1,036
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Biology of Pleurotus eryngii and role in biotechnological processes: a review

, &
Pages 55-66 | Accepted 11 Nov 2008, Published online: 01 Mar 2009

References

  • Akin, D.E., Gamble, G.R., Morrison, J.W.H., Rigsby, L.L., and Dodd, R.B. 1996. Chemical and structural analysis of fibre and core tissues from flax. J. Sci. Food Agric., 72: 155–165.
  • Alcalde, M. 2007. Laccases: biological functions, molecular structure and industrial applications. In: Industrial Enzymes (Eds. Polaina, J., and MacCabe, A.P.), Springer, pp. 461–476.
  • Baeza, A., Guillén, J., Paniagua, J.M., Hernández, S., Martín, J.L., Díez, J., Manjón, J.L., and Moreno, G. 2000. Radiocaesium and radiostrontium uptake by fruit bodies of Pleurotus eryngii via mycelium, soil, areal absorption. Appl. Rad. Isotopes, 53: 455–462.
  • Baeza, A., Guillén, J., and Hernández, S. 2002. Transfer of 134Cs and 85Sr to Pleurotus eryngii fruiting bodies under laboratory conditions: a compartmental model approach. Bull. Environ. Contam. Toxicol., 69: 817–828.
  • Baldrian, P., and Gabriel, J. 2002. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Letts., 206: 69–74.
  • Barrasa, J.M., Gutiérrez, A., Escaso, V., Guillén, F., Martinez, M.J., and Matrinez, A.T. 1998. Electron and fluorescence microscopy of extracellular glucan and aryl-alcohol oxidase during wheat-straw degradation by Pleurotus eryngii. Appl. Environ. Microbiol., 64: 325–332.
  • Bernas, E., Grazyna, J., and Lisiewska, Z. 2006. Edible mushrooms as source of valuable nutritive constituents. ACTA Sci. Polon. – Technol. Aliment., 5: 5–20.
  • Berne, S., Krizaj, I., Pohleven, F., Tuck, T., Macek, P., and Sepcic, K. 2002. Pleurotus and Agrocybe hemolysins, new proteins hypothetically improved in fungal fruiting. Biochim. Biophys. Acta, 1570: 153–159.
  • Bogan, B.W., Lamar, R.T., Burgos, W.D., and Tien, M. 1999. Extent of humification of anthracene, fluoranthene, and benzo[alpha]pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Letts Appl. Microbiol., 28: 250–254.
  • Camarero, S., Galletti, G.C., and Martinez, A.T. 1994. Preferential degradation of phenolic lignin units by two white rot fungi. Appl. Environ. Microbiol., 60: 4509–4516.
  • Camarero, S., Sarkar, S., Ruiz-Dueñas, F.J., Martinez, M.J., and Martinez, A.T. 1999. Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J. Biol. Chem., 274: 10324–10330.
  • Camarero, S., Ruiz-Dueñas, F.J., Sarkar, S., Martinez, M.J., and Martinez, A.T. 2000. The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases. FEMS Microbiol. Letts., 191: 37–43.
  • Caramelo, L., Martinez, M.J., and Martinez, A.T. 1999. A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimers. Appl. Environ. Microbiol., 65: 916–922.
  • Cerniglia, C.E. 1997. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present, future applications in bioremediation. J. Ind. Microbiol., 19: 324–333.
  • Chang, S.T. 2005. Witnessing the development of the mushroom industry in China. Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products. Acta Edulis Fungi, 12(Suppl): 3–19.
  • Chiu, S.W., Law, S.C., Ching, M.L., Cheung, K.W., and Chen, M.J. 2000. Themes for mushroom exploitation in the 21st century. J. Gen. Appl. Microbiol., 46: 269–282.
  • Chou, P.Y., Hong, C.H., Chen, W., Li, Y.J., Chen, Y.S., and Chiou, R.Y.Y. 2006. Glass distilling collector applied for HCN recovery from submerged culture broth and fruiting body of Pleurotus eryngii for identification and quantification. J. Agric. Food Chem., 54: 1551–1556.
  • Cohen, R., Persky, L., and Hadar, Y. 2002. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotech., 58: 582–594.
  • Couto, S.R., and Herrera, J.L.T. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv., 24: 500–513.
  • De Gioia, T., Sisto, D., Rana, G.L., and Figliuolo, G. 2005. Genetic structure of the Pleurotus eryngii species-complex. Mycol. Res., 109: 71–80.
  • Dogan, H.H., Sanda, M.A., Uyanöz, R., Oztük, C., and Cetin, U. 2006. Contents of metals in some wild mushrooms: its impact in human health. Biol. Trace Element Res., 110: 79–94.
