1,657
Views
102
CrossRef citations to date
0
Altmetric
Review Article

Technological trends and market perspectives for production of microbial oils rich in omega-3

, , , , &
Pages 656-671 | Received 22 Dec 2015, Accepted 12 May 2016, Published online: 10 Aug 2016

References

  • Lee JH, O’Keefe JH, Lavie CJ, et al. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat Rev Cardiol. 2009;6:753–758.
  • Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015;449:94–107.
  • Salem N, Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr Opin Clin Nutr Metab Care. 2015;18:147–154.
  • Chauton MS, Reitan KI, Norsker NH, et al. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture. 2015;436:95–103.
  • International Fishmeal and Fish Oil Organization – IFFO. The Marine Ingredients Organisation: Fishmeal and Fish Oil Statistical Yearbook 2013, 2013. Available from: http://www.iffo.net/
  • Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL. 2013;20:D602.
  • Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408.
  • Shahidi F, Ambigaipalan P. Novel functional food ingredients from marine sources. Curr Opin Food Sci. 2015;2:123–129.
  • Dewapriya P, Kim SK. Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int. 2014;56:115–125.
  • Deckelbaum RJ, Torrejon C. The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr. 2012;142:587–591.
  • Dunbar BS, Bosire RV, Deckelbaum RJ. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective. Mol Cell Endocrinol. 2014;398:69–77.
  • Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60:502–507.
  • Patterson E, Wall R, Fitzgerald GF, et al. Health implications of high dietary omega-6 polyunsaturated fatty acids. J Nutr Metab. 2012;2012:539426.
  • Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008;233:674–688.
  • Barrow C, Shahidi F. Marine nutraceuticals and functional foods. New York: CRC Press; 2007.
  • Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol. 2013;75:645–662.
  • Gogus U, Smith C. N-3 omega fatty acids: a review of current knowledge. Int J Food Sci Technol. 2010;45:417–436.
  • Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008;1237:35–43.
  • Cottin SC, Sanders TA, Hall WL. The differential effects of EPA and DHA on cardiovascular risk factors. Proc Nutr Soc. 2011;70:215–231.
  • Marik PE, Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin Cardiol. 2009;32:365–372.
  • Masson S, Latini R, Tacconi M, et al. Incorporation and washout of n-3 polyunsaturated fatty acids after diet supplementation in clinical studies. J Cardiovasc Med (Hagerstown). 2007;8 Suppl:4–10.
  • Birch EE, Garfield S, Castañeda Y, et al. Dietary alpha-linolenic acid and health-related outcomes: a metabolic perspective. Early Hum Dev. 2007;83:279–284.
  • Sinclair AJ, Jayasooriya A. Nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils. In: Cohen Z, Ratledge C, editors. Single cell oils. Champaign (IL): AOCS Press; 2010. p. 351–368.
  • Daniel CR, McCullough ML, Patel RC, et al. Dietary intake of omega-6 and omega-3 fatty acids and risk of colorectal cancer in a prospective cohort of U.S. men and women. Cancer Epidemiol Biomarkers Prev. 2009;18:516–525.
  • Dimri M, Bommi PV, Sahasrabuddhe AA, et al. Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogenesis. 2010;31:489–495.
  • Gleissman H, Johnsen JI, Kogner P. Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Exp Cell Res. 2010;316:1365–1373.
  • Janakiram NB, Rao CV. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer. Curr Mol Med. 2009;9:565–579.
  • Kim HY. Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol. Chem Phys Lipids. 2008;153:34–46.
  • Lim GP, Calon F, Morihara T, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci. 2005;25:3032–3040.
  • Burdge GC, Calder PC. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Nutr Res Rev. 2006;19:26–52.
  • Burdge GC, Wootton SA. Conversion of a linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr (2002). 2002;88:411–420.
  • Burdge GC, Jones AE, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women Br J Nutr. 2002;88:355–363.
  • Byelashov OA, Sinclair AJ, Kaur G. Dietary sources, current intakes, and nutritional role of omega-3 docosapentaenoic acid. Lipid Technol. 2015;27:79–82.
  • Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta. 2000;1486:219–231.
  • FAO/WHO. Interim summary of conclusions and dietary recommendations on total fat & fatty acids. Jt. FAO/WHO Expert Consult Fats Fatty Acids Hum Nutr. 2008 Nov 10–14. Geneva: WHO HQ.
  • Kitessa SM, Abeywardena M, Wijesundera C, et al. DHA-containing oilseed: A timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients. 2014;6:2035–2058.
  • Shepherd J, Bachis E. Changing supply and demand for fish oil. Aquac Econ Manag. 2014;18:395–416.
  • Tacon AGJ, Metian M. Feed matters: satisfying the feed demand of aquaculture. Rev Fish Sci Aquac. 2015;23:1–10.
