505
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Biotherapeutic potential and mechanisms of action of colchicine

, , &
Pages 1038-1047 | Received 05 Sep 2016, Accepted 29 Nov 2016, Published online: 23 Apr 2017

References

  • Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 5th ed. New York (NY): Garland Science; 2008. Chapter 20.
  • Unger FT, Witte I, David KA. Prediction of individual response to anticancer therapy: historical and future perspectives. Cell Mol Life Sci. 2015;72:729–757.
  • Monneret C. Current impact of natural products in the discovery of anticancer drugs. Ann Pharm Fr. 2010;68:218–232.
  • Lee KH. Anticancer drug design based on plant-derived natural products. J Biomed Sci. 1999;6:236–250.
  • Calligaris D, Lafitte D. Chemical inhibitors: the challenge of finding the right target. Chem Biol. 2011;18:555–5557.
  • Brossi A, Yeh HJC, Chrzanowska M, et al. Colchicine and its analogues: Recent findings. Med Res Rev. 1988;8:77–94.
  • Bhattacharyya B, Panda D, Gupta S, et al. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008;28:155–183.
  • Lin ZY, Kuo CH, Wu DC, et al. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci. 2016;32:68–73.
  • Malawista SE. Colchicine: a common mechanism for its anti-inflammatory and anti-mitotic effects. Arthritis Rheum. 1968;11:191–197.
  • Levy M, Spino M, Read SE. Colchicine: a state-of-the-art review. Pharmacotherapy. 1991;11:196–211.
  • Barbier P, Tsvetkov PO, Breuzard G, et al. Deciphering the molecular mechanisms of anti-tubulin plant derived drugs. Phytochem Rev. 2014;13:157–169.
  • Singh B, Kumar A, Joshi P, et al. Colchicine derivatives with potent anticancer activity and reduced P-glycoprotein induction liability. Org Biomol Chem. 2015;13:5674–5689.
  • Bonfoco E, Ceccatelli S, Manzo L, et al. Colchicine induces apoptosis in cerebellar granule cells. Exp Cell Res. 1995;218:189–200.
  • Canela M-D, Bueno O, Noppen S, et al. Targeting the colchicine site in tubulin through cyclohexanedione derivatives. RSC Adv. 2016;6:19492–19506.
  • Huczynski A, Majcher U, Maj E, et al. Synthesis, antiproliferative activity and molecular docking of colchicine derivatives. Bioorg Chem. 2016;64:103–112.
  • Punganuru SR, Madala HR, Srivenugopal KS. Colchicine-based hybrid anticancer drugs to combat tumor heterogeneity. Med Chem. 2016;6:165–173.
  • Yunos NM, Beale P, Yu JQ, et al. Studies on combinations of platinum with paclitaxel and colchicine in ovarian cancer cell lines. Anticancer Res. 2010;30:4025–4037.
  • Wu X, Wang Q, Li W. Recent advances in heterocyclic tubulin inhibitors targeting the colchicine binding site. Anticancer Agents Med Chem. 2016;16:1325–1338.
  • Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit Rev Microbiol. 2017;43:31–42.
  • Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol. 2016;36:1089–1098.
  • Karumuri S, Singh PK, Shukla P. In silico analog design for terbinafine against Trichophyton rubrum: a preliminary study. Indian J Microbiol. 2015;55:333–340.
  • Karthik MVK, Deepak MVKNS, Shukla P. Explication of interactions between HMGCR isoform 2 and various statins through in silico modeling and docking. Comput Biol Med. 2012;42:156–163.
  • Amoroso EC. Colchicine and tumour growth. Nature. 1935;135:266–267.
  • Corrodi H, Hardegger E. Die konfiguration des colchicins und verwandter verbindungen. Helv Chim Acta. 1955;38:2030–2033.
  • Howard WD, Timasheff SN. Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. J Biol Chem. 1988;263:1342–1346.
  • Bai R, Pei XF, Boye O, et al. Identification of cysteine 354 of beta-tubulin as part of the binding site for the A ring of colchicine. J Biol Chem. 1996;271:12639–12645.
