580
Views
82
CrossRef citations to date
0
Altmetric
Review Article

Biotechnological production of biodiesel fuel using biocatalysed transesterification: A review

Pages 82-93 | Accepted 20 Jan 2009, Published online: 01 Jun 2009

References

  • Agarwal, A.K. 2007. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust Sci., 33:233–271.
  • Al-Zuhair, S., Hasan, M., and Ramachandran, K.B. 2003. Kinetic hydrolysis of palm oil using lipase. Process Biochem., 38:1155–1163.
  • Al-Zuhair, S., Jayaraman, K.V., Krishnan, S., and Chan, W.-H. 2006. The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochem. Eng. J., 30:212–217.
  • Al-Zuhair, S., Ling, F.W., and Jun, L.S. 2007. Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochem., 42:951–960.
  • Antolin, G., Tinaut, F.V., Briceno, Y., Castano, V., Perez, C., and Ramirez, A.I. 2002. Optimisation of biodiesel production by sunflower oil transesterification. Bioresour. Technol., 83:111–114.
  • Azam, M.M., Waris, A., and Nahar, N.M. 2005. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenerg., 29:293–302.
  • Ban, K., Kaieda, M., Matsumoto, T., Kondo, A., and Fukuda, H. 2001. Whole cell biocatalyst for biodiesel fuel production utilising Rhizopus oryzae cells immobilised within biomass support particles. Biochem. Eng. J., 8:39–43.
  • Ban, K., Hama, S., Nishizuka, K., Kaieda, M., Matsumoto, T., Kondo, A., Noda, H., and Fukuda, A. 2002. Repeated use of whole-cell biocatalysts immobilised within biomass support particles for biodiesel fuel production. J. Mol. Catal. B: Enzymatic., 17:157–165.
  • Banapurmath, N.R., Tewari, P.G., and Hosmath, R.S. 2008. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and Sesame oil methyl esters. Renew. Energ., 33:1982–1988.
  • Barnwal, B.K., and Sharma, M.P. 2005. Prospects of biodiesel production from vegetable oils in India. Renew. Sustain. Energ., 9:363–378.
  • Berchmans, H.J., and Hirata, S. 2008. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol., 99:1716–1721.
  • Canakci, M. 2007. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Technol., 98:183–190.
  • Chang, H.M., Liao, H.F., and Lee, C.C. 2005. Optimised synthesis of lipase-catalysed biodiesel by Novozym 435. J. Chem. Technol. Biotechnol., 80:307–312.
  • Chen, J.-W., and Wu, W.-T. 2003. Regeneration of immobilised Candida antarctica lipase for transesterification. J. Biosci. Bioeng., 95:466–469.
  • Christensen, M.W., Andersen, L., Husum, T.L., and Kirk, O. 2003. Industrial lipase immobilisation. Eur. J. Lipid Sci. Technol., 105:318–321.
  • Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., and Ishizaki, A. 2001. Biodiesel production from crude oil and evaluation of butanol extraction and fuel properties. Process Biochem. 37:65–71.
  • Demirbas, A. 2000. Conversion of biomass using glycerine to liquid fuel for blending gasoline as alternative engine fuel. Energy Convers. Manage., 41:1741–1748.
  • Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers. Manage., 44:2093–2109.
  • Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. J. Prog. Energy Combus. Scie., 31:486–487.
  • Demirbas, A. 2008. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manage., 49:125–130.
  • Dermirkol, S., Aksoy, H.A., Tuter, M., Ustun, G., and Sasmaz, D.A. 2006. Optimisation of enzymatic methanolysis of soybean oil by response surface methodology. J. Am. Oil Chem. Soc., 83:929–932.
  • Devanesan, M.G., Viruthagiri, T., and Sugumar, N. 2007. Transesterification of Jatropha oil using immobilised Pseudomonas fluorescens. Afr. J. Biotechnol., 6:2497–2501.
