641
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Genome analysis and genetic enhancement of tomato

, , , , , , , , & show all
Pages 152-181 | Accepted 13 Sep 2008, Published online: 01 Jun 2009

References

  • Abdeen, A., Virgós, A., Olivella, E., Villanueva, J., Aviles, X., Gabarra, R. and Prat, S. 2005. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol. Biol., 57: 189–202.
  • Abhary, M.K., Anfoka, G.H., Nakhla, M.K. and Maxwell, D.P. 2006. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch. Virol., 151: 2349–2363.
  • Adams-Phillips, L., Barry, C. and Giovannoni, J. 2004. Signal transduction systems regulating fruit ripening. Trends Plant Sci., 9: 331–338.
  • Agarwal, S., Singh, R., Sanyal, I. and Amla, D.V. 2008. Expression of modified gene encoding functional human alpha-1-volume protein in transgenic tomato plants. Transgenic Res., 17: 881–896.
  • Akad, F., Eybishtz, A., Edelbaum, D., Gorovits, R., Dar-Issa, O., Iraki, N. and Czosnek, H. 2007. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to Tomato yellow leaf curl virus. Arch. Virol., 152: 1323–1329.
  • Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G.B., Tanksley, S.D. and Giovannoni, J.J. 2005. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell, 17: 2954–2965.
  • Alpert, K.B. and Tanksley, S.D. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA, 93: 15503–15507.
  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25: 3389–3402.
  • America, A.H.P., Cordewener, J.H.G., van Geffen, M.H.A., Lommen, A., Vissers, J.P.C., Bino, R.J. and Hall, R.D. 2006. Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional LC-MS. Proteomics, 6: 641–653.
  • Ammiraju, J.S.S., Veremis, J.C., Huang, X., Roberts, P.A. and Kaloshian, I. 2003. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor. Appl. Genet., 106: 478–484.
  • Anderson, L.K., Salameh, N., Bass, H.W., Harper, L.C., Cande W.Z. Weber, G. and Stack, S.M. 2004. Integrating genetic linkage maps with pachytene chromosome structure in maize. Genetics, 166: 1923–1933.
  • Anjanasree, K.N. and Bansal, K.C. 2003. Isolation and characterization of ripening-related expansin cDNA from tomato. J. Plant Biochem. Biotechnol., 12: 31–35.
  • Anjanasree, K.N., Srivastava, A., Handa, A. and Bansal, K.C. 2005. Identification of differentially expressed ripening-related cDNA clones from tomato (Lycopersicon esculentum) using tomato EST array. Curr. Sci., 88: 792–796.
  • Arango, P.I., Rubio, L.E., Anaya, R.E., Flores, O.T., de la Vara, G.L. and Lim, G.M.A. 2008. Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice. Plant Cell Rep., 27: 677–685.
  • Areshchenkova, T. and Ganal, M.W. 1999. Long tomato microsatellites are predominantly associated with centromeric regions. Genome, 42: 536–544.
  • Areshchenkova, T. and Ganal, M.W. 2002. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet., 104: 229–235.
  • Arumuganathan, K. and Earle, E.D. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep., 9: 229–241.
  • Asamizu, E. 2007. Tomato genome sequencing: deciphering the euchromatin region of the chromosome 8. Plant Biotechnol., 24: 5–9.
  • Bai, Y., van der Hulst, R., Huang, C.C., Wei, L., Stam, P. and Lindhout, P. 2004. Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic, single-locus markers. Theor. Appl. Genet., 109: 1215–1223.
  • Ballvora, A., Pierre, M., van den Ackerveken, G., Schornack, S., Rossier, O., Ganal, M., Lahaye, T. and Bonas, U. 2001a. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol. Plant Microbe Interact., 14: 629–638.
  • Ballvora, A., Schornack, S., Baker, B.J., Ganal, M., Bonas, U. and Lahaye, T. 2001b. Chromosome landing at the tomato Bs4 locus. Mol. Genet. Genomics, 266: 639–645.
  • Barker, C.L., Talbot, S.J., Jones, J.D.G. and Jones, D.A. 2006. A tomato mutant that shows stunting, wilting, progressive necrosis and constitutive expression of defence genes contains a recombinant Hcr9 gene encoding an autoactive protein. Plant J., 46: 369–384.
  • Barone, A., Chiusano, M.L., Ercolano, M.R., Giuliano, G., Grandillo, S. and Frusciante, L. 2008. Structural and functional genomics of tomato. Int. J. Plant Genomics, 2008: 820274
  • Barry, C.S. and Giovannoni, J.J. 2006. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc. Natl. Acad. Sci. USA, 103: 7923–7928.
  • Barry, C.S., McQuinn, R.P., Thompson, A.J., Seymour, G.B., Grierson, D. and Giovannoni, J.J. 2005. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol., 138: 267–275.
  • Basu, A. and Imrhan, V. 2007. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur. J. Clin. Nutr., 61: 295–303.
  • Baxter, C.J., Sabar, M., Quick, W.P. and Sweetlove, L.J. 2005. Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J. Exp. Bot., 56: 1591–1604.
  • Beaudoin, N. and Rothstein, S.J. 1997. Developmental regulation of two tomato lipoxygenase promoters in transgenic tobacco and tomato. Plant Mol. Biol., 33: 835–846.
  • Bedell, J.A., Budiman, M.A., Nunberg, A., Citek, R.W., Robbins, D., Jones, J., Flick, E., Rohlfing, T., Fries, J., Bradford, K., McMenamy, J., Smith, M., Holeman, H., Roe, B.A., Wiley, G., Korf, I.F., Rabinowicz, P.D., Lakey, N., McCombie, W.R., Jeddeloh, J.A. and Martienssen, R.A. 2005. Sorghum genome sequencing by methylation filtration. PLoS Biol., 3: e13.
  • Behringer, F.J. and Lomax, T.L. 1999. High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato. J. Hered., 90: 489–493.
  • Bennetzen, J.L. and Ma, J. 2003. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr. Opin. Plant Biol., 6: 128–133.
  • Bennetzen, J.L., Schrick, K., Springer, P.S., Brown, W.E. and SanMiguel, P. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome, 37: 565–576.
  • Beraldi, D., Picarella, M.E., Soressi, G.P. and Mazzucato, A. 2004. Fine mapping of the parthenocarpic fruit (pat) mutation in tomato. Theor. Appl. Genet., 108: 209–216.
  • Bernacchi, D. and Tanksley, S.D. 1997. An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics, 147: 861–877.
  • Bernatzky, R. and Tanksley, S.D. 1986. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics, 112: 887–898.
  • Bino, R.J., de Vos, C.H.R., Lieberman, M., Hall, R.D., Bovy, A., Jonker, H.H., Tikunov, Y., Lommen, A., Moco, S. and Levin, I. 2005. The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytol., 166: 427–438.
  • Bishop, G.J., Harrison, K. and Jones, J.D.G. 1996. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell, 8: 959–969.
  • Blume, B. and Grierson, D. 1997. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. Plant J., 12: 731–746.
  • Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S. and Schneider, M. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res., 31: 365–370.
  • Bonierbale, M.W., Plaisted, R.L. and Tanksley, S.D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120: 1095–1103.
  • Bonnema, G., Hontelez, J., Verkerk, R., Zhang, Y.Q., van Daelen, R., van Kammen, A. and Zabel, P. 1996. An improved method of partially digesting plant megabase DNA suitable for YAC cloning: application to the construction of a 5.5 genome equivalent YAC library of tomato. Plant J., 9: 125–133.
  • Borodovsky, M. and McIninch, J. 1993. GeneMark: parallel gene recognition for both DNA strands. Comp. Chem., 17: 123–133.
  • Bramley, P.M. 2002. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot., 53: 2107–2113.
  • Brandwagt, B.F., Mesbah, L.A., Takken, F.L.W., Laurent, P.L., Kneppers, T.J.A., Hille, J. and Nijkamp, H.J.J. 2000. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc. Natl. Acad. Sci. USA, 97: 4961–4966.
  • Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R., Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J., Fearon, K., Mao, J.-i, and Corcoran, K. 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol., 18: 630–634.
  • Brommonschenkel, S.H., Frary, A., Frary, A. and Tanksley, S.D. 2000. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant Microbe Interact., 13: 1130–1138.
  • Brommonschenkel, S.H. and Tanksley, S.D. 1997. Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol. Gen. Genet., 256: 121–126.
  • Broun, P. and Tanksley, S.D. 1996. Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol. Gen. Genet., 250: 39–49.
  • Brummell, D.A. and Harpster, M.H. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol., 47: 311–340.
  • Brummell, D.A., Harpster, M.H. and Dunsmuir, P. 1999. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol., 39: 161–169.
  • Budiman, M.A., Chang, S.-B., Lee, S., Yang, T.J., Zhang, H.-B., de Jong, H. and Wing, R.A. 2004. Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor. Appl. Genet., 108: 190–196.
  • Budiman, M.A., Mao, L., Wood, T.C. and Wing, R.A. 2000. A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res., 10: 129–136.
  • Cai, X., Wang, C., Xu, Y., Xu, Q., Zheng, Z. and Zhou, X. 2007. Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Res., 125: 169–175.
  • Carbone, F., Facella, P., Tavazza, R., Perrotta, G., Dolce, D., Giliberto, L., Fraser, P., Bramley, P., Schauer, N., Fernie, A. and Giuliano, G. 2007. Functional characterization of the tomato cryptochrome family. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 111.
  • Carels, N. and Bernardi, G. 2000. Two classes of genes in plants. Genetics, 154: 1819–1825.
  • Carey, A.T., Smith, D.L., Harrison, E., Bird, C.R., Gross, K.C., Seymour, G.B. and Tucker, G.A. 2001. Down-regulation of a ripening-related β-galactosidase gene (TBG1) in transgenic tomato fruits. J. Exp. Bot., 52: 663–668.
  • Carpenter, A.T.C. 1975. Electron microscopy of meiosis in Drosophila melanogaster females: II: The recombination nodule – a recombination-associated structure at pachytene? Proc. Natl. Acad. Sci. USA, 72: 3186–3189.
  • Carrari, F., Asis, R. and Fernie, A.R. 2007. The metabolic shifts underlying tomato fruit development. Plant Biotechnol., 24: 45–55.
  • Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., Nikiforova, V., Centero, D., Ratzka, A., Pauly, M., Sweetlove, L.J. and Fernie, A.R. 2006. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol., 142: 1380–1396.
  • Carrari, F. and Fernie, A.R. 2006. Metabolic regulation underlying tomato fruit development. J. Exp. Bot., 57: 1883–1897.
  • Causse, M., Duffe, P., Gomez, M.C., Buret, M., Damidaux, R., Zamir, D., Gur, A., Chevalier, C., Lemaire-Chamley, M. and Rothan, C. 2004. A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot., 55: 1671–1685.
