459
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Genoproteomics-assisted improvement of Andrographis paniculata: toward a promising molecular and conventional breeding platform for autogamous plants affecting the pharmaceutical industry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 803-816 | Received 11 Feb 2016, Accepted 09 Aug 2016, Published online: 03 Jan 2017

References

  • Chen W, Feng L, Nie H, et al. Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore. Carcinogenesis. 2012;33:2190–2198.
  • Valdiani A, Kadir MA, Tan SG, et al. Nain-e Havandi (Andrographis paniculata) present yesterday, absent today: a plenary review on underutilized herb of Iran’s pharmaceutical plants. Mol Biol Rep. 2012;39:5409–5424.
  • Valdiani A, Talei D, Tan SG, et al. A classical genetic solution to enhance the biosynthesis of anticancer phytochemicals in Andrographis paniculata Nees. PLoS One. 2014;9:e87034.
  • Canter PC, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol. 2005;23:180–185.
  • Valdiani A, Kadir MA, Saad MS, et al. Intraspecific crossability in Andrographis paniculata Nees. A barrier against breeding of the species. Sci World J. 2012;2012:297545 [9 p.]. DOI:10.1100/2012/297545.
  • Lattoo SK, Dhar RS, Khan S, et al. Comparative analysis of genetic diversity using molecular and morphometric markers in Andrographis paniculata (Burm. f.) Nees. Genet Resour Crop Evol. 2008;55:33–43.
  • Lattoo SK, Khan S, Dhar AK, et al. Genetics and mechanism of induced male sterility in Andrographis paniculata (Burm. f.) Nees and its significance. Curr Sci. 2006;91:515–519.
  • Hudedamani UB, Yadav OP. Floral biology of kalmegh (Andrographis paniculata Nees.). Environ Ecol. 2013;31:76–79.
  • Sabu KK. Intraspecific variations in Andrographis paniculata Nees [Ph.D. thesis]. Thiruvananthapuram: Kerala University; 2002.
  • Chia SH. Reproductive System and Genetic Diversity of Hempedu Bumi (Andrographis paniculata) Germplasm in Peninsular Malaysia [M.Sc. thesis]. Selangor: Universiti Putra Malaysia; 2009.
  • Valdiani A. Crossability and genetic analyses of Andrographis paniculata Nees. populations using phenotypic and molecular markers [Ph.D. thesis]. Selangor: Universiti Putra Malaysia; 2012.
  • Kearns CA, Inouye DW. Techniques for pollination biologists. Niwot, Colorado: University Press of Colorado; 1993.
  • Sheffield CS, Smith RF, Kevan PG. Perfect syncarpy in apple (Malus × domestica “Summerland McIntosh”) and its implications for pollination, seed distribution and fruit production (Rosaceae: Maloideae). Ann Bot. 2005;95:583–591.
  • Koelling VA, Hamrick JL, Mauricio R. Genetic diversity and structure in two species of Leavenworthia with self-incompatible and self-compatible populations. Heredity. 2011;106:310–318.
  • Natarajan D, Britto SJ, Balaguru B, et al. Identification of conservation priority sites using remote sensing and GIS – a case study from Chitteri hills, Eastern Ghats, Tamil Nadu. Curr Sci. 2004;86: 1316–1323.
  • Valdiani A, Kadir MA, Saad MS, et al. Intraspecific hybridization: generator of genetic diversification and heterosis in Andrographis paniculata Nees. A bridge from extinction to survival. Gene. 2012;505:23–36.
  • Soltis PS, Soltis DE. The role of hybridization in plant speciation. Annu Rev Plant Biol. 2009;60:561–588.
  • Stevison L. Hybridization and gene flow. Nat Educ. 2008;1:111.
  • Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19:198–207.
  • Barrett SCH, Pannell JR. Metapopulation dynamics and mating-system evolution in plants. In: Hollingsworth PM, Bateman RM, Gornall RJ, editors. Molecular systematics and plant evolution. London: Taylors & Francis; 1999. p. 74–100.
  • Allard RW. Principles of plant breeding. New York: John Wiley & Sons Inc.; 1960.
  • Acquaah G. Principles of plant genetics and breeding. 2nd ed. Oxford: Wiley-Blackwell; 2012.
  • Padmesh P, Sabu KK, Seeni S, et al. The use of RAPD in assessing genetic variability in Andrographis paniculata Nees, a hepatoprotective drug. Curr Sci. 1999;76:833–835.