  • Dorado, M.P., Ballesteros, E., Almeida, J.A., Schellet, C., Lohrlein, H.P., and Krause, R. 2002. An alkali-catalysed transesterification process for high free fatty acids oils. Trans. ASAE., 45:525–529.
  • Du, W., Xu, Y., Liu, D., and Zeng, J. 2004. Comparative study on lipase-catalysed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mol. Catal. B: Enzym., 30:125–129.
  • Foglia, T.A., Nelson, L.A., Marmer, W.N., Knothe, G.H., Dunn, R.O., and Bagby, M.O. 1996. Improving the properties of vegetable oils and fats for use as biodiesel. J. Am. Oil Chem. Soc., 73:121–125.
  • Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M., Hackel, S. 1996. Jatropha curcas L. as a resource for the production of biofuel in Nicaragua. Bioresour. Technol., 58:77–82.
  • Freedman, B., Pryde, E.H., and Mounts, T.L. 1984. Variables affecting the yields of fatty esters from transesterified vegetable oils. JAOCS, 61:1638–1643.
  • Freedman, B., Butterfield, R.O., and Pryde, E.H. 1986. Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc., 63:1375–80.
  • Fukuda, H., Kondo, A., and Noda, H. 2001. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng., 92:405–416.
  • Fukuda, H., Yamaji, H., Kondo, A., Noda, H., and Hama, S. 2007. Enzymatic biodiesel fuel production using whole-cell biocatalysts immobilised within biomass support particles. J. Biotechnol., 131:23–31.
  • Fukuda, H., Hama, S., Tamalapudi, S., and Noda, H. 2008. Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol., 26:668–673.
  • Ghadge, S.V., and Raheman, H. 2005. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass. Bioenerg., 28:601–605.
  • Goodrum, J.W. 2002. Volatility and boiling points of biodiesel from vegetable oils and tallow. Biomass Bioenerg., 22:205–211.
  • Guan, G., Kusakabe, K., Sakurai, N., Moriyana, K. 2009.. Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether. Fuel, 88:81–86.
  • Ha, S.H., Lan, M.N., Lee, S.H., Hwang, S.M., and Koo, Y.M. 2007. Lipase catalysed biodiesel production from soybean oil in ionic liquids. Enzym. Microb. Technol., 41:480–483.
  • Hama, S., Yamanji, H., Kaieda, M., Oda, M., Kondo, A., and Fukuda, H. 2004. Effect of fatty acid membrane composition on whole cell bio-catalysis for biodiesel-fuel production. Biochem. Eng. J., 21:155–160.
  • Hama, S., Yamanji, H., Fukumizu, T., Numata, T., Tamalampudi, S., Kondo, A., Noda, H., and Fukuda, H. 2007. Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilised within biomass support particles. Biochem. Eng. J., 34:273–278.
  • Harding, K.G., Dennis, J.S., von Blottnitz, H.,and Harrison, S.T.L. 2007. A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. J. Cleaner Prod., 16:1368–1378.
  • Hass M.J. 2004. The interplay between feedstock quality and esterification technology in biodiesel production. Lipid Technol., 16:7–11.
  • Hernandez-Martin, E., and Otero, C. 2008. Different enzyme requirements for the synthesis of biodiesel: Novozyme® 435 and Lipozyme® TL IM. Bioresour. Technol., 99:277–286.
  • Hsu, A.-F., Jones, K.C., Marmer, W.N., and Foglia, T.A. 2001. Production of alkyl esters from tallow and grease using lipase immobilised in a phyllosilicate sol-gel matrix. J. Am. Oil Chem., 78:585–588.
  • Hsu, A.-F., Jones, K.C., Foglia, T.A., and Marmer, W.N. 2002. Immobilised lipase-catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnol. Appl. Biochem., 36:181–186.
  • Hsu, A.-F., Jones, K.C., Foglia, T.A., and Marmer, W.N. 2003. Optimisation of alkyl ester production from grease using a phyllosilicate sol-gel immobilised lipase. Biotechnol. Lett., 25:1713–1716.
