesterol esterase from cyclohexane tolerant Burkholderia cepacia strain ST-200. Extremophiles, 10: 269–277.
  • Taketani, S., Nishino, T. and Katsui, H. (1981). Characterization of sterolester hydrolase in Saccharomyces cerevisiae. Biochim. Biophys. Acta, 525: 87–92.
  • Tao, F., Yu, B., Xu, P. and Ma, C.Q. (2006). Biodesulfurization in biphasic systems containing organic solvents. Appl. Environ. Microbiol., 72: 4604–4609.
  • Torres, S., Baigorí, M.D. and Castro, G.R. (2005). Effect of hydroxylic solvents on cell growth, sporulation and esterase production of B. licheniformis S-86. Process Biochem., 40: 2333–2338.
  • Tsai, S.W., Chen, C.C., Yang, H.S., Ng, I.S. and Chen, T.L. (2006). Implication of substrate-assisted catalysis on improving lipase activity or enantioselectivity in organic solvents. Biochim. Biophys. Acta, 1764: 1424–1428.
  • Uwajima, T. and Terada, O. (1976). Purification and properties of cholesterol esterase from Pseudomonas fluorescence. Agric. Biol. Chem., 40: 1957–1964
  • Veeranagouda, Y., Karegoudar, T.B., Neumann, G., Heipieper, H.J. (2006) Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol. Lett., 254: 48–54.
  • Vulfson, E.N., Halling, P.J. and Holland, H.L. (2001). Enzymes in Nonaqueous Solvents: Methods and Protocols. Totowa, N.J: Humana Press.
  • Weber, F.J. and de Bont, J.A.M. (1996). Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta, 1286: 225–245.
  • Weber, F.J., Isken, S. and de Bont, J.A.M. (1994). Cis/trans isomerisation of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology, 140: 2013–2017.
  • Weber, F.J., Ooijkaas, L.P., Schemen, R.M.W., Hartmans, S. and de Bont, J.A.M. (1993). Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol., 59: 3502–3504.
  • Wierckx, N.J.P., Ballerstedt, H., de Bont, J.A.M. and Wery, J. (2005). Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol., 71: 8221–8227.
  • Woldringh, C.L. (1973). Effects of toluene and phenethyl alcohol on the ultrastructure of Escherichia coli. J. Bacteriol., 114: 1359–1361.
  • Xu, P., Yu, B., Li, F.L., Cai, X.F. and Ma, C.Q. (2006). Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol., 14: 398–405.
  • Zahir, Z., Seed, K.D. and Dennis, J.J. (2006). Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles, 10: 129–138.
  • Zaks, A. and Klibanov, A.M. (1988). Enzymatic catalysis in non-aqueous solvents. J. Biol. Chem., 263: 3194–3201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.