  • Chan, Y.-L., Prasad, V., Sanjaya, Chen, K.H., Liu, P.C., Chan, M.-T. and Cheng, C.-P. 2005. Transgenic tomato plants expressing an Arabidopsis thionin (Thi2.1) driven by fruit-inactive promoter battle against phytopathogenic attack. Planta, 221: 386–393.
  • Chang, S.-B., Anderson, L.K., Sherman, J.D., Royer, S.M. and Stack, S.M. 2007. Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics, 176: 2131–2138.
  • Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z. and Grierson, D. 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol., 136: 2641–2651.
  • Chen, R., Li, H., Zhang, L., Zhang, J., Xiao, J. and Ye, Z. 2007. CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.)confers nematode resistance in tomato. Plant Cell Rep., 26: 895–905.
  • Chetelat, R.T., DeVerna, J.W. and Bennett, A.B. 1995. Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor. Appl. Genet., 91: 327–333.
  • Chetelat, R.T., Meglic, V. and Cisneros, P. 2000. A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics, 154: 857–867.
  • Chiusano, M.L., D’Agostino, N., Traini, A., Licciardello, C., Raimondo, E., Aversano, M., Frusciante, L. and Monti, L. 2008. ISOL@: an Italian SOLAnaceae genomics resource. BMC Bioinformatics, 26: 9.
  • Churchill, G.A., Giovannoni, J.J. and Tanksley, S.D. 1993. Pooled-sampling makes high-resolution mapping practical with DNA markers. Proc. Natl. Acad. Sci. USA, 90: 16–20.
  • Cillo, F., Finetti-Sialer, M.M., Papanice, M.A. and Gallitelli, D. 2004. Analysis of mechanisms involved in the cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. Mol. Plant Microbe Interact., 17: 98–108.
  • Coego, A., Ramirez, V., Ellul, P., Mayda, E. and Vera, P. 2005. The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. Plant J., 42: 283–293.
  • Colot, V. and Rossignol, J.-L. 1999. Eukaryotic DNA methylation as an evolutionary device. Bioessays, 21: 402–411.
  • Cuartero, J., Bolarín, M.C., Asíns, M.J. and Moreno, V. 2006. Increasing salt tolerance in the tomato. J. Exp. Bot., 57: 1045–1058.
  • D’Agostino, N., Aversano, M., Frusciante, L. and Chiusano, M.L. 2007a. TomatEST database: in silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res., 35: D901–D905.
  • D’Agostino, N., Traini, A., Frusciante, L. and Chiusano, M.L. 2007b. Gene models from ESTs (GeneModelEST): an application on the Solanum lycopersicum genome. BMC Bioinformatics, 8: S9.
  • Daniell, H., Lee, S.-B., Grevich, J., Saski C., Quesada-Vargas, T., Guda, C., Tomkins, J. and Jansen, R.K. 2006. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor. Appl. Genet., 112: 1503–1518.
  • Dasgupta, I., Malathi, V.G. and Mukherjee, S.K. 2003. Genetic engineering for virus resistance. Curr. Sci., 84: 341–354.
  • Datema, E., Mueller, L.A., Buels, R., Giovannoni, J.J., Visser, R.G., Stiekema, W.J. and van Ham, R.C. 2008. Comparative BAC end sequence analysis of tomato and potato reveals overrepresentation of specific gene families in potato. BMC Plant Biol., 8: 34.
  • Davidovich-Rikanati, R., Sitrit, Y., Tadmor, Y., Iijima, Y., Bilenko, N., Bar, E., Carmona, B., Fallik, E., Dudai, N., Simon, J.E., Pichersky, E. and Lewinsohn, E. 2007. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat. Biotechnol., 25: 899–901.
  • Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Bramley, P.M., Pennings, H.M.J. and Bowler, C. 2005. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol., 23: 890–895.
  • Davuluri, G.R., van Tuinen, A., Mustilli, A.C., Manfredonia, A., Newman, R., Burgess, D., Brummell, D.A., King, S.R., Palys, J., Uhlig, J., Pennings, H.M.J. and Bowler, C. 2004. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing. Plant J., 40: 344–354.
  • de Block, M., Botterman, J., Vanderwiele, M., Dockx, J., Thoen, C., Grosselé, V., Roa Movva, N., Thompson, C., Van Montagu, M. and Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J., 6: 2513–2518.
  • Deikman, J. and Fischer, R.L. 1988. Interaction of a DNA binding factor with the 5’-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J., 7: 3315–3320.
  • Deikman, J., Xu, R., Kneissl, M.L., Ciardi, J.A., Kim, K.N. and Pelah, D. 1998. Separation of cis elements responsive to ethylene, fruit development and ripening in the 5’-flanking region of the ripening-related E8 gene. Plant Mol. Biol., 37: 1001–1011.
  • Delalande, C., Regad, F., Zouine, M., Frasse, P., Latche, A., Pech, J.C. and Bouzayen, M. 2007. The French contribution to the multinational Solanaceae Genomics Project as integrated part of the European effort. Plant Biotechnol. 24: 27–31.
  • Delannay, X., LaVallee, B.J., Proksch, R.K., Fuchs, R.L., Sims, S.R., Greenplate, J.T., Marrone, P.G., Dodson, R.B., Augustine, J.J., Layton, J.G. and Fischhoff, D.A. 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology, 7: 1265–1269.
  • Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K. and Jones, J.D.G. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 84: 451–459.
  • Dixon, R.A. 2005. A two-for-one in tomato nutritional enhancement. Nat. Biotechnol., 23: 825–826.
  • Doganlar, S., Frary, A., Daunay, M.-C., Lester, R.N. and Tanksley, S.D. 2002a. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 161: 1697–1711.
  • Doganlar, S., Frary, A., Daunay, M.-C., Lester, R.N. and Tanksley, S.D. 2002b. Conservation of gene function in the solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics, 161: 1713–1726.
  • Emberton, J., Ma, J., Yuan, Y., SanMiguel, P. and Bennetzen, J.L. 2005. Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res., 15: 1441–1446.
  • Emmanuel, E. and Levy, A.A. 2002. Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol., 5: 112–117.
  • Ernst, K., Kumar, A., Kriseleit, D., Kloos, D-U., Phillips, M.S. and Ganal, M.W. 2002. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J., 31: 127–136.
  • Escobar, M.A., Civerolo, E.L., Summerfelt, K.R. and Dandekar, A.M. 2001. RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc. Natl. Acad. Sci. USA, 98: 13437–13442.
  • Eshed, Y. and Zamir, D. 1994. A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica, 79: 175–179.
  • Eshed, Y. and Zamir, D. 1995. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 141: 1147–1162.
  • Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res., 8: 186–194.
  • Ewing, B., Hillier, L., Wendl, M.C. and Green, P. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res., 8: 175–185.
  • Ezura, H. 2006. Generation of Micro-Tom based resources for Solanaceae functional genomics. In: International Workshop on Tomato Genomics, Hyderabad, India, p. 7.
  • Fawcett, J., Rombauts, S., Van de Peer, Y., Schiex, T., Noirot, C., Gouzy, J., Bruggmann, R., Mayer, K., Joecker, A., Schoof, H., Mathur, S., Chattopadhyay, D., Singh, N.K., Tyagi, A.K., Chiusano, M.L., Traini, A., D’Agostino, N., Datema, E.D., Fiers, M.W.E.J., van Ham, R.C.H.J., Camara, F., Guigo, R., Buchan, D., Butcher, S., Abbot, J., Bishop, G., Buels, R. and Mueller, L. 2007. The International Tomato Genome Annotation Group; iTAG. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 109.
  • Fang, Z.D., Laskey, J.G., Huang, S., Bilyeu, K.D., Morris, R.O., Schmidt, F.J. and English, J.T. 2006. Combinatorially selected defense peptides protect plant roots from pathogen infection. Proc. Natl. Acad. Sci. USA, 103: 18444–18449.
  • Fedorowicz, O., Bartoszewski, G., Kaminska, M., Stoeva, P. and Niemirowicz-Szczytt, K. 2005. Pathogen-derived resistance to tomato spotted wilt virus in transgenic tomato and tobacco plants. Am. Soc. Hot. Sci., 130: 218–224.
  • Fei, Z., Tang, X., Alba, R. and Giovannoni, J. 2006. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res., 34: D766–D770.
  • Fei, Z., Tang, X., Alba, R.M., White, J.A., Ronning, C.M., Martin, G.B., Tanskley, S.D. and Giovannoni, J.J. 2004. Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J., 40: 47–59.
  • Fillatti, J.J., Kiser, J., Rose, R. and Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology, 5: 726–730.
  • Fire, A., Su, X., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391: 806–811.
  • Fischoff, D.A., Bowdish, K.S., Perlack, F.J., Marrone, P.G., McCormick, S.M., Niedermayer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G. and Fraley, R.T. 1987. Insect tolerant transgenic tomato plants. Bio/Technology, 5: 807–813.
  • Foissac, S., Bardou, P., Moisan, A., Cros, M.-J. and Schiex, T. 2003. EuGéne’Hom: a generic similarity-based gene finder using multiple homologous sequences. Nucleic Acids Res., 31: 3742–3745.
  • Folkertsma, R.T., Spassova, M.I., Prins, M., Stevens, M.R., Hille, J. and Goldbach, R.W. 1999. Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Molec. Breed., 5: 197–207.
  • Foolad, M.R. 2007. Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics, 2007: 64358.
  • Foolad, M.R., Jones, R.A. and Rodriguez, R.L. 1993. RAPD markers for constructing intraspecific tomato genetic maps. Plant Cell Rep., 12: 293–297.
  • Fransz, P.F., Alonso-Blanco, C., Liharska, T.B., Peeters, A.J.M., Zabel, P. and de Jong, J.H. 1996. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J., 9: 421–430.
  • Frary, A., Doganlar, S., Daunay, M.C. and Tanksley, S.D. 2003. QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor. Appl. Genet., 107: 359–370.
  • Frary, A. and Earle, E.D. 1996. An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep., 16: 235–240.
  • Frary, A., Nesbitt, T.C., Frary, A., Grandillo, S., van der Knaap, E., Cong, B., Liu, J., Meller, J., Elber, R., Alpert, K.B. and Tanksley, S.D. 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289: 85–88.
  • Frary, A., Xu, Y., Liu, J., Mitchell, S., Tedeschi, E. and Tanksley, S. 2005. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor. Appl. Genet., 111: 291–312.
  • Fraser, P.D., Romer, S., Shipton, C.A., Mills, P.B., Kiano, J.W., Misawa, N., Drake, R.G., Schuch, W. and Bramley, P.M. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA, 99: 1092–1097.