  • Hsu, A.-F., Jones, K.C., Foglia, T.A., and Marmer, W.N. 2004a. Continuous production of ethyl esters of grease using an immobilised lipase. JAOCS, 81:749–752.
  • Hsu, A.-F., Jones, K.C., Foglia, T.A., and Marmer, W.N. 2004b. Transesterification activity of lipases immobilised in a phyllosilicate sol-gel matrix. Biotechnol. Lett., 26:917–921.
  • Iso, M., Chen, B., Eguchi, M., Kudo, T., and Shrestha, S. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilised lipase. J. Mol. Catal. B. Enzym., 16:53–58.
  • Jackson, M.A., and King, J.W. 1996. Methanolysis of seed oils in supercritical carbon dioxide. J. Am. Chem. Soc., 73:353–356.
  • Jannsen, A.E.M., Sjurnes, B.J., Vakurov, A.V., and Halling, P.J. 1999. Kinetics of lipase-catalysed esterification in organic media: correct model and solvent effects on parameters. Enzym. Microbiol. Technol., 24:463–470.
  • Kaieda, M., Samukawa, T., Matsumoto, T., Ban, M., Kondo, A., and Shimada, Y. 1999. Biodiesel fuel production from plant oil catalysed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J. Biosci. Bioeng., 88:627–631.
  • Kasudiana, D., and Saka, S. 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol., 91:289–295.
  • Kim, J., Jia, H., and Wang, P. 2006. Challenges in biocatalysis for enzyme-based biofuels cells. Biotechnol. Adv.. 24:296–308.
  • Kim, S.W., Lee, D.H., Lee, J.H., and Lim, L.S. 2007. Optimisation of biodiesel production using a mixture of immobilised Rhizopus oryzae and Candida rugosa lipases. J. Biotechnol.,. 131S:S122–S123.
  • Kinney, A.J., and Clemente, T.E. 2005. Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Process Technol., 86:1137–1147.
  • Kondo, A., and Fukuda, H. 2007. Production of biofuels from biomass by cell-surface engineered yeast strains. J. Biotechnol., 131:S25–S32.
  • Kondo, A., and Ueda, M. 2004. Yeast cell-surface display: applications of molecular display. Appl. Microb. Biotechnol., 64:28–40.
  • Li, L., Du, W., and Liu, D. 2007. Rhizopus oryzae IFO 4697 whole cell catalysed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochem., 42:1481–1485.
  • Li, L., Du, W., Liu, D., Wang, L., and Li, Z. 2006. Lipase-catalysed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J. Mol. Catal. B: Enzym., 43:58–62.
  • Li, W., Du, W., Liu, D., and Tao, Y. 2008. Study on factors influencing stability of whole cell during biodiesel production in solvent-free and tert-butanol system. Biochem. Eng. J., 41:111–115.
  • Lu, J., Nie, K., Xie, F., Wang, F., and Tan, T. 2007. Enzymatic synthesis of fatty acid methyl esters from lard with immobilised Candida sp. 99–125. Process Biochem., 42:1367–1370.
  • Ma, F., Clements, L.D., and Hanna, M.A. 1998.The effect of catalyst, free fatty acids and water on transesterification of beef tallow. Trans ASAE, 41:1261–1264.
  • Ma, F., and Hanna, M.A. 1999. Biodiesel production: a review. Bioresour. Technol., 70:1–15.
  • Mamoru, I.S.O., Baoxue, C., and Masashi, E. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilised lipase. J. Mol. Catal., 16:53–58.
  • Marchetti, J.M., Miguel, V.U., and Errazu, A.F. 2007. Possible methods for biodiesel production. Renew. Sustain. Energ., 11:1300–1311.
  • Mateo, C., Palomo, J.M., Fernandez-Lorente, G., Guisan J.M., and Fernandez-Lafuente R., 2007. Improvement of enzyme activity, stability and selectivity via immobilisation techniques. Enzym. Microb. Technol., 40:1451–1463.