  • Saad MS, Chia SH, Jebril AA, et al. Genetic diversity in Hempedu Bumi (Andrographis paniculata) germplasm in Malaysia as revealed by RAPD polymorphism. Proceedings of Agriculture Congress; 2006 Dec 9–11; Malaysia; pp. 227–229.
  • Wijarat P, Keeratinijakal V, Toojinda T, et al. Genetic evaluation of Andrographis paniculata (Burm. f.) Nees. revealed by SSR, AFLP and RAPD markers. J Med Plant Res. 2012;6:2777–2788.
  • Valdiani A, Talei D, Kadir MA, et al. Morpho-molecular analysis as a prognostic model for repulsive feedback of the medicinal plant “Andrographis paniculata” to allogamy. Gene. 2014;542:156–167.
  • Chua KH, Li CG, Xue CCL, Pang ECK. Genetic diversity of Andrographis paniculata (Burm. f.) Nees of Brunei Darussalam determined by RAPD and RFLP analyses. The Harmonisation of Traditional and Modern Medicine – An International Symposium; 2005 Dec 12–14; Melbourne, Australia.
  • Maison T, Volkaert H, Boonprakob U, et al. Genetic diversity of Andrographis paniculata wall. ex Nees as revealed by morphological characters and molecular markers. Kasetsart J Nat Sci. 2005;39:388–399.
  • Sharma SN, Sinha RK, Sharma DK, et al. Assessment of intra-specific variability at morphological, molecular and biochemical level of Andrographis paniculata (Kalmegh). Curr Sci. 2009;96:402–408.
  • Sakuanrungsirikul S, Jetana A, Buddanoi P, et al. Intraspecific variability assessment of Andrographis paniculata collections using molecular markers. Acta Hort (ISHS). 2008;786:283–286.
  • Jebril AA, Saad MS, Mihdzar AK, Mohamed R, Stanslas J. Genetic variations of Andrographis paniculata germplasm as revealed by inter-simple sequence repeats (ISSR). Proceedings of Agriculture Congress on Innovation towards Modernized Agriculture; 2004 Oct 4–7; Malaysia; pp. 281–283.
  • Chen R, Wang X, Song Y, et al. Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP. China J Chinese Materia Medica. 2014;39:4559–4556.
  • Sabu KK, Padmesh P, Seeni S. Intraspecific variation in active principle content and isozymes of Andrographis paniculata Nees (Kalmegh): a traditional hepatoprotective medicinal herb of India. J Med Aroma Plant Sci. 2001;23:637–647.
  • Prathanturarug S, Soonthornchareonnon N, Chuakul W, et al. Variation in growth and diterpene lactones among field-cultivated Andrographis paniculata. J Nat Med. 2007;61:159–163.
  • Saad MS, Chia SH, Melaku A, et al. Genetic diversity of Hempedu Bumi (Andrographis paniculata) germplasm in peninsular Malaysia as revealed by morphological character’s variability. Proceedings of National Conference on Agrobiodiversity Conservation and Sustainable Utilization; 2006 Nov 6–8; Sarawak, Malaysia.
  • Valdiani A, Javanmard A, Talei D, et al. Microsatellite-based evidences of genetic bottlenecks in the cryptic species “Andrographis paniculata Nees”: a potential anticancer agent. Mol Biol Rep. 2013;40:1775–1784.
  • Laidò G, Mangini G, Taranto F, et al. Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and Pedigree Data. PLoS One. 2013;8:e67280.
  • Bhan MK, Dhar AK, Khan S, et al. Screening and optimization of Andrographis paniculata (Burm.f.) Nees for total andrographolide content, yield and its components. Sci Hortic. 2006;107:386–391.
  • Ding P, Shao Y, Li Q, et al. The complete chloroplast genome sequence of the medicinal plant Andrographis paniculata. Mitochondrial DNA. 2015;27:2347–2348.
  • McDade LA, Daniel TF, Kiel CA. Toward a comprehensive understanding of phylogenetic relationships among lineages of Acanthaceae S.L. (Lamiales). Am J Bot. 2008;95:1136–1152.
  • Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editor. Mammalian protein metabolism. New York: Academic Press; 1969. p. 21–23.
  • Emanuelli F, Lorenzi S, Grzeskowiak L, et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 2013;13:39.
  • Seetha K, Banerjee NS, Omkumar RV, et al. Cloning and characterization of partial promoter of HMGCoA reductase from Andrographis paniculata (Burm.f.) Wall. ex Nees: a tropical medicinal plant. J Plant Biochem Biotechnol. 2005;14:41–44.
  • Adams KL. Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered. 2007;98:136–141.
  • Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science. 2014;343:152–157.