  • Nichols PD, Glencross B, Petrie JR, et al. Long-chain omega-3 oils-an update on sustainable sources. Nutrients. 2014;2:1063–1079.
  • Rust MB, Amos KH, Bagwill AL, et al. Environmental performance of marine net-pen aquaculture in the United States. Fisheries. 2014;39:143–524.
  • Bibus DM. Long-chain omega-3 from low-trophic-level fish provides value to farmed seafood. Lipid Technol. 2015;27:55–58.
  • Nakai R, Nakamura K, Jadoon WA, et al. Genus-specific quantitative PCR of thraustochytrid protists. Mar Ecol Prog Ser. 2013;486:1–12.
  • The World Bank, FISH TO 2030 Prospects for Fisheries and Aquaculture. 2013. Washington DC.
  • Grand View Research. Global fish oil market analysis and segment forecasts to 2020; 2014. p. 1–29. Available from: http://www.grandviewresearch.com
  • FAO. The State of World Fisheries and Aquaculture 2012. Rome; 2012.
  • Delarue J, Guriec N. Opportunities to enhance alternative sources of long-chain n-3 fatty acids within the diet. Proc Nutr Soc. 2014;73:376–384.
  • FAO, Fish oil – January 2013; 2013. Available from: http://www.fao.org/inaction/globefish/maket-reports/
  • FAO. The state of World Fisheries and Aquaculture 2014; 2014. Rome.
  • Grand View Research. Omega 3 market analysis and segment forecasts to 2020; 2014. p. 1–34. Available from: http://www.grandviewresearch.com
  • Martins DA, Custódio L, Barreira L, et al. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs. 2013;11:2259–2281.
  • Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol. 2014b;26:14–18.
  • Napier JA, Usher S, Haslam RP, et al. Transgenic plants as a sustainable, terrestrial source of fi sh oils. Eur J Lipid Sci Technol. 2015;117:1317–1324.
  • Ruiz-lopez N, Usher S, Sayanova OV, et al. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA. Appl Microbiol Biotechnol. 2015;99:143–154.
  • Donot F, Fontana A, Baccou JC, et al. Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy. 2014;68:135–150.
  • Monroig Ó, Navarro JC, Tocher DR. Long-chain polyunsaturated fatty acids in fish: recent advances on desaturases and elongases involved in their biosynthesis. Paper presented at Av. en Nutr. Acuícola XI – Memorias del Décimo Prim. Simp. Int. Nutr. Acuícola; 2011. p. 257–283.
  • Napier J. a, Sayanova O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur J Lipid Sci Technol. 2005;64:387–393.
  • Sayanova OV, Napier JA. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry. 2004;65:147–158.
  • Harris WS, Lemke SL, Hansen SN, et al. Metabolic engineering of omega3-very long chain polyunsaturated fatty acid production by an exclusively acyl-CoA-dependent pathway. J Biol Chem. 2008;283:805–811.
  • Cheng B, Wu G, Vrinten P, et al. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res. 2010;19:221–229.
  • Nichols PD, Petrie J, Singh S. Long-chain omega-3 oils–an update on sustainable sources. Nutrients. 2010;2:572–585.
  • Codabaccus MB, Bridle AR, Nichols PD, et al. Effect of feeding Atlantic salmon (Salmo salar L.) a diet enriched with stearidonic acid from parr to smolt on growth and n-3 long-chain PUFA biosynthesis. Br J Nutr. 2011;105:1772–1782.
  • Miller MR, Bridle AR, Nichols PD, et al. Increased elongase and desaturase gene expression with stearidonic acid enriched diet does not enhance long-chain (n-3) content of seawater atlantic salmon (Salmo salar L.). J Nutr. 2008:138:2179–2185.
  • Walker CG, Ph D, Jebb SA. Stearidonic acid as a supplemental source of u -3 polyunsaturated fatty acids to enhance status for improved human health. Nutrition. 2013;29:363–369.
  • Adarme-Vega TC, Thomas-Hall SR, Lim DKY, et al. Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Mar Drugs. 2014;12:3381–3398.
  • Ruiz-Lopez N, Haslam RP, Usher SL, et al. Reconstitution of EPA and DHA biosynthesis in Arabidopsis: iterative metabolic engineering for the synthesis of n-3 LC-PUFAs in transgenic plants. Metab Eng. 2013;17:30–41.
  • Hoffmann M, Wagner M, Abbadi A, et al. Metabolic engineering of omega3-very long chain polyunsaturated fatty acid production by an exclusively. J Biol Chem. 2008;283:22352–22362.
  • Qi B, Fraser T, Mugford S, et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol. 2004;22:739–745.
