2,965
Views
82
CrossRef citations to date
0
Altmetric
Review Article

Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae

&
Pages 974-989 | Received 05 May 2016, Accepted 28 Nov 2016, Published online: 20 Apr 2017

References

  • Osbourn AE, Lanzotti V, editors. Plant-derived natural products: synthesis, function, and application. Heidelberg: Springer; 2009.
  • Dictionary of Natural Products. Supplement 1 (Dictionary of Natural Products, Vol 8). Chapman and Hall/CRC; 1994. ISBN: 9780412577802
  • Bution ML, Molina G, Abrahão MR, et al. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates. Crit Rev Biotechnol. 2015;35:313–325.
  • Flavor and fragrance industry BCC market research. 2014. [cited 2015 May 25]. Available from: http://www.bccresearch.com/market-research/chemicals/flavors-fragrances-global-markets-chm034c.html
  • Bloch K. Sterol molecule: structure, biosynthesis, and function. Steroids. 1992;57:378–383.
  • Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;295:517–524.
  • Takahashi S, Kuzuyama T, Shimizu T, et al. Fosmidomycin, a specific inhibitor of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett. 1998;39:7913–7916.
  • Liu L, Guan N, Li J, et al. Development of GRAS strains for nutraceutical production using systems and synthetic biology approaches: advances and prospects. Crit Rev Biotechnol. 2017;37:139–150.
  • Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science. 1996;274:563–567.
  • Tuite MF. Strategies for the genetic manipulation of Saccharomyces cerevisiae. Crit Rev Biotechnol. 1992;12:157–188.
  • Annaluru N, Muller H, Mitchell LA, et al. Total synthesis of a functional designer eukaryotic chromosome. Science. 2014;344:55–58.
  • Juhas M. On the road to synthetic life: the minimal cell and genome-scale engineering. Crit Rev Biotechnol. 2015;8551:1–8.
  • Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol. 2011;29:1074–1078.
  • Varman AM, Xiao Y, Leonard E, et al. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:45.
  • Bailey JE. Toward a science of metabolic engineering. Science. 1991;252:1668–1675.
  • Nielsen J. Metabolic engineering. Appl Microbiol Biotechnol. 2001;55:263–283.
  • Stephanopoulos GN, Aristidou AA, Nielsen J. Metabolic engineering: principles and methodologies. London (UK): Academic Press; 1998.
  • Pickens LB, Tang Y, Chooi Y-H. Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng. 2014;2:211–236.
  • Dudareva N, Cseke L, Blanc VM, et al. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell. 1996;8:1137–1148.
  • Rico J, Pardo E, Orejas M. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol. 2010;76:6449–6454.
  • Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70:1621–1637.
  • Gong HY, Zeng Y, Chen XY. Diterpene synthases and their responsible cyclic natural products. Nat Prod Bioprospect. 2014;4:59–72.
  • Dejong JM, Liu Y, Bollon AP, et al. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng. 2006;93:212–224.
  • Kirby J, Nishimoto M, Park JG, et al. Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry. 2010;71:1466–1473.
  • Phillips DR, Rasbery JM, Bartel B, et al. Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol. 2006;9:305–314.
  • Verwaal R, Wang J, Meijnen JP, et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol. 2007;73:4342–4350.
  • Fell D. Understanding the control of metabolism elements of metabolic control analysis (MCA). 1997. [cited 2016 Apr 4]. Available from: http://mudsharkstatic.brookes.ac.uk/Delhi2013/Slides/wshop2_mca1.pdf
  • Kacser H, Burns J. The control of flux. Symp Soc Exp Biol. 1973;27:65–104.
  • Basson ME, Thorsness M, Rine J. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci USA. 1986;83:5563–5567.
  • Basson ME, Thorsness M, Finer-Moore J, et al. Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol Cell Biol. 1988;8:3797–3808.
  • Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol. 1998;49:66–71.
  • Mantzouridou F, Tsimidou MZ. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Res. 2010;10:699–707.
  • Ignea C, Trikka FA, Nikolaidis AK, et al. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metab Eng. 2015a;27:65–75.
  • Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA. 2012;109:E111–E118.
  • Wu TK, Chang CH. Enzymatic formation of multiple triterpenes by mutation of tyrosine 510 of the oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae. ChemBioChem. 2004;5:1712–1715.
  • Kirby J, Romanini DW, Paradise EM, et al. Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua. FEBS J. 2008;275:1852–1859. 5
  • Ro D-K, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440:940–943.