  • Fraser, P.D., Enfissi, E.M.A., Halket, J.M., Truesdale, M.R., Yu, D., Gerrish, C. and Bramley, P.M. 2007. Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell, 19: 3194–3211.
  • Frick, U.B. and Schaller, A. 2002. cDNA microarray analysis of fusicoccin-induced changes in gene expression in tomato plants. Planta, 216: 83–94.
  • Fridman, E., Carrari, F., Liu, Y.-S., Fernie, A.R. and Zamir, D. 2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 305: 1786–1789.
  • Fridman, E., Pleban, T. and Zamir, D. 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA, 97: 4718–4723.
  • Fridman, E. and Zamir, D. 2003. Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol., 131: 603–609.
  • Fu, D.-Q., Zhu, B.-Z., Zhu, H.-L., Jiang, W.-B. and Luo, Y.-B. 2005. Virus-induced gene silencing in tomato fruit. Plant J., 43: 299–308.
  • Fuchs, J., Kloos, D.-U., Ganal, M.W. and Schubert, I. 1996. In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes. Chromosome Res., 4: 277–281.
  • Fuchs, M., Provvidenti, R., Slightom, J.L. and Gonsalves, D. 1996. Evaluation of transgenic tomato plants expressing the coat protein gene of cucumber mosaic virus strain WL under field conditions. Plant Dis., 80: 270–275.
  • Fuentes, A., Ramos, P.L., Fiallo, E., Callard, D., Sánchez, Y., Peral, R., Rodríguez, R. and Pujol, M. 2006. Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res., 15: 291–304.
  • Fulton, T.M., Van der Hoeven, R., Eannetta, N.T. and Tanksley, S.D. 2002. Identification, analysis and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell, 14: 1457–1467.
  • Gal-on, A., Wolf, D., Wang, Y., Faure, J.-E., Pilowsky, M. and Zelcer, A. 1998. Transgenic resistance to cucumber mosaic virus in tomato: blocking of long-distance movement of the virus in lines harboring a defective viral replicase gene. Phytopathology, 88: 1101–1107.
  • Ganal, M.W., Czihal, R., Hannappel, U., Kloos, D.U., Polley, A. and Ling, H.-Q. 1998. Sequencing of cDNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Res., 8: 842–847.
  • Ganal, M.W., Simon, R., Brommonschenkel, S., Arndt, M., Phillips, M.S., Tanksley, S.D. and Kumar, A. 1995. Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol. Plant Microbe Interact., 8: 886–891.
  • Gebhardt, C., Walkemeier, B., Henselewski, H., Barakat, A., Delseny, M. and Stüber, K. 2003. Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J., 34: 529–541.
  • Gene Ontology Consortium. 2004. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res., 32: D258–D261.
  • Gibly, A., Bonshtien, A., Balaji, V., Debbie, P., Martin, G.B. and Sessa, G. 2004. Identification and expression profiling of tomato genes differentially regulated during a resistance response to Xanthomonas campestris pv. vesicatoria. Mol. Plant Microbe Interact., 17: 1212–1222.
  • Gielen, J., Ultzen, T., Bontems, S., Loots, W., van Schepen, A., Westerbroek, A., de Haan, P. and van Grinsven, M. 1996. Coat protein-mediated protection to cucumber mosaic virus infections in cultivated tomato. Euphytica, 88: 139–149.
  • Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., Fiore, A, Tavazza, M. and Giuliano, G. 2005. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol., 137: 199–208.
  • Giovannoni, J.J. 2007. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol., 10: 283–289.
  • Giovannoni, J.J., Noensie, E.N., Ruezinsky, D.M., Lu, X., Tracy, S.L., Ganal, M.W., Martin, G.B., Pillen, K., Alpert, K. and Tanksley, S.D. 1995. Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol. Gen. Genet., 248: 195–206.
  • Giovannoni, J.J., Wing, R.A., Ganal, M.W. and Tanksley, S.D. 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res., 19: 6553–6558.
  • Gisbert, C., Rus, A.M., Bolarín, M.C., López-Coronado, J.M., Arrillaga, I., Montesinos, C., Caro, M., Serrano, R. and Moreno, V. 2000. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol., 123: 393–402.
  • Goggin, F.L., Williamson, V.M. and Ullman, D.E. 2001. Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environ. Entomol., 30: 101–106.
  • Grandillo, S. and Tanksley, S.D. 1996. Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor. Appl. Genet., 92: 957–965.
  • Gray, J., Picton, S., Shabbeer, J., Schuch, W. and Grierson, D. 1992. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol. Biol., 19: 69–87.
  • Grube, R.C., Radwanski, E.R. and Jahn, M. 2000. Comparative genetics of disease resistance within the Solanaceae. Genetics, 155: 873–887.
  • Guyot, R., Cheng, X., Su, Y., Cheng, Z., Schlagenhauf, E., Keller, B. and Ling, H.-Q. 2005. Complex organization and evolution of the tomato pericentromeric region at the FER gene locus. Plant Physiol., 138: 1205–1215.
  • Haanstra, J.P.W., Laugé, R., Meijer-Dekens, F., Bonnema, G., de Wit, P.J.G.M. and Lindhout, P. 1999a. The Cf-ECP2 gene is linked to, but not part of, the Cf-4/Cf-9 cluster on the short arm of chromosome 1 in tomato. Mol. Gen. Genet., 262: 839–845.
  • Haanstra, J.P.W., Wye, C., Verbakel, H., Meijer-Dekens, F., van den Berg, P., Odinot, P., van Heusden, A.W., Tanksley, S., Lindhout, P. and Peleman, J. 1999b. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 populations. Theor. Appl. Genet., 99: 254–271.
  • Hackett, R.M., Ho, C.W., Lin, Z., Foote, H.C.C., Fray, R.G. and Grierson, D. 2000. Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model. Plant Physiol., 124: 1079–1085.
  • Hamilton, A.J., Brown, S., Yuanhai, H., Ishizuka, M., Lowe, A., Solis, A.-G.A. and Grierson, D. 1998. A transgene with repeated DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J., 15: 737–746.
  • Hamza, S. and Chupeau, Y. 1993. Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot., 44: 1837–1845.
  • Harper, L.C. and Cande, W.Z. 2000. Mapping a new frontier; development of integrated cytogenetic maps in plants. Funct. Integr. Genomics, 1: 89–98.
  • Hellwig, S., Drossard, J., Twyman, R.M. and Fischer, R. 2004. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol., 22: 1415–1422.
  • Hemming, M.N., Basuki, S., McGrath, D.J., Carroll B.J. and Jones, D.A. 2004. Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor. Appl. Genet., 109: 409–418.
  • Herickhoff, L., Stack, S. and Sherman, J. 1993. The relationship between synapsis, recombination nodules and chiasmata in tomato translocation heterozygotes. Heredity, 71: 373–385.
  • Heslop-Harrison, J.S. 2000. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell, 12: 617–635.
  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science, 227: 1229–1231.
  • Hou, Y.-M., Sanders, R., Ursin, V.M. and Gilbertson, R.L. 2000. Transgenic plants expressing geminivirus movement proteins: abnormal phenotypes and delayed infections by Tomato mottle virus in transgenic tomatoes expressing the Bean dwarf mosaic virus BV1 or BC1 proteins. Mol. Plant Microbe Interact., 13: 297–308.
  • Hsieh, T.-H., Lee, J.-T., Yang, P.-T., Chiu, L.-H., Charng, Y.-y., Wang, Y.-C. and Chan, M.-T. 2002. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol., 129: 1086–1094.
  • Hu, W. and Phillips, G.C. 2001. A combination of overgrowth-control antibiotics improves Agrobacterium tumefaciens-mediated transformation efficiency for cultivated tomato (L. esculentum). In Vitro Cell. Dev. Biol. Plant, 37: 12–18.
  • Huang, S., van der Vossen, E.A.G., Kuang, H., Vleeshouwers, V.G.A.A., Zhang, N., Borm, T.J.A., van Eck, H.J., Baker, B., Jacobsen, E. and Visser, R.G.F. 2005. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J., 42: 251–261.
  • International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature, 436: 793–800, and see http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=Abstract&list_uids=16100779&query_hl=9&itool=pubmed_docsum.
  • Isaacson, T., Ronen, G., Zamir, D. and Hirschberg, J. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell, 14: 333–342.
  • Izawa, T., Takahashi, Y. and Yano, M. 2003. Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol., 6: 113–120.
  • Jani, D., Meena, L.S., Rizwan-ul-Haq, Q.M., Singh, Y., Sharma, A.K. and Tyagi, A.K. 2002. Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res., 11: 447–454.
  • Ji, C. and Kuc, J. 1995. Purification and characterization of an acidic beta-1,3-glucanase from cucumber and its relationship to systemic disease resistance induced by Colletotrichum lagenarium and tobacco necrosis virus. Mol. Plant Microbe Interact., 8: 899–905.
  • Jiang, X.-L., He, Z.-M., Peng, Z.-Q., Qi, Y., Chen, Q. and Yu, S.-Y. 2007. Cholera toxin B protein in transgenic tomato fruits induces systemic immune response in mice. Transgenic Res., 16: 169–175.
  • Jones, B., Frasse, P., Olmos, E., Zegzouti, H., Li, Z.G., Latché, A., Pech, J.C. and Bouzayen, M. 2002. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J., 32: 603–613.
  • Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J. and Jones, J.D.G. 1994. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 266: 789–793.
  • Jongedijk, E., Tigelaar, H., van Roekel, J.S.C., Bres-Vloemans, S.A., Dekker, I., van den Elzen, P.J.M., Cornelissen, B.J.C. and Melchers, L.S. 1995. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 85: 173–180.
  • Kahlau, S., Aspinall, S., Gray, J.C. and Bock, R. 2006. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J. Mol. Evol., 63: 194–207.
  • Kahlau, S. and Bock, R. 2008. Plastid transcriptomics and translatomics of fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell, 20: 856–874.
  • Kaloshian, I. 2007. Virus-induced gene silencing in plant roots. Methods Mol. Biol. 354: 173–181.
  • Kaloshian, I., Yaghoobi, J., Liharska, T., Hontelez, J., Hanson, D., Hogan, P., Jesse, T., Wijbrandi, J., Simons, G., Vos, P., Zabel, P. and Williamson, V.M. 1998. Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol. Gen. Genet., 257: 376–385.
  • Kang, B.C., Yeam, I., Li, H., Perez, K.W. and Jahn, M.M. 2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J., 5: 526–536.
  • Kaniewski, W., Ilardi, V., Tomassoli, L., Mitsky, T., Layton, J. and Barba, M. 1999. Extreme resistance to cucumber mosaic virus (CMV) in transgenic tomato expressing one or two viral coat proteins. Mol. Breed., 5: 111–119.
  • Keddie, J.S., Carroll, B., Jones, J.D.G. and Gruissem, W. 1996. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J., 15: 4208–4217.