  • Dubost, N.J., Ou, B., and Beelman, R.B. 2007. Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity. Food Chem., 105: 727–735.
  • Ducros, V., Brzozowski, A.M., Wilson, K.S., østergaard, P., Schneider, P., Svendson, A., and Davies, G.J. 2001. Structure of the laccase from Coprinus cinereus at 1.68å resolution: evidence for different type 2 Cu-depleted isoforms. Acta Crystallog., D57:333–336.
  • Evans, C.S., Gallagher, I.M., Atkey, P.T., and Wood, D.A. 1991. Localisation of degradative enzymes in white-rot decay of lignocellulose. Biodegradation, 2: 93–106.
  • Ferraroni, M., Myasoedova, N.M., Schmatchenko, V., Leontievsky, A.A., Golovleva, L.A., Scozzafava, A., and Briganti, F. 2007. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct. Biol., 7: 60–72.
  • Fu, M., Lin, J., Wu, Z., Lin, Q., and Xie, L. 2003. Screening of proteins anti-tobacco mosaic virus in Pleurotus eryngii. Wei Sheng Wu Xue Bao, 43: 29–34.
  • Galhaup, C., and Haltrich, D. 2001. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl. Microbiol. Biotech., 56: 225–232.
  • Gómez-Toribio, V., Martinez, A.T., Martinez, M.J., and Guillén, F. 2001. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2+. Eur. J. Biochem., 268: 4787–4793.
  • Gregori, A., švagelj, M., and Pohleven, J. 2007. Cultivation techniques and medicinal properties of Pleurotus spp. Food Technol. Biotechnol., 45: 238–249.
  • Guillén, F., Martinez, A.T., and Martinez, M.J. 1990. Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl. Microbiol. Biotech., 32: 465–469.
  • Guillén, F., Gómez-Toribio, V., Martinez, M.J., and Martinez, A.T. 2000. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl-alcohol oxidase. Arch. Biochem. Biophys., 383: 142–147.
  • Gutiérrez, A., Caramelo, L., Prieto, A., Martinez, M.J., and Martinez, A.T. 1994. Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl. Environ. Microbiol., 60: 1783–1788.
  • Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A., and Rouvinen, J. 2002. Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Struct. Biol., 9: 601–605.
  • Hammel, E.K. 1997. Fungal degradation of lignin. In: Driven by Nature: Plant Litter Quality and Decomposition. (Eds. Cadisch, G., and Giller, K.E.), Oxford: CAB International, pp. 33–45.
  • Hanai, H., Ishida, S., Saito, C., Maita, T., Kusano, M., Tamogami, S., and Noma, M. 2005. Stimulation of mycelia growth in several mushroom species by rice husks. Biosci. Biotechnol. Biochem., 69: 123–127.
  • Hatfield, R.D., Ralph, J., and Grabber, J.H. 1999. Cell wall cross-linking by ferulates and diferulates in grasses. J. Sci. Food Agric., 79: 403–407.
  • Kerem, Z., and Hadar, Y. 1993. Effect of manganese on lignin degradation by Pleurotus ostreatus during solid-state fermentation. Appl. Environ. Microbiol., 59: 4115–4120.
  • Kim, S.W., Kim, H.G., Lee, B.E., Hwang, H.H., Baek, D.H., and Ko, S.Y. 2006. Effects of mushroom, Pleurotus eryngii, extracts on bone metabolism. Clin. Nutr., 25: 166–70.
  • Kotterman, J.J., Rietberg, H.J., Hage, A., and Field, A.J. 1998. Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnol. Bioengng., 57: 220–227.
  • Lau, K.L., Tsang, Y.Y., and Chui, S.W. 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere, 52: 1539–1546.
  • Lewinsohn, D., Nevo, E., Wasser, S.P., Hadar, Y., and Beharav, A. 2001. Genetic diversity in populations of the Pleurotus eryngii complex in Israel. Mycol. Res., 105: 941–951.
  • Lewinsohn, D., Wasser, S.P., Reshetnikov, S.V., Hadar, Y., and Nevo, E. 2002. The Pleurotus eryngii species-complex in Israel: distribution and morphological description of a new taxon. Mycotaxon, 81: 51–67.
  • Li, Y., and Trush, M.A. 1993. Oxidation of hydroquinone by copper: chemical mechanism and biological effects. Archs Biochem. Biophys., 300: 346–355.
  • Manzi, P., Gambelli, L., Marconi, S., Vivanti, V., and Pizzoferrato, L. 1999. Nutrients in edible mushrooms – an inter-species comparative study. Food Chem., 65: 477–482.