  • Sayanova O, Haslam RP, Venegas M, et al. Phytochemistry identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry. 2011;72:594–600.
  • Robert SS, Singh SP, Zhou X-R, et al. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil. Funct Plant Biol. 2005;32:219–479.
  • Petrie JR, Shrestha P, Belide S, et al. Metabolic engineering Camelina sativa with aof DHA. PLoS One. 2014;9:8.
  • Usher S, Haslam RP, Ruiz-lopez N, et al. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: making fi sh oil substitutes in plants. Metab Eng Commun. 2015;2:93–98.
  • Collins CT, Makrides M, Gibson RA, et al. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. Br J Nutr. 2011;105:1635–1643.
  • Barclay W, Weaver C, Metz J, et al. 2010. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C, editors. Single cell oils. Champaign (IL): AOCS Press. p. 75–96.
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:807–815.
  • Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009;34:1–5.
  • Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol. 2008;20:155–160.
  • Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005;40:3627–3652.
  • Huang C, Chen X, Xiong L, et al. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013;31:129–139.
  • Thevenieau F, Nicaud JM. Microorganisms as sources of oils. Oilseeds Fats Crop Lipids. 2013;20:D603.
  • Garay LA, Boundy-Mills KL, German JB. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem. 2014;62:2709–2727.
  • Christophe G, Kumar V, Nouaille R, et al. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Brazil Arch Biol Technol. 2012;55:29–46.
  • Liu J, Sun Z, Chen F. Heterotrophic production of algal oils. In: Pandey A, Lee D-J, Chisti Y, Soccol CR, editors. Biofuels from algae. Amsterdam, The Netherlands: Elsevier; 2014. p. 111–142.
  • GOED. Global Recommendations for EPA and DHA Intake; 2015.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol. 2015;42:81–92.
  • Hsieh CH, Wu WT. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol. 2009;100:3921–3926.
  • Araujo GS, Matos LJBL, Gonçalves LRB, et al. Bioprospecting for oil producing microalgal strains: Evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol. 2011;102:5248–5250.
  • Gouveia L, Marques AE, Da Silva TL, et al. Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol. 2009;36:821–826.
  • Abou-Shanab RAI, Hwang JH, Cho Y, et al. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy. 2011;88:3300–3306.
  • Couto RM, Simões PC, Reis A, et al. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci. 2010;10:158–164.
  • Gao C, Zhai Y, Ding Y, et al. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy. 2010;87:756–761.
  • Meesters PAEP, Huijberts GNM, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol. 1996;45:575–579.
  • Zhao X, Kong X, Hua Y, et al. Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol. 2008;110:405–412.
  • Li Y, Zhao Z, Kent, et al. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol. 2007;41:312–317.
  • Xue F, Miao J, Zhang X, et al. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol. 2008;99:5923–5927.
  • Zhu LY, Zong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol. 2008;99:7881–7885.
  • Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol. 2002;82:43–49.
  • Fakas S, Papanikolaou S, Batsos A, et al. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy. 2009;33:573–580.
  • Papanikolaou S, Komaitis M, Aggelis G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol. 2004;95:287–291.
  • Wang C, Chen L, Rakesh B, et al. Technologies for extracting lipids from oleaginous microorganisms for biodiesel production. Front Energy. 2012;6:266–274.
  • Nie ZK, Ji XJ, Shang JS, et al. Arachidonic acid-rich oil production by Mortierella alpina with different gas distributors. Bioprocess Biosyst Eng. 2013;37: 1127–1132.
  • Santala S, Efimova E, Kivinen V, et al. Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Fact. 2011;10:1.
  • Kalscheuer R, Stöveken T, Malkus U, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–928.
  • Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol. 2008;24:1703–1711.
  • Bacon J, Dover LG, Hatch KA, et al. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. Microbiology. 2007;153:1435–1444.
  • Alvarez HM, Souto MF, Viale A, et al. Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett. 2001;200:195–200.
  • Kurosawa K, Boccazzi P, de Almeida NM, et al. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol. 2010;147:212–218.
  • Voss I, Steinbüchel A. High cell density cultivation of Rhodococcus opacus for lipid production at a pilot-plant scale. Appl Microbiol Biotechnol. 2001;55:547–555.
  • Arabolaza A, Rodriguez E, Altabe S, et al. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol. 2008;74:2573–2582.
  • Li J, Liu R, Chang G, et al. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol. 2015;177:51–57.
  • Ren LJ, Li J, Hu YW, et al. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean J Chem Eng. 2013;30:787–789.
  • Patil KP, Gogate PR. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem Eng J. 2015;268:187–196.
  • Sun L, Ren L, Zhuang X, et al. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresour Technol. 2014;159:199–206.