  • Kesarwani, M., Azam, M., Natarajan, K., Mehta, A., and Datta, A. 2000. Oxalate decarboxylase from Collybia velutipes: molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem., 275: 7230–7238.
  • Khush, G.S. and Rick, C.M. 1968. Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma, 23: 452–484.
  • Khush, G.S., Rick, C.M. and Robinson, R.W. 1964. Genetic activity in a heterochromatic chromosome segment of the tomato. Science, 145: 1432–1434.
  • Kitagawa, M., Moriyama, T., Ito, H., Ozasa, S., Adachi, A., Yasuda, J., Ookura, T., Inakuma, T., Kasumi, T., Ishiguro, Y. and Ito, Y. 2006. Reduction of allergenic proteins by the effect of ripening inhibitor (rin) mutant gene in an F1 hybrid of the rin mutant tomato. Biosci. Biotechnol. Biochem., 70: 1227–1233.
  • Klann, E.M., Hall, B. and Bennett, A.B. 1996. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol., 112: 1321–1330.
  • Knapp, S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot., 53: 2001–2022.
  • Knapp, S., Bohs, L., Nee, M. and Spooner, D.M. 2004. Solanaceae- a model for linking genomics with biodiversity. Comp. Funct. Genom., 5: 285–291.
  • Koc, N., Kayim, M., Yetisir, H., Sari, N., Unlu Yuceer, S. and Arici, S. 2007. The improvement of resistance to bacterial speck in transgenic tomato plants by Agrobacterium tumefaciens mediated transformation. Russian J. Plant Physiol., 54: 89–96.
  • Kochieva, E.Z., Ryzhova, N.N., Khrapalova, I.A. and Pukhal’skii, V.A. 2002. Genetic diversity and phylogenetic relationships of the genus Lycopersicon (Tourn). Mill. as revealed by inter-simple sequence repeat (ISSR) analysis. Genetika, 38: 1133–1142.
  • Kok, E.J., Franssen-van Hal, N.L.W., Winnubst, L.N.W., Kramer, E.H.M., Dijksma, W.T.P., Kuiper, H.A. and Keijer, J. 2006. Assessment of representational difference analysis (RDA) to construct informative cDNA microarrays for gene expression analysis of species with limited transcriptome information, using red and green tomatoes as a model. J. Plant Physiol., 164: 337–349.
  • Kolotilin, I., Koltai, H., Tadmor, Y., Bar-Or, C., Reuveni, M., Meir, A., Nahon, S., Shlomo, H., Chen, L. and Levin, I. 2007. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol., 145: 389–401.
  • Koo, D.H., Jo, S.H., Bang J.W., Park, H.M., Lee, S. and Choi, D. 2008. Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2. Genetics, 179: 1211–1220.
  • Krake, L.R., Rezaian, M.A. and Dry, I.B. 1998. Expression of the Tomato leaf curl geminivirus C4 gene produces virus-like symptoms in transgenic plants. Mol. Plant Microbe Interact., 11: 413–417.
  • Kramer, M.G. and Redenbaugh, K. 1994. Commercialization of a tomato with an antisense polygalacturonase gene: The FLAVR SAVRTM tomato story. Euphytica, 79: 293–297.
  • Ku, H.-M., Doganlar, S., Chen, K.-Y. and Tanksley, S.D. 1999. The genetic basis of pear-shaped tomato fruit. Theor. Appl. Genet., 9: 844–850.
  • Ku, H.-M., Liu, J., Doganlar, S. and Tanksley, S.D. 2001. Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome, 44: 470–475.
  • Ku, H.-M., Vision, T., Liu, J. and Tanksley, S.D. 2000. Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA, 97: 9121–9126.
  • Kunik, T., Salomon, R., Zamir, D., Navot, N., Zeidan, M., Michelson, I., Gafni, Y. and Czosnek, H. 1994. Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (NY), 12: 500–504.
  • Lai, L., Huang, T., Liu, Y., Zhang, J. and Song, Y. 2008. The expression of analgesic-antitumor peptide (AGAP) from Chinese Buthus martensii Karch in transgenic tobacco and tomato. Mol. Biol. Rep. DOI: 10.1007/s11033-008-9277-5.
  • Lanfermeijer, F.C., Dijkhuis, J., Sturre, M.J.G., de Haan, P. and Hille, J. 2003. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-22 from Lycopersicon esculentum. Plant Mol. Biol., 52: 1037–1049.
  • Langenkämper, G., Manac’h, N., Broin, M., Cuiné, S., Becuwe, N., Kuntz, M. and Rey, P. 2001. Accumulation of plastid lipid-associated proteins (fibrillin/CDSP34) upon oxidative stress, ageing and biotic stress in Solanaceae and in response to drought in other species. J. Exp. Bot., 52: 1545–1554.
  • Larkan, N.J., Smith, S.E. and Barker, S.J. 2007. Position of the reduced mycorrhizal colonization (Rmc) locus on the tomato genome map. Mycorrhiza, 17: 311–318.
  • Lawrence, C.J., Seigfried, T.E., Bass, H.W. and Anderson, L.K. 2006. Predicting chromosomal locations of genetically mapped loci in maize using the Morgan2McClintock translator. Genetics, 172: 2007–2009.
  • Le Gall, G., Colquhoun, I.J., Davis, A.L., Collins, G.J. and Verhoeyen, M.E. 2003. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food Chem., 51: 2447–2456.
  • Le, L.Q., Lorenz, Y., Scheurer, S., Fötisch, K., Enrique, E., Bartra, J., Biemelt, S., Vieths, S. and Sonnewald, U. 2006. Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3)expression. Plant Biotechnol. J., 4: 231–242.
  • Lee, J.-T., Prasad, V., Yang, P.-T., Wu, J.-F., Ho, T.-H.D., Charng, Y.-Y. and Chan, M.-T. 2003. Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ., 26: 1181–1190.
  • Lee, O.S., Lee, B., Park, N., Koo, J.C., Kim, Y.H., Prasad, D.T., Karigar, C., Chun, H.J., Jeong, B.R., Kim, D.H., Nam, J., Yun, J.-G., Kwak, S.-S., Cho, M.-J. and Yun, D.-J. 2003. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicon esculentum. Phytochemistry, 62: 1073–1079.
  • Lee, S., Jo, S.H. and Choi, D. 2007. Solanaceae genomics: Current status of tomato (Solanum lycopersicum) genome sequencing and its application to pepper (Capsicum spp.) genome research. Plant Biotechnol., 24: 11–16.
  • Lemaire-Chamley, M., Petit, J., Garcia, V., Just, D., Baldet, P., Germain, V., Fagard, M., Mouassite, M., Cheniclet, C. and Rothan, C. 2005. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol., 139: 750–769.
  • Levin, I., Gilboa, N., Yeselson, E., Shen, S. and Schaffer, A.A. 2000. Fgr, a major locus that modulate the fructose to glucose ratio in mature tomato fruits. Theor. Appl. Genet., 100: 256–262.
  • Lewinsohn, E., Schalechet, F., Wilkinson, J., Matsui, K., Tadmor, Y., Nam, K.-H., Amar, O., Lastochkin, E., Larkov, O., Ravid, U., Hiatt, W., Gepstein, S. and Pichersky, E. 2001. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol., 127: 1256–1265.
  • Li, C., Liu, G., Xu, C., Lee, G.I., Bauer, P., Ling, H.-Q., Ganal, M.W. and Howe, G.A. 2003. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell, 15: 1646–1661.
  • Li, C., Schilmiller, A.L., Liu, G., Lee, G.I., Jayanty, S., Sageman, C., Vrebalov, J., Giovannoni, J.J., Yagi, K., Kobayashi, Y. and Howe, G.A. 2005. Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell, 17: 971–986.
  • Li, L. and Steffens, J.C. 2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215: 239–247.
  • Li, X.Q., Wei, J.Z., Tan, A. and Aroian, R.V. 2007. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol. J., 5: 455–464.
  • Li, C., Zhao, J., Jiang, H., Geng, Y., Dai, Y., Fan, H., Zhang, D., Chen, J., Lu, F., Shi, J., Sun, S., Chen, J., Yang, X., Lu, C., Chen, M., Cheng, Z., Ling, H., Wang, Y., Xue, Y. and Li, C. 2008. A snapshot of the Chinese SOL Project. J. Genet. Genomics, 35: 387–390.
  • Lieberman, M., Segev, O., Gilboa, N., Lalazar, A. and Levin, I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor. Appl. Genet., 108: 1574–1581.
  • Lim, M.Y., Park, J.M., Kim, S.K., Hwang, H.Y., Kim, W.J., Lim, B.W., Won, D.C., Rhim, S.L., Kim, W.T. and Harn, C.H. 2007. Transgenic tomatoes constructed with functional genes. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 115.
  • Lin, W.-C., Lu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L., Green, S.K., Wang, J.-F. and Cheng, C.-P. 2004. Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res., 13: 567–581.
  • Lincoln, J.E., Richael, C., Overduin, B., Smith, K., Bostock, R. and Gilchrist, D.G. 2002. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc. Natl. Acad. Sci. USA, 99: 15217–15221.
  • Ling, H.-Q., Bauer, P., Bereczky, Z., Keller, B. and Ganal, M. 2002. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc. Natl. Acad. Sci. USA, 99: 13938–13943.
  • Ling, H.-Q., Koch, G., Baumlein, H. and Ganal, M.W. 1999. Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc. Natl. Acad. Sci. USA, 96: 7098–7103.
  • Ling, H.-Q., Kriseleit, D. and Ganal, M.W. 1998. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep., 17: 843–847.
  • Liu, J., Van Eck, J., Cong, B. and Tanksley, S.D. 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad. Sci. USA, 99: 13302–13306.
  • Liu, Y., Nakayama, N., Schiff, M., Litt, A., Irish, V.F. and Dinesh-Kumar, S.P. 2004. Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol. Biol., 54: 701–711.
  • Liu, Y., Schiff, M. and Dinesh-Kumar, S.P. 2002. Virus-induced gene silencing in tomato. Plant J., 31: 777–786.
  • Liu, Y.S., Gur, A., Ronen, G., Causse, M., Damidaux, R., Buret, M., Hirschberg, J. and Zamir, D. 2003. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J., 1: 195–207.
  • Livingstone, K.D., Lackney, V.K., Blauth, J.R., van Wijk, R. and Jahn, M.K. 1999. Genome mapping in Capsicum and the evolution of genome structure in the solanaceae. Genetics, 152: 1183–1202.
  • Ma, J.K.-C., Barros, E., Bock, R., Christou, P., Dale, P.J., Dix, P.J., Fischer, R., Irwin, J., Mahoney, R., Pezzotti, M., Schillberg, S., Sparrow, P., Stoger, E. and Twyman, R.M. 2005. Molecular farming for new drugs and vaccines. Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep., 6: 593–599.