  • Manzi, P., Marconi, S., Aguzzi, A., and Pizzoferrato, L. 2004. Commercial mushrooms: nutritional quality and effect of cooking. Food Chem., 84: 201–206.
  • Martínez, T.A., Camarero, S., Guillen, F., Gutiérrez, A., Muñoz, C., Varela, E., Martínez, J.M., Barrasa, M.J., Ruel, K., and Pelayo, M.J. 1994a. Progress in biopulping of non-woody materials: chemical, enzymatic, ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol. Rev., 13: 265–274.
  • Martinez, M.J., Muñoz, C., Guillén, F., and Martinez, A.T. 1994b. Studies on homoveratric acid transformation by the ligninolytic fungus Pleurotus eryngii. Appl. Microbiol. Biotech., 41: 500–504.
  • Martinez, M.J., Ruiz-Dueñas, F.J., Guillén, F., and Martinez, A.T. 1996. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur. J. Biochem., 237: 424–432.
  • Martinez, A.T., Camarero, S., Gutiérrez, A., Bocchini, P., and Galletti, G.C. 2001. Studies on wheat lignin degradation by Pleurotus species using analytical pyrolysis. J. Analyt. Appl. Pyrol., 58–59: 401–411.
  • Martinez, A.T. 2002. Molecular biology and structure–function of lignin-degrading heme peroxidases. Enz. Microb. Technol., 30: 425–444.
  • Morgan, P., Lee, S.A., Lewis, S.T., Sheppard, A.N., and Watkinson, R.J. 1993. Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biol. Biochem., 25: 279–287.
  • Muñoz, C., Guillen, F., Martínez, T.A., and Martínez, J.M. 1997. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl. Environ. Microbiol., 63: 2166–2174.
  • Murata, H., and Magae, Y. 1996. Toxin production in a mushroom pathogenic bacterium, Pseudomonas tolaasii strain PT814 is activated by signals present in a host, Pleurotus ostreatus, and those accumulating in the medium in the course of bacterial growth. In: Proceedings of the Second International Conference on Mushroom Biology and Mushroom Products. (Ed. Royse, D.J.), pp. 483–494.
  • Ng, T.B., and Wang, H.X. 2004. A novel ribonuclease from fruiting bodies of the common edible mushroom Pleurotus eryngii. Peptides, 25: 1365–1368.
  • Ngai, P.H.K., and Ng, T.B. 2006. A hemolysin from the mushroom Pleurotus eryngii. Appl. Microbiol. Biotech., 72: 1185–1191.
  • Okano, K., Iida, Y., Samsuri, M., Prasetya, B., Usagawa, T., and Watanabe, T. 2006. Comparison of in vitro digestibility and chemical composition among sugarcane bagasse treated by four white-rot fungi. Animal Sci. J., 77: 308–313.
  • Okano, K., Fukui, S., Kitao, R., and Usagawa, T. 2007. Effects of culture length of Pleurotus eryngii grown on sugarcane bagasse on in vitro digestibility and chemical composition. Animal Feed Sci. Technol., 136: 240–247.
  • Ooi, V.E. 2000. Medicinally important fungi. In: Science and Cultivation of Edible Fungi. (Ed. Van Griensven, L.J.L.D.), Rotterdam: Balkema, pp. 41–51.
  • Owens, J.W. 1991. The hazard assessment of pulp and paper effluents in the aquatic environment – a review. Environ. Toxicol. Chem., 10: 1511–1540.
  • Palmeiri, G., Giardina, P., Bianco, C., Fontanella, B., and Sannia, G. 2000. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol., 66: 920–924.
  • Palmeiri, G., Bianco, C., Cennamo, G., Giardina, P., Marino, G., Monti, M., and Sannia, G. 2001. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl. Environ. Microbiol., 67: 2754–2759.
  • Peng, J.T., Lee, C.M., and Tsai, Y.F. 2000. Effect of rice bran on the production of different king oyster mushroom strains during bottle cultivation. J. Agric. Res. China, 49: 60–67.
  • Pérez-Boada, M., Doyle, W.A., Ruiz-Dueñas, F.J., Martinez, M.J., Martinez, A.T., and Smith, A.T. 2002. Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding. Enzyme Microb. Technol., 30: 518–524.
  • Pérez-Boada, M., Ruiz-Dueñas, F.J., Pogni, R., Basosi, R., Choinowski, T., Martinez, M.J., Piontek, K., and Martinez, A.T. 2005. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic, crystallographic investigation of three long-range electron transfer pathways. J. Molec. Biol., 354: 385–402.