  • Matsumoto, T., Takahashi, S., Kaieda, M., Ueda, M., Tanaka, A., Fakuda, H., and Kondo, A. 2001. Yeast whole-cell biocatalysts constructed by intracellular overproduction of Rhizopus oryzae lipase are applicable to biodiesel fuel production. Appl. Microbiol. Biotechnol., 57:4–11.
  • Matsumoto, T., Takahashi, S., Ueda, M., Tanaka, A., Fakuda, H., and Kondo, A. 2002. Preparation of high quality yeast whole cell biocatalysts by optimisation of intracellular production of recombinant Rhizopus oryzae lipase. J. Mol. Catal. B: Enzym., 17:143–149.
  • Meher, L.C., Sagar, D.V., and Naik, S.N. 2006. Technical aspects of biodiesel production by transesterification – a review. Renew. Sust. Energy Rev., 10:248–268.
  • Modi, M.K., Reddy, J.R.C., Rao, B.V.S.K., and Prasad, R.B.N. 2007. Lipase-catalysed conversion of vegetable oils into biodiesel using ethyl acetate. Bioresour. Technol., 98:1260–1264.
  • Mohamed, M.S., and Uwe, B. 2003. Improvement in lipase-catalysed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb. Technol., 33:97–103.
  • Nelson, L.A., Foglia, T.A., and Marmer, W.N. 1996. Lipase-catalysed production of biodiesel. J. Am. Oil Chem. Soc., 73:1191–1195.
  • Noureddini, H., Gao, X., and Philkana, R.S. 2005. Immobilised Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol., 96:769–777.
  • Oda, M., Kaieda, M., Hama, S., Yamaji, H., Kondo, A., and Izumoto, E. 2005. Facilitatory effect of immobilised lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem. Eng. J., 23:45–51.
  • Openshaw, K. 2000. A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenerg., 19:1–15.
  • Oznur, K., and Melek, T. 2002. Immobilised Candida antarctica lipase catalysed alcoholysis of cotton seed oil in a solvent free medium. Bioresour. Technol., 83:125–129.
  • Pramanik, K. 2003. Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Int. J. Renew. Energ., 28:239–248.
  • Ranganathan, S.V., Narasimhan, S.N., and Muthukumar, K. 2008. An overview of enzymatic production of biodiesel. Bioresour. Technol., 99:3975–3981.
  • Recep, A., Selim, C., and Huseyin, S.Y. 2000. The potential of using vegetable oil fuels as fuel for diesel engines. Int. J. Energy. Convers. Manage., 42:529–538.
  • Rivera, I., Mateos, J.C., and Sandoval, G. 2007. Efficient immobilised lipases for biodiesel synthesis from waste lipids. J. Biotechnol., 131S:S264–S265.
  • Rodrigues, R.C., Volpato, G., Ayub, M.A.Z., and Wada, K. 2008. Lipase-catalysed ethanolysis of soybean oil in a solvent-free system using central composite design and response surface methodology. J. Chem. Technol. Biotechnol., 83:849–854.
  • Royon, D., Daz, M., Ellenrieder, G., and Locatelli, S. 2007. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol., 98:648–653.
  • Salis, A., Pinna, M., Monduzzi, M., and Solinas, V. 2005. Biodiesel production from triolein and short chain alcohols through biocatalysis. J. Biotechnol., 119:291–299.
  • Salis, A., Pinna, M., Monduzzi, M. and Solinas, V. 2008. Comparison among immobilized lipases on macroporus polypropylene toward biodiesel synthesis. J. Mol. Cata., 54:19–26.
  • Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., Noda, H., and Fukuda, H. 2000. Preteatment of immobilised Candida antarctica lipase for biodiesel fuel production from plant oil. J. Bioresour. Bioeng., 90:180–183.
  • Sarin, R., Sharma, M., Sinharay, S., Malhotra, R.K. 2007. Jatropha-Palm biodiesel blends: an optimum mix for Asia. Fuel, 86:1365–1371.
  • Shah, S., Sharma, A., and Gupta, M.N. 2004. Biodiesel preparation by lipase-catalysed transesterification of Jatropha oil. Energ. Fuels, 18:154–159.