  • Senan S, Kizhakayil D, Sasikumar B, et al. Methods for development of microsatellite markers: an overview. Not Sci Biol. 2014;6:1–13.
  • Singh R, Zaki NM, Ting NC, et al. Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Biologia. 2008;63:227–235.
  • Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7:574–578.
  • Shafiei-Astani B, Ong AHK, Valdiani A, et al. Molecular genetic variation and structure of Southeast Asian crocodile (Tomistoma schlegelii): comparative potentials of SSRs versus ISSRs. Gene 2015;571:107–116.
  • Zimisuhara B, Valdiani A, Shaharuddin NA, et al. Structure and principal components analyses reveal an intervarietal fusion in Malaysian mistletoe fig (Ficus deltoidea Jack) populations. Int J Mol Sci. 2015;16:14369–14394.
  • Bodele SK. Effect of gamma radiation on morphological and growth parameters of Andrographis paniculata (Burm. f) Wall. ex. Nees. Indian J Appl Res. 2013;3:55–57.
  • Desiderio F, Torp AM, Valè G, Rasmussen SK. Tilling in plant disease control: applications and perspectives. In: Collinge DB, editor. Biotechnology for plant disease control. New York and London: Wiley; 2016. 20 chapters. ISBN 978-1-118-86776-1.
  • Jankowicz-Cieslak J, Huynh OA, Brozynska M, et al. Induction, rapid fixation and retention of mutations in vegetatively propagated banana. Plant Biotechnol J. 2012;10:1056–1066.
  • Kharkwal MC. Impact of mutation breeding in global agriculture. Proceedings of the National Symposium in Plant Cytogenetics: New Approaches; 2012 Feb 23–24; Patiala, India; p. 31.
  • Ghosh BK, Datta AK, Das A, et al. Induced macromutation in Andrographis paniculata (Burm. f.) Nees. Int J Res Ayurveda Pharm. 2012;3:604–610.
  • Talei D, Saad MS, Khanif YM, et al. Effect of different surface sterilizes on seed germination and contamination of King of Bitters (Andrographis paniculata). Am-Eurasia J Agr Environ Sci. 2011;10:639–643.
  • Talei D, Kadir MA, Khanif YM, et al. Physico-protein based dormancy in medicinal plant of Andrographis paniculata. J Med Plant Res. 2012;6:2170–2177.
  • Talei D, Valdiani A, Abdullah MP, et al. A rapid and effective method for dormancy breakage and germination of King of Bitters (Andrographis paniculata Nees.) seeds. Maydica. 2012;57:98–105.
  • Talei D, Khanif YM, Kadir MA, et al. Response of Andrographis paniculata seedlings to salinity stress beyond the salt tolerance threshold. Aust J Crop Sci. 2012;6:1059–1067.
  • Talei D, Kadir MA, Khanif YM, et al. Salinity effects on macro and micronutrients uptake in medicinal plant of Andrographis paniculata. Plant Omics. 2012;5:271–278.
  • Talei D, Kadir MA, Khanif YM, et al. Growth indices and salt tolerance threshold in medicinal plant of Andrographis paniculata Nees. J Med Plant Res. 2013;7:104–110.
  • Talei D, Valdiani A, Khanif YM, et al. Estimation of salt tolerance in Andrographis paniculata accessions using multivariate regression model. Euphytica. 2013;189:147–160.
  • Talei D, Valdiani A, Maziah M, et al. Analysis of the anticancer phytochemicals in Andrographis paniculata Nees. under salinity stress. Biomed Res Int. 2013;2013:319047 [11 p.]. DOI:10.1155/2013/319047.
  • Talei D, Valdiani A, Abdullah MP. An effective protein extraction method for two-dimensional electrophoresis in an anticancer herb (Andrographis paniculata Nees.). Biotechnol Appl Biochem. 2013;60:521–526.
  • Talei D, Valdiani A, Abdullah MP. Impact of protein diversification on morphometric behavior of Andrographis paniculata Nees. Plant Syst Evol. 2014;300:1003–1010.
  • Talei D, Valdiani A, Maziah M, et al. Salt-stress induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees. Biosci Biotech Biochem. 2015;79:51–58.
  • Talei D, Valdiani A, Rafii MY, et al. Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant Andrographis paniculata Nees. PLoS One. 2014;9:e112907.
  • Pramanik S, Raychaudhuri SS, Chakraborty S. Changes in esterase and superoxide dismutase isoenzymes during in vitro morphogenesis in Plantago ovate Forssk. Plant Cell Tissue Organ Cult. 1996;44:123–127.