  • Kampranis SC, Makris AM. Developing a yeast cell factory for the production of terpenoids. Comput Struct Biotechnol J. 2012;3:1–7.
  • Lv X, Xie W, Lu W, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol. 2014;186:128–136.
  • Xie W, Ye L, Lv X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng. 2015;28:8–18.
  • Da Silva NA, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 2012;12:197–214.
  • Ignea C, Cvetkovic I, Loupassaki S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microb Cell Fact. 2011;10:4.
  • Kaur J, Sharma R. Directed evolution: an approach to engineer enzymes. Crit Rev Biotechnol. 2006;26:165–199.
  • Blanchard L, Karst F. Characterization of a lysine-to-glutamic acid mutation in a conservative sequence of farnesyl diphosphate synthase from Saccharomyces cerevisiae. Gene. 1993;125:185–189.
  • Fischer MJC, Meyer S, Claudel P, et al. Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng. 2011;108:1883–1892.
  • Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast. 2015;32:159–171.
  • Liu J, Zhang W, Du G, et al. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol. 2013;168:446–451.
  • Julien B, Burlingame RP. Method for production of isoprenoid compounds. United States patent US 8,481,286; 2013 (patent issued 9 July 2013).
  • Gardner RG, Hampton RY. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes. J Biol Chem. 1999;274:31671–31678.
  • Hampton RY, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. J Cell Biol. 1994;125:299–312.
  • Ignea C, Trikka FA, Kourtzelis I, et al. Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:162.
  • Ignea C, Pontini M, Maffei ME, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol. 2014;3:298–306.
  • Bak S, Beisson F, Bishop G, et al. Cytochromes p450. Arabidopsis Book. 2011;9:e0144.
  • Nelson D, Werck-Reichhart D. A P450-centric view of plant evolution. Plant J. 2011;66:194–211.
  • Schrader J, Bohlmann J. Biotechnology of isoprenoids. Switzerland: Springer International Publishing AG; 2015.
  • Shiba Y, Paradise EM, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng. 2007;9:160–168.
  • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532.
  • Teoh KH, Polichuk DR, Reed DW, et al. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 2006;580:1411–1416.
  • Brown S, Clastre M, Courdavault V, et al. De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci USA. 2015;112:3205–3210.
  • Gavira C, Höfer R, Lesot A, et al. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng. 2013;18:25–35.
  • Fukushima EO, Seki H, Sawai S, et al. Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast. Plant Cell Physiol. 2013;54:740–749.
  • Pollier J, Moses T, Goossens A. Combinatorial biosynthesis in plants: a (p)review on its potential and future exploitation. Nat Prod Rep. 2011;28:1897–1916.
  • Farhi M, Marhevka E, Masci T, et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab Eng. 2011;13:474–481.
  • Alexander V, Elena M, Moran F, et al. Expression constructs and uses thereof in the production of terpenoids in yeast. United States patent US 0,302,861 A1; 2013 (patent issued on 14 November 2013).
  • Hansen J. Method of producing isoprenoid compounds in yeast. WO146833; 2011(patent issued on 24 November 2011).
  • Choi ES, Whang JI, Ryu K, et al. Modified yeast strain and a method for producing squalene using the same. United States patent US 0,322,129; 2012 (patent issued on 20 December 2012).
  • Zhuang X, Chappell J. Building terpene production platforms in yeast. Biotechnol Bioeng. 2015;112:1854–1864.
  • Aristidou AA, San KY, Bennett GN. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol Prog. 1995;11:475–478.
  • Chen X, Dong X, Wang Y, et al. Mitochondrial engineering of the TCA cycle for fumarate production. Metab Eng. 2016;33:75–85.
  • George KW, Thompson MG, Kang A, et al. Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci Rep. 2015;5:Art number 11128.
  • Wang C, Yoon S-H, Jang H-J, et al. Metabolic engineering of Escherichia coli for α-farnesene production. Metab Eng. 2011;13:648–655.
  • Dai Z, Liu Y, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109:2845–2853.
  • Ignea C, Ioannou E, Georgantea P, et al. Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metab Eng. 2015b;28:91–103.
  • Yuan J, Ching C-B. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions. Metab Eng. 2016;38:303–309.
  • Krivoruchko A, Zhang Y, Siewers V, et al. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng. 2015;28:28–42.
  • Starai VJ, Celic I, Cole RN, et al. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science. 2002;298:2390–2392.