  • Persson, I., Weiderpase, E., Bergkvist, L., Bergström, R., and Schairer, C. 1999. Risks of breast and endometrial cancer after estrogen and estrogen–progestin replacement. Can. Causes Contr., 10: 253–260.
  • Piontek, K., Antorini, M., and Choinowski, T. 2002. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-angstrom resolution containing a full complement of coppers. J. Biol. Chem., 377: 37663–37669.
  • Reddy, C.A. 1995. The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol., 6: 320–328.
  • Ro, H.S., Kim, S.S., Ryu, J.S., Jeon, C.O., Lee, T.S., and Lee, H.S. 2007a. Comparative studies on the diversity of the edible mushroom Pleurotus eryngii: ITS sequence analysis, RAPD fingerprinting, and physiological characteristics. Mycol. Res., 111: 710–715.
  • Ro, H.S., Kang, E.J., Yu, J.S., Lee, T.S.O., Lee, C.W., and Lee, H.S. 2007b. Isolation and characterization of a novel mycovirus, PeSV, in Pleurotus eryngii and the development of a diagnostic system for it. Biotechnol. Letts, 29: 129–135.
  • Rodriguez, E., Nuero, O., Guillén, F., Martinez, A.T., and Martinez, M.J. 2004. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol. Biochem., 36: 909–916.
  • Rodriguez Estrada, A.E., and Royse, D.J. 2007. Yield, size, bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper, whole ground soybean. Biores. Technol., 98: 1898–1906.
  • Ruiz-Dueñas, F.J., Guillén, F., Camarero, S., Pérez-Boada, M., Martinez, M.J., and Martinez, A.T. 1999a. Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl. Environ. Microbiol., 65: 4458–4463.
  • Ruiz-Dueñas, F.J., Martinez, M.J., and Martinez, A.T. 1999b. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates. Appl. Environ. Microbiol., 65: 4705–4707.
  • Ruiz-Dueñas, F.J., Camarero, S., Pérez-Boada, M., Martinez, M.J., and Martinez, A.T. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans., 29: 116–122.
  • Ruiz-Dueñas, F.J., Ferreira, P., Martinez, M.J., and Martinez, A.T. 2006. In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Prot. Expr. Purifica., 45: 191–199.
  • Russo, A., Filippi, C., Tombolini, R., Toffanin, A., Bedini, S., Agnolucci, M., and Nuti, M. 2003. Interaction between gfp-tagged Pseudomonas tolaasii P12 and Pleurotus eryngii. Microbiol. Res., 158: 265–270.
  • Saikai, T., Tanaka, H., Fuji, M., Sugawara, H., Takeya, I., Tsunematsu, K., and Abe, S. 2002. Hypersensitivity pneumonitis induced by the spore of Pleurotus eryngii (Eringi). Intern. Med., 41: 571–573.
  • Schoemaker, H.E., Meijer, E.M., Leisola, M.S.A., Haemmerli, S.D., Waldner, R., Sanglard, D., and Schmidi, H.W.H. 1989. Oxidation and reduction in lignin biodegradation. In: Plant Cell Wall Polymers (Eds. Lewis, N.G., and Paice, M.G.), Washington: Americam Chemical Society, pp. 454–471.
  • Schoemaker, H.E., Tuor, U., Muheim, A., Schmidt, H.W.H., and Leisola, M.S.A. 1991. White-rot degradation of lignin and xenobiotics. In: Biodegradation: Natural and Synthetic Materials. (eds. Betts, W.B.), London: Springer, pp. 157–174.
  • Semple, K.T., Reid, B.J., and Fermor, T.R. 2001. Impact of composting strategies on the treatment of soils contaminated with organic pollutants: a review. Environ. Pol., 112: 269–283.
  • Shimizu, K., Yamanaka, M., Gyokusen, M., Kaneko, S., Tsutsui, M., Sato, J., Sato, I., Sato, M., and Kondo, R. 2006. Estrogen-like activity and prevention effect of bone loss in calcium deficient ovariectomized rats by the extract of Pleurotus eryngii. Phytother. Res., 20: 659–664.
  • Smith, A.T., Santama, N., Dacey, S., Edwards, M., Bray, R.C., Thorneley, R.N.F., and Burke, J.F. 1990. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J. Biol. Chem., 265: 13335–13343.
  • Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., and Wichers, H.J. 1999. Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev., 23: 591–614.