  • Madishetty, K., Bauer, P., Sharada, M.S., Al-Hammadi, A.S.A. and Sharma, R. 2006. Genetic characterization of the polycotyledon locus in tomato. Theor. Appl. Genet., 113: 673–683.
  • Majoros, W.H., Pertea, M. and Salzberg, S.L. 2004. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics, 20: 2878–2879.
  • Mandaokar, A.D., Goyal, R.K., Shukla, A., Bisaria, S., Bhalla, R., Reddy, V.S., Chaurasia, A., Sharma, R.P., Altosaar, I. and Anand Kumar, P. 2000. Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hubner). Crop Protection, 19: 307–312.
  • Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J. and Seymour, G.B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet., 38: 948–952.
  • Mao, L., Begum, D., Chuang, H-w., Budiman, M.A., Szymkowiak, E.J., Irish, E.E. and Wing, R.A. 2000. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature, 406: 910–913.
  • Marín-Rodríguez, M.C., Orchard, J. and Seymour, G.B. 2002. Pectate lyases, cell wall degradation and fruit softening. J. Exp. Bot., 53: 2115–2119.
  • Martí, C., Orzáez, D., Ellul, P., Moreno, V., Carbonell, J. and Granell, A. 2007. Silencing of DELLA induces altered architecture and facultative parthenocarpy in tomato. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 107.
  • Marti, E., Gisbert, C., Bishop, G.J., Mark, S., Dixon, M.S. and Garcia-Martinez, J.L. 2006. Genetic and physiological characterization of tomato cv. Micro-Tom. J. Exp. Bot., 57: 2037–2047.
  • Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D. and Tanksley, S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262: 1432–1436.
  • Martin, G.B., Frary, A., Wu, T., Brommonschenkel, S., Chunwongse, J., Earle, E.D. and Tanksley, S.D. 1994. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell, 6: 1543–1552.
  • Martin, G.B., Ganal, M.W. and Tanksley, S.D. 1992. Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Mol. Gen. Genet., 233: 25–32.
  • Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J. and Wagner, D.R. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell, 15: 1689–1703.
  • Matsukura, C., Yamaguchi, I., Inamura, M., Ban, Y., Kobayashi, Y., Yin, Y., Saito, T., Kuwata, C., Imanishi, S. and Nishimura, S. 2007. Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom’. Plant Biotechnol., 24: 39–44.
  • Mattoo, A.K., Chung, S.H., Goyal, R.K., Fatima, T., Solomos, T., Srivastava, A. and Handa, A.K. 2007. Overaccumulation of higher polyamines in ripening transgenic tomato fruit revives metabolic memory, upregulates anabolism-related genes, and positively impacts nutritional quality. J. AOAC Int., 90: 1456–1464.
  • Mattoo, A.K., Sobolev, A.P., Neelam, A., Goyal, R.K., Handa, A.K. and Segre, A.L. 2006. Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol., 142: 1759–1770.
  • McCallum, C.M., Comai, L., Greene, E.A. and Henikoff, S. 2000. Targeted screening for induced mutations. Nat. Biotechnol., 18: 455–457.
  • McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R. and Fraley, R. 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep., 5: 81–84.
  • McGarvey, P.B., Hammond, J., Dienelt, M.M., Hooper, D.C., Fu, Z.F., Dietzschold, B., Koprowski, H. and Michaels, F.H. 1995. Expression of the rabies virus glycoprotein in transgenic tomatoes. Bio/Technology, 13: 1484–1487.
  • McGarvey, P.B., Montasser, M.S. and Kaper, J.M. 1994. Transgenic tomato plants expressing satellite RNA are tolerant to some strains of cucumber mosaic virus. J. Amer. Soc. Hort. Sci., 119: 642–647.
  • Mehta, R.A., Cassol, T., Li, N., Ali, N., Handa, A.K. and Mattoo, A.K. 2002. Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol., 20: 613–618.
  • Meissner, R., Chague, V., Zhu, Q., Emmanuel, E., Elkind, Y. and Levy, A.A. 2000. A high throughput system for transposon tagging and promoter trapping in tomato. Plant J., 22: 265–274.
  • Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., Elkind, Y. and Levy, A. 1997. A new model system for tomato genetics. Plant J., 12: 1465–1472.
  • Melchers, L.S., Ponstein, A.S., Sela-Buurlage, M.B., Vloemans, S.A. and Cornelissen, B.J.C. 1993. In vitro anti-microbial activities of defense proteins and biotechnology. In: Mechanisms of Plant Defense Responses. Eds: Fritig, B. and Legrand, M., Kluwer: Dordrecht, pp. 41–131.
  • Menda, N., Semel, Y., Peled, D., Eshed, Y. and Zamir, D. 2004. In silico screening of a saturated mutation library of tomato. Plant J., 38: 861–872.
  • Mesbah, L.A., Kneppers, T.J.A., Takken, F.L.W., Laurent, P., Hille, J. and Nijkamp, H.J.J. 1999. Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato Lycopersicon esculentum. Mol. Gen. Genet., 261: 50–57.
  • Milligan, S.B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. and Williamson, V.M. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell, 10: 1307–1319.
  • Minoia, S., Piron, F., Mosca, G., Petrozza, A., Cellini, F., Carriero, F. and Bendahmane, A. 2007. TILLING in tomato: a reverse genetic approach for tomato crop improvement. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 108.
  • Mitchell-Olds, T. and Clauss, M.J. 2002. Plant evolutionary genomics. Curr. Opin. Plant Biol., 5: 74–79.
  • Mitsuhara, I., Nakajima, Y., Natori, S., Mitsuoka, T. and Ohashi, Y. 2001. In vitro growth inhibition of human intestinal bacteria by sarcotoxin IA, an insect bactericidal peptide. Biotechnol. Lett., 23: 569–573.
  • Moco, S., Bino, R.J., Vorst, O., Verhoeven, H.A., de Groot, J., van Beek, T.A., Vervoort, J. and de Vos, C.H.R. 2006. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol., 141: 1205–1218.
  • Montgomery, J., Goldman, S., Deikman, J., Margossian, L. and Fischer, R.L. 1993a. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. USA, 90: 5939–5943.
  • Montgomery, J., Pollard, V., Deikman, J. and Fischer, R.L. 1993b. Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell, 5: 1049–1062.
  • Moore, G., Abbo, S., Cheung, W., Foote, T., Gale, M., Koebner, R., Leitch, A., Leitch, I., Money, T., Stancombe, P., Yano, M. and Flavell, R. 1993. Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics, 15: 472–482.
  • Moore, S., Payton, P., Wright, M., Tanksley, S. and Giovannoni, J. 2005. Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J. Exp. Bot., 56: 2885–2895.
  • Moore, S., Vrebalov, J., Payton, P. and Giovannoni, J. 2002. Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot., 53: 2023–2030.
  • Mor, T.S., Sternfeld, M., Soreq, H., Arntzen, C.J. and Mason, H.S. 2001. Expression of recombinant human acetylcholinesterase in transgenic tomato plants. Biotechnol. Bioeng., 75: 259–266.
  • Motoyoshi, F., Ohmori, T. and Murata, M. 1996. Molecular characterization of heterochromatic regions around the Tm-2 locus in chromosome 9 of tomato. Symp. Soc. Exp. Biol., 50: 65–70.
  • Mueller, L.A., Mills, A.A., Skwarecki, B., Buels, R.M., Menda, N. and Tanksley, S.D. 2008. The SGN comparative map viewer. Bioinformatics, 24: 422–423.
  • Mueller, L.A., Solow, T.H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C., Wright, M.H., Ahrens, R., Wang, Y., Herbst, E.V., Keyder, E.R., Menda, N., Zamir, D. and Tanksley, S.D. 2005a. The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol., 138: 1310–1317.
  • Mueller, L.A., Tanskley, S.D., Giovannoni, J.J., van Eck, J., Stack, S., Choi, D., Kim, B.D., Chen, M., Cheng, Z., Li, C., Ling, H.-Q., Xue, Y., Seymour, G., Bishop, G., Bryan, G., Sharma, R., Khurana, J., Tyagi, A., Chattopadhyay, D., Singh, N.K., Stiekema, W., Lindhout, P., Jesse, T., Lankhorst, R.K., Bouzayen, M., Shibata, D., Tabata, S., Granell, A., Botella, M.A., Giuliano, G., Frusciante, L., Causse, M. and Zamir, D. 2005b. The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genom., 6: 153–158.
  • Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, D., Bradley, P., Bork, P., Bucher, P., Cerutti, L., Copley, R., Courcelle, E., Das, U., Durbin, R., Fleischmann, W. Gough, J., Haft, D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lonsdale, D., Lopez, R., Letunic, I., Madera, M., Maslen, J., McDowall, J., Mitchell, A., Nikolskaya, A.N., Orchard, S., Pagni, M., Ponting, C.P., Quevillon, E., Selengut, J., Sigrist, C.J.A., Silventoinen, V., Studholme, D.J., Vaughan, R. and Wu, C.H. 2005. InterPro, progress and status in 2005. Nucleic Acids Res., 33: D201–D205.
  • Mustilli, A.C., Fenzi, F., Ciliento, R., Alfano, F. and Bowler, C. 1999. Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell, 11: 145–157.
  • Mysore, K.S., Crasta, O.R., Tuori, R.P., Folkerts, O., Swirsky, P.B. and Martin, G.B. 2002. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomanas syringae pv. tomato. Plant J., 32: 299–315.
  • Mysore, K.S., D’Ascenzo, M.D., He, X. and Martin, G.B. 2003. Overexpression of the disease resistance gene Pto in tomato induces gene expression changes similar to immune responses in human and fruit fly. Plant Physiol., 132: 1901–1912.
  • Nadeau, J.H. and Sankoff, D. 1998. Counting on comparative maps. Trends Genet., 14: 495–501.
  • Nakano, M., Nobuta, K., Vemaraju, K., Tej, S.S., Skogen, J.W. and Meyers, B.C. 2006. Plant MPSS databases: signature-based transcriptional resources for analyses of mRNA and small RNA. Nucleic Acids Res., 34: D731–D735.
  • Nelson, R.S., McCormick, S., Delannay, X., Dubé, P., Layton, J., Anderson, E.J., Kaniewska, M., Proksch, R.K., Horsch, R.B., Rogers, S.G., Fraley, R.T. and Beachy, R.N. 1988. Virus tolerance, plant performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Bio/Technology, 6: 403–409.
  • Niggeweg, R., Michael, A.J. and Martin, C. 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol., 22: 746–754.
  • Nombela, G., Williamson, V.M. and Muñiz, M. 2003. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant Microbe Interact., 16: 645–649.