  • Huo Y-X, Cho KM, Rivera JGL, et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol. 2011;29:346–351.
  • Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng. 2013;15:1–9.
  • Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng. 2013;15:48–54.
  • Lian J, Si T, Nair NU, et al. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng. 2014;24:139–149.
  • Duine JA. Cofactor engineering. Trends Biotechnol. 1991;9:343–346.
  • Celton M, Goelzer A, Camarasa C, et al. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng. 2012;14:366–379.
  • Moreira dos Santos M, Raghevendran V, Kötter P, et al. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng. 2004;6:352–363.
  • Zhao X, Shi F, Zhan W. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Lett Appl Microbiol. 2015;61:354–360.
  • Visser D, Heijnen JJ. The mathematics of metabolic control analysis revisited. Metab Eng. 2002;4:114–123.
  • Lewis NE, Nagarajan H, Palsson BØ. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol. 2012;10:291–305.
  • Förster J, Famili I, Fu P, et al. Genome-scale reconstruction of the Saccharomyces cerevisie metabolic network. Genome Res. 2003;13:244–253.
  • Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002;99:15112–15117.
  • Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003;84:647–657.
  • Pharkya P, Burgard AP, Maranas CD. OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 2004;14:2367–2376.
  • Patil KR, Rocha I, Förster J, et al. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics. 2005;6:308.
  • Choi HS, Lee SY, Kim TY, et al. In silico identification of gene amplification targets for improvement of lycopene production. Appl Environ Microbiol. 2010;76:3097–3105.
  • Sun Z, Meng H, Li J, et al. Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae. PLoS One. 2014;9:e112615.
  • Asadollahi MA, Maury J, Patil KR, et al. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng. 2009;11:328–334.
  • Lenihan JR, Tsuruta H, Diola D, et al. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnol Prog. 2008;24:1026–1032.
  • Scalcinati G, Partow S, Siewers V, et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:117.
  • Xie W, Liu M, Lv X, et al. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng. 2014;111:125–133.
  • Dai Z, Liu Y, Zhang X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng. 2013;20:146–156.
  • Tippmann S, Scalcinati G, Siewers V, et al. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng. 2015;113:72–81.
  • Johnston M, Flick JS, Pexton T. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol. 1994;14:3834–3841.
  • Kim SR, Park YC, Jin YS, et al. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv. 2013;31:851–861. Elsevier Inc.
  • Partow S, Siewers V, Bjørn S, et al. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast. 2010;27:955–964.
  • Vickers CE, Bydder SF, Zhou Y, et al. Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae. Microb Cell Fact. 2013;12:96.
  • Lewis TL, Keesler GA, Fenner GP, et al. Pleiotropic mutations in Saccharomyces cerevisiae affecting sterol uptake and metabolism. Yeast. 1988;4:93–106.
  • Vik Å, Rine J. Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 2001;21:6395–6405.
  • Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng. 2008;10:201–206.
  • Andrews RE, Parks LW, Spence KD. Some effects of Douglas fir terpenes on certain microorganisms. Appl Environ Microbiol. 1980;40:301–304.
  • Uribe S, Ramirez J, Peña A. Effects of beta-pinene on yeast membrane functions. J Bacteriol. 1985;161:1195–1200.
  • Brennan TCR, Turner CD, Krömer JO, et al. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng. 2012;109:2513–2522.
  • Asadollahi MA. Establishment of yeast platform for isoprenoid production. Lyngby, Denmark: Technical University of Denmark; 2008.
  • Freeman A, Woodley JM, Lilly MD. In situ product removal as a tool for bioprocessing. Biotechnology (NY). 1993;11:1007–1012.
  • Stark D, von Stockar U. In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. In: Scheper T, Series editor. Process Integration in Biochemical Engineering. Springer; 2003. p. 149–175.
  • Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. In: Schrader J, Bohlmann J, editors. Biotechnol isoprenoids. Springer; 2015. p. 251–286.
  • Gooday GW. Cell membrane. In: Gow NAR, Geoffrey MG, editors. The growing fungus. London: Chapman & Hall; 1995. p. 63–74.
  • Xie W, Lv X, Ye L, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metab Eng. 2015;30:69–78.
  • Zhuang X. Engineering novel terpene production platforms in the yeast Saccharomyces cerevisiae. Ph.D Thesis. Lexington, Kentucky, USA: University of Kentucky; 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.