  • Stajic, M., Persky, L., Cohen, E., Hadar, Y., Brceski, I., Wasser, S.P., and Nevo, E. 2004. Screening of the laccase, manganese peroxidase, and versatile peroxidase activities of the genus Pleurotus in media with some raw plant materials as carbon sources. Appl. Biochem. Biotech., 117: 155–164.
  • Stajic, M., Brceski, I., Wasser, S.P., and Nevo, E. 2006a. Screening of selenium absorption ability of mycelia of selected Pleurotus species. Agro Food Ind. High-tech, 17: 33–35.
  • Stajic, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S.P., Nevo, E., and Vukojevic, J. 2006b. Effect of different carbon and nitrogen sources on laccase and peroxidases activity by selected Pleurotus species. Enzyme Microb. Technol., 38: 65–73.
  • Stajic´, M., Persky, L., Hadar, Y., Friesem, D., Duletic´-Laus˘evic, S., Wasser, S.P., and Nevo, E. 2006c. Effect of copper and manganese ions on activities of laccase and peroxidases in three Pleurotus species grown on agricultural wastes. Appl. Biochem. Biotech., 128: 87–96.
  • Stijve, T., and de Meijer, A.A.R. 1999. Hydrocyanic acid in wild-growing and cultivated edible mushrooms. Deutsche Lebensmittel-Rundschau, 95: 366–372.
  • Thurston, C. 1994. The structure and function of fungal laccase. Microbiology, 140: 19–26.
  • Trejo-Hernandez, M.R., Lopez-Munguia, A., and Ramirez, R.Q. 2001. Residual compost of Agaricus bisporus as a source of crude laccase for enzymatic oxidation of phenolic compounds. Proc. Biochem., 36: 635–639.
  • Urbanelli, S., Della Rosa, V., Punelli, F., Porretta, D., Reverberi, M., Fabbri, A.A., and Fanelli, C. 2007. DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the Pleurotus eryngii complex. Appl. Microbiol. Biotech., 74: 592–600.
  • Varela, E., Martinez, M.J., and Martinez, A.T. 2000. Aryl-alcohol oxidase protein sequence: a comparison with glucose oxidase and other FAD oxidoreductases. Biochim. Biophys. Acta, 1481: 202–208.
  • Varela, E., Guillén, F., Martinez, A.T., and Martinez, M.J. 2001. Expression of Pleurotus eryngii aryl-alcohol oxidase in Aspergillus nidulans: purification and characterization of the recombinant enzyme. Biochim. Biophys. Acta, 1546: 107–113.
  • Venturella, G. 2000. Typification of Pleurotus nebrodensis. Mycotaxon, 75: 229–231.
  • Villas-Bôas, S.G., Esposito, E., and Mitchell, D.A. 2002. Microbial conversion of lignocellulosic residues for production of animal feeds. Animal Feed Sci. Technol., 98: 1–12.
  • Wang, H., and Ng, T.B. 2001. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem. Biophys. Res. Commun., 289: 750–755.
  • Wang, H., and Ng, T.B. 2004. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides, 25: 1–5.
  • Wang, H.X., and Ng, T.B. 2006. Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl. Microbiol. Biotech., 69: 521–525.
  • Wasser, S.P., and Weis, A.L. 1999. Medicinal properties of substances occurring in higher Basidiomycetes mushrooms: current perspectives (review). Int. J. Med. Mushrooms, 1: 31–62.
  • Yaoita, Y., Yoshihara, Y., Kakuda, R., Machida, K., and Kikuchi, M. 2002. New sterols from two edible mushrooms, Pleurotus eryngii and Panellus serotinus. Chem. Pharma. Bull. (Tokyo), 50: 551–553.
  • Zervakis, G.I., Sourdis, J., and Balis, C. 1994. Genetic variability and systematics of eleven Pleurotus species based on isoenzyme analysis. Mycol. Res., 98: 329–341.
  • Zervakis, G.I., and Balis, C. 1996. A pluralistic approach in the study of Pleurotus species with emphasis on compatibility and physiology of the European morphotaxa. Mycol. Res., 100: 717–731.
  • Zervakis, G.I., Venturella, G., and Papadopoulou, K. 2001a. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology, 147: 3183–3194.
  • Zervakis, G., Philippoussis, A., Ioannidou, S., and Diamantopoulou, P. 2001b. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol., 46: 231–234.
  • Zhang, J.X., Huang, C.Y., and Ng, T.B. 2006. Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl. Microbiol. Biotech., 71: 304–309.
  • Zollinger, H. 2003. Colour Chemistry: Synthesis, Properties, Applications of Organic Dyes and Pigments. New York: John Wiley-VCH Publishers, pp. 92–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.