  • Cohen Z, Ratledge C. 2005. Single cell oils. Champaign (IL): AOCS Press; 2010.
  • Chang G, Gao N, Tian G, et al. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol. 2013;142:400–406.
  • Ryu BG, Kim K, Kim J, et al. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour Technol. 2013;129:351–359.
  • Kim J, Yoo G, Lee H, et al. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv. 2013;31:862–876.
  • Ji XJ, Ren LJ, Huang H. Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Front Bioeng Biotechnol. 2015;3:158.
  • Armenta RE, Valentine MC. Single-cell oils as a source of omega-3 fatty acids: an overview of recent advances. JAOCS. 2013;90:167–182.
  • Winwood RJ. Recent developments in the commercial production. Oilseeds Fats Crop Lipids. 2013;20:1–5.
  • Ratledge C, Streekstra H, Cohen Z, et al. Downstream processing, extraction, and purification of single cell oils. In: Cohen Z, Ratledge C, editors. Single cell oils: microbial and algal oils. Urbana: AOCS Press; 2010. p. 179–197.
  • Chatzifragkou A, Fakas S, Galiotou-Panayotou M, et al. Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol. 2010;112:1048–1057.
  • Quilodrán B, Hinzpeter I, Quiroz A, et al. Evaluation of liquid residues from beer and potato processing for the production of docosahexaenoic acid (C22: 6n-3, DHA) by native thraustochytrid strains. World J Microbiol Biotechnol. 2009;25:2121–2128.
  • Zhu M, Yu LJ, Wu YX. An inexpensive medium for production of arachidonic acid by Mortierella alpina. J Ind Microbiol Biotechnol. 2003;30:75–79.
  • Soccol CR. Production of microbial biomass for biodiesel manufacture consists of extration of lipis by submerged culture from sugar cane derivatives. INPI - Natl. Inst. Ind. Prop. - BRAZIL 2004.
  • Fakas S, Papanikolaou S, Galiotou-Panayotou M, et al. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbiol. 2008;105:1062–1070.
  • Angerbauer C, Siebenhofer M, Mittelbach M, et al. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol. 2008;99:3051–3056.
  • Yousuf A, Sannino F, Addorisio V, et al. Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. J Agric Food Chem. 2010;58:8630–8635.
  • Xue F, Gao B, Zhu Y, et al. Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresour Technol. 2010;101:6092–6095.
  • Xue F, Zhang X, Luo H, et al. A new method for preparing raw material for biodiesel production. Process Biochem. 2006;41:1699–1702.
  • Papanikolaou S, Aggelis G. Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol. 2003;46:398–402.
  • Ethier S, Woisard K, Vaughan D, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. 2011;102:88–93.
  • Vamvakaki AN, Kandarakis I, Kaminarides S, et al. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci. 2010;10:348–360.
  • Pleissner D, Lam WC, Sun Z, et al. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol. 2013;137:139–146.
  • Huang C, Zong MH, Wu H, Liu QP., Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol. 2009;100:4535–4538.
  • Yu X, Zheng Y, Dorgan KM, et al. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol. 2011;102:6134–6140.
  • Economou CN, Aggelis G, Pavlou S, et al. Single cell oil production from rice hulls hydrolysate. Bioresour Technol. 2011;102:9737–9742.
  • Huang C, Chen X. f, Xiong L, et al. Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour Technol. 2012;110:711–714.
  • Huang C, Wu H, Li RF, Zong MH. Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. N Biotechnol. 2012;29:372–378.
  • Tsigie YA, Wang CY, Truong CT, et al. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol. 2011;102:9216–9222.
  • Peng XW, Chen HZ. Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol. 2007;57:239–242.
  • Leiva-Candia DE, Pinzi S, Redel-Macías MD, et al. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel. 2014;123:33–42.
  • Chi Z, Liu Y, Frear C, et al. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol. 2009;81:1141–1148.
  • Huang TY, Lu WC, Chu IM. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol. 2012;123:8–14.
  • Yokochi T, Honda D, Higashihara T, et al. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol. 1998;49:72–76.
  • Kimura K, Yamaoka M, Kamisaka Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods. 2004;56:331–338.
  • Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart J Nat Sci. 2010;44:436–445.
  • Gupta A, Wilkens S, Adcock JL, et al. Pollen baiting facilitates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production. J Ind Microbiol Biotechnol. 2013;40:1231–1240.
  • Miller N. Process design and modeling for the production of striacylglycerols (TAGs) in Rhodococcus opacus PD630. Massachusetts Institute of Technology (MIT); 2012.
  • Wang HX, Deng ZS, Zhou S, Zhang XY. Using potato starch wastewater to produce GLA with Cunninghamella echinulata. China Oil Fat. 2007;32:49–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.