  • Oeller, P.W., Lu, M.W., Taylor, L.P., Pike, D.A. and Theologis, A. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 254: 437–439.
  • Oh, K.-C., Hardeman, K., Ivanchenko, M.G., Ellard-Ivey, M., Nebenführ, A., White, T.J. and Lomax, T.L. 2002. Fine mapping in tomato using microsynteny with the Arabidopsis genome: the Diageotropica (Dgt) locus. Genome Biol., 3: research1–0049.11
  • Oh, K.-C., Ivanchenko, M.G., White, T.J. and Lomax, T.L. 2006. The diageotropica gene of tomato encodes a cyclophilin: a novel player in auxin signaling. Planta, 224: 133–144.
  • Ohyama, A., Ito, H., Sato, T., Nishimura, S., Imai, T. and Hirai, M. 1995. Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit. Plant Cell Physiol., 36: 369–376.
  • Oldroyd, G.E.D. and Staskawicz, B.J. 1998. Genetically engineered broad-spectrum disease resistance in tomato. Proc. Natl. Acad. Sci. USA, 95: 10300–10305.
  • Olmstead, R.G., Sweere, J.A., Spangler, R.E., Bohs, L. and Palmer, J.D. 1999. Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Solanaceae IV. (Eds.: Nee, M., Symon, D.E., Lester, R.N. and Jessop, J.P.), London: Royal Botanic Gardens, Kew, pp. 111–117.
  • Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S., Zamir, D. and Fluhr, R. 1997. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell, 9: 521–532.
  • Otoni, W.C., Picoli, E.A.T., Costa, M.G.C., Nogueira, F.T.S. and Zerbini, F.M. 2003. Transgenic Tomato. In: Plant Genetic Engineering. (Eds.: Singh, R.P. and Jaiwal, P.K.), Houston: Sci-Tech. Pub. Co., Vol. 5, pp. 41–131.
  • Palmer, L.E., Rabinowicz, P.D., O’Shaughnessy, A.L., BaLija, V.S., Nascimento, L.U., Dike, S., de la Bastide, M., Martienssen, R.A. and McCombie, W.R. 2003. Maize genome sequencing by methylation filtration. Science, 302: 2115–2117.
  • Pan, Q., Liu, Y.S., Budai-Hadrian, O., Sela, M., Carmel-Goren, L., Zamir, D. and Fluhr, R. 2000. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics, 155: 309–322.
  • Pandey, A. and Mann, M. 2000. Proteomics to study genes and genomes. Nature, 405: 837–846.
  • Park, E.-J., Jeknic, Z., Pino, M.T., Murata, N. and Chen, T.H. 2007. Glycinebetaine accumulation is more effective in chloroplasts than in the cytosol for protecting transgenic tomato plants against abiotic stress. Plant Cell Environ., 30: 994–1005.
  • Park, E.-J., Jeknic, Z., Sakamoto, A., DeNoma, J., Yuwansiri, R., Murata, N. and Chen, T.H.H. 2004. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J., 40: 474–487.
  • Park, S.H., Morris, J.L., Park, J.E., Hirschi, K.D. and Smith, R.H. 2003. Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J. Plant Physiol., 160: 1253–1257.
  • Park, Y.H., West, M.A. and St Clair, D.A. 2004. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome, 47: 510–518.
  • Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E. and Tanksley, S.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335: 721–726.
  • Pedley, K.F. and Martin, G.B. 2003. Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu. Rev. Phytopathol., 41: 215–243.
  • Pertuze, R.A., Ji, Y. and Chetelat, R.T. 2002. Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome, 45: 1003–1012.
  • Peters, S.A., van Haarst, J.C., Jesse, T.P., Woltinge, D., Jansen, K., Hesselink, T., van Staveren, M.J., Abma-Henkens, M.H.C. and Klein-Lankhorst, R.M. 2006. TOPAAS, a tomato and potato assembly assistance system for selection and finishing of bacterial artificial chromosomes. Plant Physiol., 140: 805–817.
  • Peterson, D.G., Lapitan, N.L.V. and Stack, S.M. 1999. Localization of single- and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics, 152: 427–439.
  • Peterson, D.G., Price, H.J., Johnston, J.S. and Stack, S.M. 1996. DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome, 39: 77–82.
  • Peterson, D.G., Schulze, S.R., Sciara, E.B., Lee, S.A., Bowers, J.E., Nagel, A., Jiang, N., Tibbitts, D.C., Wessler, S.R. and Paterson, A.H. 2002. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res., 12: 795–807.
  • Picton, S., Barton, S.L., Bouzayen, M., Hamilton, A.J. and Grierson, D. 1993. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J., 3: 469–481.
  • Plumb, G.W., Garcia-Cornesa, M.T., Kroon, P.A., Rhodes, M., Ridley, S. and Williamson, G. 1999. Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J. Sci. Food Agri., 79: 390–392.
  • Pnueli, L., Carmel-Goren, L., Hareven, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D. and Lifschitz, E. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 125: 1979–1989.
  • Powell, A.L., van Kan, J., ten Have, A., Visser, J., Greve, L.C., Bennett, A.B. and Labavitch, J.M. 2000. Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol. Plant Microbe Interact., 13: 942–950.
  • Praveen, S., Mishra, A.K. and Dasgupta, A. 2005. Antisense suppression of replicase gene expression recovers tomato plants from leaf curl virus infection. Plant Sci., 168: 1011–1014.
  • Provvidenti, R. and Gonsalves, D. 1995. Inheritance of resistance to cucumber mosaic virus in a transgenic tomato line expressing the coat protein gene of the white leaf strain. J. Hered., 86: 85–88.
  • Pruitt, K.D., Tatusova, T. and Maglott, D.R. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res., 35: D61–D65.
  • Quackenbush, J., Liang, F., Holt, I., Pertea, G. and Upton, J. 2000. The TIGR gene indices: reconstruction and representation of expressed gene sequences. Nucleic Acids Res., 28: 141–145.
  • Rabinowicz, P.D., Citek, R., Budiman, M.A., Nunberg, A., Bedell, J.A., Lakey, N., O’Shaughnessy, A.L., Nascimento, L.U., McCombie, W.R., and Martienssen, R.A. 2005. Differential methylation of genes and repeats in land plants. Genome Res., 15: 1431–1440.
  • Radi, A., Dina, P. and Guy, A. 2006. Expression of sarcotoxin IA gene via a root-specific tob promoter enhanced host resistance against parasitic weeds in tomato plants. Plant Cell Rep., 25: 297–303.
  • Raj, S.K., Singh, R., Pandey, S.K. and Singh, B.P. 2005. Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing Tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr. Sci., 88: 1674–1679.
  • Ratcliff, F., Martin-Hernandez, A.M. and Baulcombe, D.C. 2001. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J., 25: 237–245.
  • Reed, A.J., Magin, K.M., Anderson, J.S., Austin, G.D., Rangwala, T., Linde, D.C., Love, J.N., Rogers, S.G. and Fuchs, R.L. 1995. Delayed ripening tomato plants expressing the enzyme 1-aminocyclopropane-1-carboxylic acid deaminase. 1. Molecular characterization, enzyme expression, and fruit ripening traits. J. Agric. Food Chem., 43: 1954–1962.
  • Rensink, W.A., Iobst, S., Hart, A., Stegalkina, S., Liu, J. and Buell, C.R. 2005b. Gene expression profiling of potato responses to cold, heat, and salt stress. Funct. Integr. Genomics, 5: 201–207.
  • Rensink, W.A., Lee, Y., Liu, J., Iobst, S., Ouyang, S. and Buell, C.R. 2005a. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics, 6: 124.
  • Rick, C.M. 1959. Non-random gene distribution among tomato chromosomes. Genetics, 45: 1515–1519.
  • Rick, C.M. and Barton, D.W. 1954. Cytological and genetical identification of the primary trisomics of the tomato. Genetics, 39: 640–666.
  • Rick, C.M. and Khush, G.S. 1961. X-ray-induced deficiencies of chromosome 11 in the tomato. Genetics, 46: 1389–1393.
  • Rick, C.M. and Yoder, J.I. 1988. Classical and molecular genetics of tomato: highlights and perspectives. Ann. Rev. Genet., 22: 281–300.
  • Rivara, C. and Lanini, T. 2002. Herbicide tolerant tomato. In: Plant Biotechnology: Current and Potential Impact for Improving Pest Management in US Agriculture: An Analysis of 40 Case Studies. Eds.: Gianessi, L.P., Silvers, C.S., Sankula, S. and Carpenter, J.E., Washington, DC: National Center for Food and Agricultural Policy, p. 19.
  • Rivas, S. and Thomas, C.M. 2005. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu. Rev. Phytopathol., 43: 395–436.
  • Rocco, M., D’Ambrosio, C., Arena, S., Faurobert, M., Scaloni, A. and Marra, M. 2006. Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics, 6: 3781–3791.
  • Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D. and Fernie, A.R. 2003. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol., 133: 84–99.
  • Römer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W. and Bramley, P.M. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol., 18: 666–669.
  • Ron, M. and Avni, A. 2004. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16: 1604–1615.
  • Ronen, G., Carmel-Goren, L., Zamir, D. and Hirschberg, J. 2000. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA, 97: 11102–11107.
  • Ronen, G., Cohen, M., Zamir, D. and Hirschberg, J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J., 17: 341–351.
  • Ronning, C.M., Stegalkina, S.S., Ascenzi, R.A., Bougri, O., Hart, A.L., Utterbach, T.R., Vanaken, S.E., Riedmuller, S.B., White, J.A., Cho, J., Pertea, G.M., Lee, Y., Karamycheva, S., Sultana, R., Tsai, J., Quackenbush, J., Griffiths, H.M., Restrepo, S., Smart, C.D., Fry, W.E., van der Hoevan, R., Tanksley, S., Zhang, P., Jin, H., Yamamoto, M.L., Baker, B.J. and Buell, C.R. 2003. Comparative analyses of potato expressed sequence tag libraries. Plant Physiol., 131: 419–429.
  • Roselius, K., Stephan, W. and Städler, T. 2005. The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics, 171: 753–763.
  • Ruf, S., Hermann, M., Berger, I.J., Carrer, H. and Bock, R. 2001 Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat. Biotechnol., 19: 870–875.
  • Saito, Y., Komari, T., Masuta, C., Hayashi, Y., Kumashiro, T. and Takanami, Y. 1992. Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA. Theor. Appl. Genet., 83: 679–683.
  • Salamov, A.A. and Solovyev, V.V. 2000. Ab initio gene finding in Drosophila genomic DNA. Genome Res., 10: 516–522.
  • Saldaña, S., Esquivel Guadarrama, F., Olivera Flores Tde, J., Arias, N., López, S., Arias, C., Ruiz-Medrano, R., Mason, H., Mor, T., Richter, L., Arntzen, C.J. and Gómez Lim, M.A. 2006. Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies. Viral Immunol., 19: 42–53.