  • Shah, S., and Gupta, M.N. 2007. Lipase catalysed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem., 42:409–414.
  • Sharma, Y.C., Singh, B., and Upadhyay, S.N. 2008. Advancement in development and characterisation of biodiesel. Fuel, 87:2355–2373.
  • Shay, E.G. 1993. Diesel fuel from vegetable oil: status and opportunities. Biomass Bioenerg., 4:227–242.
  • Shieh, C.-J., Liao, H-F., and Lee, C.-C. 2003. Optimisation of lipase-catalysed biodiesel by response surface methodology. Bioresour. Technol., 88:103–106.
  • Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H., and Tominaga, Y. 1999. Conversion of vegetable oil to biodiesel using immobilised Candida antarctica lipase. J. Am. Oil Chem. Soc., 76:789–793.
  • Shimada, Y., Watanabe, Y., Sugihara, A., and Tominaga, Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction oil processing. J. Mol. Catal. B: Enzym., 17:133–142.
  • Soumanou, M.M., and Bornscheuer, U.T., 2003. Improvement in lipase-catalysed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb. Technol., 33:97–103.
  • Srivastava, A., and Prasad, R. 2000. Triglycerides-based diesel fuels. Renew. Energy Rev., 4:111–133.
  • Tamalampundi, S., Talukder, M.R., Hama, S., Numata, T., Kondo, A., and Fukuda, H. 2008. Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilised-whole cell and commercial lipases as a biocatalyst. Biochem. Eng. J., 39:185–189.
  • Tomasevic, A.V., and Marinkovic, S.S. 2003. Methanolysis of used oils. Fuel Process Technol., 81:1–6.
  • Tiwari, A.K., Kumar, A., and Raheman, H. 2007. Biodiesel production from Jatropha (Jatropha curcas) with high free fatty acids: an optimised process. Biomass Bioenerg., 31:569–575.
  • Ueda, M., Takahashi, S., Washida, M., Shiraga, S., and Tanaka, A. 2002. expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym., 17:113–124.
  • Velkovic, V.B., Lakicevic, S.H., Stamenkovic, O.S., Todorovic, Z.B., and Lazic, K.L. 2006. Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with content of free fatty acids. Fuel, 85:2671–2675.
  • Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., and Tominaga, Y. 2000. Continuous production of biodiesel fuel from vegetable oil using immobilised Candia antarctica lipase. J. Am. Oil Chem. Soc., 77:355–360.
  • Watanabe, Y., Shimada, Y., Sugihara, A., and Tominaga, Y. 2002. Conversion of degummed soybean oil to biodiesel fuel using immobilised Candia antarctica lipase. J. Mol. Catal.B: Enzymatic., 17:151–155.
  • Wang, Y., Wu, H., and Zong, M.H. 2008. Improvement of biodiesel production by Lipozyme TL IM-catalysed methanolysis using response surface methodology and acyl migration enhancer. Bioresour. Technol., 99:7232–7237.
  • Yong, W., and Shiyi, O. 2007. Preparation of biodiesel from waste cooking oil via two-step catalysed process. Energy Convers. Manage., 48:184–188.
  • Zeng, J., Du, W., and Liu, X.Y. 2006. Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalysed transesterification of vegetable oils for biodiesel production. J. Mol. Catal. B Enzym., 43:15–18.
  • Zhang, Y., Dub, M.A., McLean, D.D., and Kates, M. 2003a. Biodiesel production from waste cooking oil: process design and technological assessment. Bioresour. Technol., 89:1–16.
  • Zhang, Y., Dub, M.A., McLean, D.D., Kates, M. 2003b. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol., 90:229–240.
  • Zhu, H.-P., Wu, Z.-B., Chen, Y.-X., Zhang, P., Duan, S.-J., Liu, X.-H. and Mao, Z.-Q. 2006. Preparation of biodiesel catalysed by solid super base of calcium oxide and its refining process. Chin J. Catal., 27:391–396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.