  • Tanksley SD, Orton TJ. Isozymes in plant genetics and breeding. Amsterdam: Elsevier; 1983.
  • Shao Y, Gao J, Wu X, et al. Effect of salt treatment on growth, isoenzymes and metabolites of Andrographis paniculata (Burm. f.) Nees. Acta Physiol Plant. 2015;37:35.
  • Srivastava N, Akhila A. Biosynthesis of andrographolide in Andrographis paniculata. Phytochemistry. 2010;71:1298–1304.
  • Jha Z, Sharam SN, Sharma DK. Differential expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase of Andrographis paniculata in andrographolide accumulation. J Chem Pharm Res. 2011;3:499–504.
  • Saad SHM. Transcript level of an andographolide-biosynthesis gene (HMGR) of Andrographis paniculata subjected to salinity treatment. International Conference on Advances in Plant Biochemistry and Biotechnology (APBB 2014); Universiti Putra Malaysia; 2014 Dec 9–10; Selangor.
  • Misra RC, Garg A, Roy S, et al. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata. Plant Sci. 2015;240:50–64.
  • Shen Q, Li L, Jiang Y, et al. Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis. Biotechnol Lett. 2016;38:131–137.
  • Garg A, Agrawal L, Misra RC, et al. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genomics. 2015;16:659.
  • Sharma SN, Jha Z, Sinha RK, et al. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata. Physiol Plant. 2015;153:221–229.
  • Bowes BG. The fine structure of wall modifications and associated structures in callus tissue of Andrographis paniculata Nees. New Phytol. 1969;68:619–626.
  • Overton KH, Roberts FM. Biosynthesis of trans,trans- and cis,trans-farnesols by soluble enzymes from tissue cultures of Andrographis paniculata. Biochem J. 1974;144:585–592.
  • McMichael KD, Overton KH, Picken D. Transesterification of farnesol mediated by a lipase from Andrographis tissue cultures. Phytochemistry. 1977;16:1290–1292.
  • Butcher DN, Connolly JD. An investigation of factors which influence the production of abnormal terpenoids by callus culture of Andrographis paniculata Nees. J Exp Bot. 1971;22:314–322.
  • Jalal MAF, Overton KH, Rycroft DS. Formation of three new flavones by differentiating callus cultures of Andrographis paniculata. Phytochemistry. 1979;18:149–151.
  • Martin KP. Plant regeneration protocol of medicinally important Andrographis paniculata (Burm. f.) Wallich ex Nees via somatic embryogenesis. In Vitro Cell Dev Biol Plant. 2004;40:204–209.
  • Purkayastha J, Sugla T, Paul A, et al. Rapid in vitro multiplication and plant regeneration from nodal explants of Andrographis paniculata: a valuable medicinal plant. In Vitro Cell Dev Biol Plant. 2008;44:442–447.
  • Gudhate PP, Lokhande DP, Dhumal KN. Role of plant growth regulators for improving andrographolide in Andrographis paniculata. Farmacognos Mag. 2009;5:249–253.
  • Praveen N, Manohar SH, Naik PM, et al. Production of andrographolide from adventitious root cultures of Andrographis paniculata. Curr Sci. 2009;96:694–697.
  • Behera PR, Nayak P, Barik DP, et al. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm. f.) Wall. ex Nees: a multimedicinal herb. Appl Radiat Isot. 2010;68:2229–2236.
  • Vakil MMA, Mendhulkar VD. Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud. 2013;54:49.
  • Dellomonaco C, Fava F, Gonzalez R. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact. 2010;9:3.
  • Abiri R, Valdiani A, Maziah M, et al. A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol. 2016;18:21–42.
  • Nejat N, Valdiani A, Cahill D, et al. Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. Sci World J. 2015;2015:1–12.
  • McCouch S. Diversifying selection in plant breeding. PLoS Biol. 2004;2:e347.
  • Ricroch A, Harwood W, Svobodová Z, et al. Challenges facing European agriculture and possible biotechnological solutions. Crit Rev Biotechnol. 2015;1:1–9.
  • Nejat N, Rookes J, Mantri NL, et al. Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Crit Rev Biotechnol. 2016;22:1–9.
  • Ricroch AE, Hénard-Damaveb MC. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit Rev Biotechnol. 2015;1:1–16.
  • Valdiani A, Talei D, Maziah M, Abiri R, Atabaki N. Classical strategies and novel achievements in plant biochemistry: a case study on the medicinal plant “Andrographis paniculata”. International Conference on Advances in Plant Biochemistry and Biotechnology (APBB 2014); Universiti Putra Malaysia; 2014 Dec 9–10; Selangor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.