  • Salse, J., Piégu, B., Cooke, R. and Delseny, M. 2002. Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res., 30: 2316–2328.
  • Sanders, P.R., Sammons, B., Kaniewski, W., Haley, L., Layton, J., LaVallee, B.J., Delannay, X. and Tumer, N.E. 1992. Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology, 82: 683–690.
  • Sanders, R.A. and Hiatt, W. 2005. Tomato transgene structure and silencing. Nat. Biotechnol., 23: 287–289.
  • Sandhu, J.S., Krasnyanski, S.F., Domier, L.L., Korban, S.S., Osadjan, M.D. and Buetow, D.E. 2000. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res., 9: 127–135.
  • Sanford, J.C. and Johnston, S.A. 1985. The concept of parasite-derived resistance: deriving resistance genes from the parasite’s own genome. J. Theor. Biol., 115: 395–405.
  • SanMiguel, P., Tikhonov, A., Jin, Y.K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., Springer, P.S., Edwards, K.J., Lee, M., Avramova, Z. and Bennetzen, J.L. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science, 274: 765–768.
  • Schaefer, S.C., Gasic, K., Cammue, B., Broekaert, W., van Damme, E.J.M., Peumans, W.J. and Korban, S.S. 2005. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. Planta, 222: 858–866.
  • Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., Pleban, T., Zamir, D. and Fernie, A.R. 2008. Mode of inheritance of primary metabolic traits in tomato. Plant Cell, 20: 509–523.
  • Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D. and Fernie, A.R. 2006. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotechnol., 24: 447–454.
  • Schauer, N., Zamir, D. and Fernie, A.R. 2005. Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. J. Exp. Bot., 56: 297–307.
  • Schijlen, E.G., de Vos, C.H., Martens, S., Jonker, H.H., Rosin, F.M., Molthoff, J.W., Tikunov, Y.M., Angenent, G.C., van Tunen, A.J. and Bovy, A.G. 2007. RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol., 144: 1520–1530.
  • Schillberg, S., Fischer, R. and Emans, N. 2003. ‘Molecular farming’ of antibodies in plants. Naturwissenschaften, 90: 145–155.
  • Schmitz, G., Tillmann, E., Carriero, F., Fiore, C., Cellini, F. and Theres, K. 2002. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc. Natl. Acad. Sci. USA, 99: 1064–1069.
  • Schornack, S., Ballvora, A., Gürlebeck, D., Peart, J., Ganal, M., Baker, B., Bonas, U. and Lahaye, T. 2004. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J., 37: 46–60.
  • Schumacher, K., Ganal, M. and Theres, K. 1995. Genetic and physical mapping of the lateral suppressor (ls) locus in tomato. Mol. Gen. Genet., 246: 761–766.
  • Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, G. and Theres, K. 1999. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl. Acad. Sci. USA, 96: 290–295.
  • Sévenier, R., van der Meer, I.M., Bino, R. and Koops, A.J. 2002. Increased production of nutriments by genetically engineered crops. J. Am. Coll. Nutr., 21: 199S–204S.
  • Seymour, G.B., Fray, R.G., Hill, P. and Tucker, G.A. 1993. Down-regulation of two non-homologous endogenous tomato genes with a single chimaeric sense gene construct. Plant Mol. Biol., 23: 1–9.
  • Sharma, A.K., Jani, D. and Tyagi, A.K. 2004. Transgenic plant as bioreactors. Indian J. Biotechnol., 3: 274–290.
  • Sharma, M.K., Jani, D., Thungapathra, M., Gautam, J.K., Meena, L.S., Singh, Y., Ghosh, A., Tyagi, A.K. and Sharma, A.K. 2008a. Expression of accessory colonization factor subunit A (ACFA) of Vibrio cholerae and ACFA fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). J. Biotech., 135: 22–27.
  • Sharma, M.K., Singh, N.K., Jani, D., Sisodia, R., Thungapathra, M., Gautam, J.K., Meena, L.S., Singh, Y., Ghosh, A., Tyagi, A.K. and Sharma, A.K. 2008b. Expression of toxin co-regulated pilus subunit A TCPA of Vibrio cholerae and its immunogenic epitopes fused to cholera toxin B subunit in transgenic tomato (Solanum lycopersicum). Plant Cell Rep., 27: 307–318.
  • Sherman, J.D. and Stack, S.M. 1995. Two-dimensional spreads of synaptonemal complexes from Solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics, 141: 683–708.
  • Simkin, A.J., Schwartz, S.H., Auldridge, M., Taylor, M.G. and Klee, H.J. 2004. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. Plant J., 40: 882–892.
  • Smith, C.J., Watson, C.F., Morris, P.C., Bird, C.R., Seymour, G.B., Gray, J.E., Arnold, C., Tucker, G.A., Schuch, W., Harding, S. and Grierson, D. 1990. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol., 14: 369–379.
  • Sobczak, M., Avrova, A., Jupowicz, J., Phillips, M.S., Ernst, K. and Kumar, A. 2005. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol. Plant Microbe Interact., 18: 158–168.
  • Soderlund, C., Longden, I. and Mott, R. 1997. FPC: a system for building contigs from restriction fingerprinted clones. Comput. Appl. Biosci., 13: 523–535.
  • Soltis, D.E. and Soltis, P.S. 2003. The role of phylogenetics in comparative genetics. Plant Physiol., 132: 1790–1800.
  • Spannagl, M., Noubibou, O., Haase, D., Yang, L., Gundlach, H., Hindemitt, T., Klee, K., Haberer, G., Schoof, H. and Mayer, K.F.X. 2007. MIPSPlantsDB- plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35: D834–D840.
  • Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Scott, N.S., Loveys, B. and Schuch, W. 1998. Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiol., 117: 1047–1058.
  • Sree Vidya, C.S., Manoharan, M., Ranjit Kumar, C.T., Savithri, H.S. and Lakshmi Sita, G. 2000. Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum var. Pusa Ruby) with coat-protein gene of Physalis mottle tymovirus. J. Plant Physiol., 156: 106–110.
  • Srinivasan, R., Chauhan, V.S., Jakir Hussain, A., Panigrahy, M., Reddiah, B., Negi, S., Sharma, S., SantiSree, P., Kharshiing, E., Tyagi, W. and Sharma, R. 2006. TILLING (Targeting Induced Local Lesions IN the Genome), a reverse genetics tool for high-throughput screening of tomato mutants. In: International Workshop on Tomato Genomics, Hyderabad, India, p. 29.
  • Stahl, W., Heinrich, U., Aust, O., Tronnier, H. and Sies, H. 2006. Lycopene-rich products and dietary photoprotection. Photochem. Photobiol. Sci., 5: 238–242.
  • Stephan, W. and Langley, C.H. 1998. DNA polymorphism in Lycopersicon and crossing-over per physical length. Genetics, 150: 1585–1593.
  • Stevens, M.R., Scott, S.J. and Gergerich, R.C. 1991. Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica, 59: 9–17.
  • Stoger, E., Sack, M., Perrin, Y., Vaquero, C., Torres, E., Twyman, R.M., Christou, P. and Fischer, R. 2002. Practical considerations for pharmaceutical antibody production in different crop systems. Mol. Breed., 9: 149–158.
  • Stotz, H.U., Powell, A.L.T., Damon, S.E., Greve, L.C., Bennett, A.B. and Labavitch, J.M. 1993. Molecular characterization of a polygalacturonase inhibitor from Pyrus communis L. cv Bartlett. Plant Physiol., 102: 133–138.
  • Sui, N., Li, M., Zhao, S.-J., Li, F., Liang, H. and Meng, Q.-W. 2007. Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 226: 1097–1108.
  • Suliman-Pollatschek, S., Kashkush, K., Shats, H., Hillel, J. and Lavi, U. 2002. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol. Biol. Lett., 7: 583–597.
  • Sun, H.-J., Uchii, S., Watanabe, S. and Ezira, H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol., 47: 426–431.
  • Szinay, D., Chang, S.B., Khrustaleva, L., Peters, S., Schijlen, E., Bai, Y., Stiekema, W.J., van Ham, R.C., de Jong, H. and Klein Lankhorst, R.M. 2008. High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J., 56: 627–637.
  • Tabaeizadeh, Z., Agharbaoui, Z., Harrak, H. and Poysa, V. 1999. Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep., 19: 197–202.
  • Tacket, C.O., Mason, H.S., Losonsky, G., Clements, J.D., Levine, M.M. and Arntzen, C.J. 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med., 4: 607–609.
  • Tacket, C.O., Mason, H.S., Losonsky, G., Estes, M.K., Levine, M.M. and Arntzen, C.J. 2000. Human immune responses to a novel norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis., 182: 302–305.
  • Takken, F.L.W., Schipper, D., Nijkamp, H.J.J. and Hille, J. 1998. Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J., 14: 401–411.
  • Tanksley, S.D. 2004. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell, 16: S181–S189.
  • Tanksley, S.D., Bernatzky, R., Lapitan, N.L. and Prince, J.P. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA, 85: 6419–6423.
  • Tanksley, S.D., Ganal, M.W. and Martin, G.B. 1995. Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet., 11: 63–68.
  • Tanksley, S.D., Ganal, M.W., Prince, J.P., de Vicente, M.C., Bonierbale, M.W., Broun, P., Fulton, T.M., Giovannoni, J.J., Grandillo, S., Martin, G.B., Messeguer, R., Miller, J.C., Miller, L., Paterson, A.H., Pineda, O., Röder, M.S., Wing, R.A., Wu, W. and Young, N.D. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics, 132: 1141–1160.
  • Tanksley, S.D. and Khush, G.S. 2003. Charles Madera Rick (1915–2002). In: Biographical Memoirs. Washington, D.C.: The National Academies Press, Vol. 84., pp. 1–15.
  • Tanksley, S.D. and McCouch, S.R. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277: 1063–1066.
  • Tanksley, S.D. and Rick, C.M. 1980. Isozymic gene linkage map of the tomato: applications in genetics and breeding. Theor. Appl. Genet., 58: 161–170.
  • Thabuis, A., Palloix, A., Pflieger, S., Daubéze, A.-M., Caranta, C. and Lefebvre, V. 2003. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor. Appl. Genet., 106: 1473–1485.
  • The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.
  • Thevissen, K., Terras, F.R.G. and Broekaert, W.F. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol., 65: 5451–5458.
  • Thompson, A.J., Tor, M., Barry, C.S., Vrebalov, J., Orfila, C., Jarvis, M.C., Giovannoni, J.J., Grierson, D. and Seymour, G.B. 1999. Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol., 120: 383–389.
  • Thorup, T.A., Tanyolac, B., Livingstone, K.D., Popovsky, S., Paran, I. and Jahn, M. 2000. Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. USA, 97: 11192–11197.
  • Tikunov, Y., Lommen, A., de Vos, C.H.R., Verhoeven, H.A., Bino, R.J., Hall, R.D. and Bovy, A.G. 2005. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol., 139: 1125–1137.
  • Todesco, S., Campagna, D., Levorin, F., D’Angelo, M., Schivaon, R., Valle, G. and Vezzi, A. 2008. PABS: An online platform to assist BAC-by-BAC sequencing projects. BioTechniques, 44: 60–64.
  • Tomassoli, L., Ilardi, V., Barba, M. and Kaniewski, W. 1999. Resistance of transgenic tomato to cucumber mosaic cucumovirus under field conditions. Mol. Breed., 5: 121–130.
  • Tör, M., Manning, K., King, G.J., Thompson, A.J., Jones, G.H., Seymour, G.B. and Armstrong, S.J. 2002. Genetic analysis and FISH mapping of the Colourless non-ripening locus of tomato. Theor. Appl. Genet., 104: 165–170.
  • Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A., Kopka, J., Sweetlove, L.J. and Fernie, A.R. 2005. Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta, 221: 891–903.
  • Urbanczyk-Wochniak, E. and Fernie, A.R. 2005. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J. Exp. Bot. 56: 309–321.
  • Urbanczyk-Wochniak, E., Usadel, B., Thimm, O., Nunes-Nesi, A., Carrari, F., Davy, M., Bläsing, O., Kowalczyk, M., Weicht, D., Polinceusz, A., Meyer, S., Stitt, M. and Fernie, A.R. 2006. Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol. Biol., 60: 773–792.
  • van Daelen, R.A., Gerbens, F., van Ruissen, F., Aarts, J., Hontelez, J. and Zabel, P. 1993. Long-range physical maps of two loci (Aps-1 and GP79) flanking the root-knot nematode resistance gene (Mi) near the centromere of tomato chromosome 6. Plant Mol. Biol., 23: 185–192.
  • van der Biezen, E.A., Brandwagt, B.F., van Leeuwen, W., Nijkamp, H.J. and Hille, J. 1996. Identification and isolation of the FEEBLY gene from tomato by transposon tagging. Mol. Gen. Genet., 251: 267–280.
  • Van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G. and Tanksley, S. 2002. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell, 14: 1441–1456.
  • van der Knaap, E., Sanyal, A., Jackson, S.A. and Tanksley, S.D. 2004. High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics, 168: 2127–2140.
  • van der Salm, T., Bosch, D., Honée, G., Feng, L., Munsterman, E., Bakker, P., Stiekema, W.J. and Visser, B. 1994. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy. Plant Mol. Biol., 26: 51–59.
  • Van Haaren, M.J. and Houck, C.M. 1993. A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol. Biol., 21: 625–640.
  • van Ooijen, J.W., Sandbrink, J.M., Vrielink, M., Verkerk, R., Zabel, P. and Lindhout, P. 1994. An RFLP linkage map of Lycopersicon peruvianum. Theor. Appl. Genet., 89: 1007–1013.
  • van Roekel, J.S.C., Damm, B., Melchers, L.S. and Hoekema, A. 1993. Factors influencing transformation frequency of tomato Lycopersicon esculentum. Plant Cell Rep., 12: 644–647.
  • Verhoeyen, M.E., Bovy, A., Collins, G., Muir, S., Robinson, S., de Vos, C.H.R. and Colliver, S. 2002. Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J. Exp. Bot., 53: 2099–2106.
  • Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W. and Giovannoni, J. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 296: 343–346.
  • Walmsley, A.M., Alvarez, M.L., Jin, Y., Kirk, D.D., Lee, S.M., Pinkhasov, J., Rigano, M.M., Arntzen, C.J. and Mason, H.S. 2003. Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Rep., 21: 1020–1026.
  • Wang, H., Hernould, M., Huang, Y., Chaabouni, S. and Bouzayen, M. 2007. Fine tuning of the expression of IAA9, a negative regulator of auxin response, is instrumental to the triggering of fruit set in the tomato. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 102.
  • Wang, T.-W., Zhang, C.-G., Wu, W., Nowack, L.M., Madey, E. and Thompson, J.E. 2005. Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol., 138: 1372–1382.
  • Wang, Y., Tang, X., Cheng, Z., Mueller, L., Giovannoni, J. and Tanksley, S.D. 2006. Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics, 172: 2529–2540.
  • Wang, Y., van der Hoeven, R.S., Nielsen, R., Mueller, L.A. and Tanksley, S.D. 2005. Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments. Theor. Appl. Genet., 112: 72–84.
  • Wasternack, C., Stenzel, I., Hause, B., Hause, G., Kutter, C., Maucher, H., Neumerkel, J., Feussner, I. and Miersch, O. 2006. The wound response in tomato – role of jasmonic acid. J. Plant Physiol., 163: 297–306.
  • Watanabe, S., Mizoguchi, T., Aoki, K., Kubo, Y., Mori, H., Imanishi, S., Yamazaki, Y., Shibata, D. and Ezura, H. 2007. Ethylmethanesulfonate EMS mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnol., 24: 33–38.
  • Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C. and Aroian, R.V. 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA, 100: 2760–2765.
  • White, S.E., Habera, L.F. and Wessler, S.R. 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA, 91: 11792–11796.
  • Whitelaw, C.A., Barbazuk, W.B., Pertea, G., Chan, A.P., Cheung, F., Lee, Y., Zheng, L., van Heeringen, S., Karamycheva, S., Bennetzen, J.L., SanMiguel, P., Lakey, N., Bedell, J., Yuan, Y., Budiman, M.A., Resnick, A., Van Aken, S., Utterback, T., Riedmuller, S., Williams, M., Feldblyum, T., Schubert, K., Beachy, R., Fraser, C.M. and Quackenbush, J. 2003. Enrichment of gene-coding sequences in maize by genome filtration. Science, 302: 2118–2120.
  • Whitham, S., McCormick, S. and Baker, B. 1996. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc. Natl. Acad. Sci. USA, 93: 8776–8781.
  • Wilkinson, J.Q., Lanahan, M.B., Yen, H.-C., Giovannoni, J.J. and Klee, H.J. 1995. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science, 270: 1807–1809.
  • Xiao, H., Jiang, N., Schaffner, E., Stockinger, E.J. and van der Knaap, E. 2008. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science, 319: 1527–1530.
  • Xing, T., Jordan, M., Penner, T., Malik, K., Stebbing, J.-A., He, D., McCallum, B. and Miki, B. 2002. Disease resistance analysis in tMEK2 transgenic plants. In: Plant, Animal and Microbe Genomes × Conference, Town and Country Convention Center, San Diego, CA., p. 761.
  • Xiong, A.-S., Yao, Q.-H., Peng, R.-H., Li, X., Han, P.-L. and Fan, H.-Q. 2005. Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep., 23: 639–646.
  • Xu, J. and Earle, E.D. 1996. High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosomes. Chromosoma, 104: 545–550.
  • Xu, P., Rogers, S.J. and Roossinck, M.J. 2004. Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc. Natl. Acad. Sci. USA, 101: 15805–15810.
  • Xu, Y., Phillips, I., Eannetta, N., Feinan, W., Van Eck, J. and Tanksley, S. 2007. A high-density tomato genetic map. In: The 4th Solanaceae Genome Workshop 2007, Jeju Island, Korea, p. 97.
  • Xue, B., Gonsalves, C., Provvidenti, R., Slightom, J.L., Fuchs, M. and Gonsalves, D. 1994. Development of transgenic tomato expressing a high level of resistance to cucumber mosaic virus strains of subgroups I and II. Plant Dis., 78: 1038–1041.
  • Yaghoobi, J., Yates, J.L. and Williamson, V.M. 2005. Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contig spanning the locus. Mol. Gen. Genomics, 274: 60–69.
  • Yang, T.J., Lee, S., Chang, S.-B., Yu, Y., de Jong, H. and Wing, R.A. 2005. In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma, 114: 103–117.
  • Yano, K., Aoki, K. and Shibata, D. 2007. Genomic databases for tomato. Plant Biotechnol., 24: 17–25.
  • Youm, J.W., Jeon, J.H., Kim, H., Kim, Y.H., Ko, K., Joung, H. and Kim, H. 2008. Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnol. Lett., 30: 1839–1845.
  • Yen, H.C., Shelton, B.A., Howard, L.R., Lee, S., Vrebalov, J. and Giovannoni, J.J. 1997. The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor. Appl. Genet., 95: 1069–1079.
  • Yoshida, K., Kaothien, P., Matsui, T., Kawaoka, A. and Shinmyo, A. 2003. Molecular biology and application of plant peroxidase genes. Appl. Microbiol. Biotechnol., 60: 665–670.
  • Young, N.D., Miller, J.C. and Tanksley, S.D. 1987. Rapid chromosomal assignment of multiple genomic clones in tomato using primary trisomics. Nucleic Acids Res., 15: 9339–9348.
  • Yuan, Y., SanMiguel, P.J. and Bennetzen, J.L. 2003. High-Cot sequence analysis of the maize genome. Plant J., 34: 249–255.
  • Zhang, H.B., Martin, G.B., Tanksley, S.D. and Wing, R.A. 1994. Map-based cloning in crop plants: tomato as a model system II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Mol. Gen. Genet., 244: 613–621.
  • Zhang, H.B. and Wing, R.A. 1997. Physical mapping of the rice genome with BACs. Plant Mol. Biol., 35: 115–127.
  • Zhang, H.-X. and Blumwald, E. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol., 19: 765–768.
  • Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J. and Thomashow, M.F. 2004. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J., 39: 905–919.
  • Zhong, X.-B., Bodeau, J., Fransz, P.F., Williamson, V.M., van Kammen, A., de Jong, J.H. and Zabel, P. 1999. FISH to meiotic pachytene chromosomes of tomato locates the root-knot nematode resistance gene Mi-1 and the acid phosphatase gene Aps-1 near the junction of euchromatin and pericentromeric heterochromatin of chromosome arms 6S and 6L, respectively. Theor. Appl. Genet., 98: 365–370.
  • Zhong, X.-B., Fransz, P.F., van Eden, J.W., Ramanna, M.S., van Kammen, A., Zabel, P. and de Jong, J.H. 1998. FISH studies reveal the molecular and chromosomal organization of individual telomere domains in tomato. Plant J., 13: 507–517.
  • Zrachya, A., Kumar, P.P., Ramakrishnan, U., Levy, Y., Loyter, A., Arazi, T., Lapidot, M. and Gafni, Y. 2007. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res., 16: 385–398.
  • Zygier, S., Chaim, A.B., Efrati, A., Kaluzky, G., Borovsky, Y. and Paran, I. 2005. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor. Appl. Genet., 111: 437–445.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.