  • Snyder JP, Nettles JH, Cornett B, et al. The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density. Proc Natl Acad Sci USA. 2001;98:5312–5316.
  • Gigant B, Wang C, Ravelli RB, et al. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–522.
  • Hastie SB. Interactions of colchicine with tubulin. Pharmacol Ther. 1991;51:377–401.
  • Chakrabarti G, Sengupta S, Bhattacharya B. Thermodynamics of colchicinoid-tubulin interactions. Rrol of B-ring and C-7 substituent. J Biol Chem. 1996;271:2897–2901.
  • Andreu JM, Perez-Ramirez B, Gorbunoff MJ, et al. Role of the colchicine ring A and its methoxy groups in the binding to tubulin and microtubule inhibition. Biochemistry. 1998;37:8356–8368.
  • Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–242.
  • Jordan A, Hadfield JA, Lawrence NJ, et al. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998;18:259–296.
  • Boye O, Brossi A. The alkaloids: chemistry and pharmacology, In: Brossi A, Cordell GA, editors. New York and London: Academic Press; 1992. p. 125–176.
  • Owellen RJ, Owens AH, Jr, Donigian DW. The binding of vincristine, vinblastine and colchicine to tubulin. Biochem Biophys Res Commun. 1972;47:685–691.
  • Maxwell MJ, Muthu P, Pritty PE. Accidental colchicine overdose. A case report and literature review. Emerg Med J. 2002;19:265–267.
  • Niel E, Scherrmann JM. Colchicine today. Joint Bone Spine. 2006;73:672–678.
  • Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Phila). . 2010;48:407–414.
  • Wallace SL. Colchicine. Clinical pharmacology in acute gouty arthritis. Am J Med. 1961;30:439–448.
  • Cocco G, Chu DC, Pandolfi S. Colchicine in clinical medicine. A guide for internists. Eur J Intern Med. 2010;21:503–508.
  • Tafi L, Matucci-Cerinic M, Falcini F, et al. Colchicine treatment of Behçet's disease in children. Arthritis Rheum. 1987;30:1435.
  • Ben-Chetrit E, Levy M. Colchicine: 1998 update. Semin Arthritis Rheum. 1998;28:48–59.
  • Kaplan MM, Schmid C, Provenzale D, et al. A prospective trial of colchicine and methotrexate in the treatment of primary biliary cirrhosis. Gastroenterology. 1999;117:1173–1180.
  • Yang LP. Oral colchicine (Colcrys): in the treatment and prophylaxis of gout. Drugs. 2010;70:1603–1613.
  • Correia JJ. Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991;52:127–147.
  • Mullins ME, Carrico EA, Horowitz BZ. Fatal cardiovascular collapse following acute colchicine ingestion. J Toxicol Clin Toxicol. 2000;38:51–54.
  • Usumoto Y, Hifumi T, Kiriu N, et al. Survival case of colchicine intoxication following ingestion of a lethal dose. Chudoku Kenkyu. 2010;23:303–308.
  • Kilic SC, Alaygut D, Unal E, et al. Acute colchicine intoxication complicated with extramedullary hematopoiesis due to filgrastim in a child. J Pediatr Hematol Oncol. 2014;36:e460–e462.
  • Labib S, Boujraf S, Berdai A, et al. Fatal colchicine intoxication. Saudi J Anaesth. 2014;8:394–395.
  • Erden A, Karagoz H, Gümüscü HH, et al. Colchicine intoxication: a report of two suicide cases. Ther Clin Risk Manag. 2013;9:505–509.
  • Ebadi M. Pharmacodynamic basis of herbal medicine. Florida: CRC Press; 2010.
  • Michael O, Goldman RD, Koren G, et al. Safety of colchicine therapy during pregnancy. Can Fam Physician. 2003;49:967–969.
  • Minetti EE, Minetti L. Multiple organ failure in a kidney transplant patient receiving both colchicine and cyclosporine. J Nephrol. 2003;16:421–425.
  • Eleftheriou G, Bacis G, Fiocchi R, et al. Colchicine-induced toxicity in a heart transplant patient with chronic renal failure. Clin Toxicol. (Phila). 2008;46:827–830.
  • Silva R, Carmo H, Vilas-Boas V, et al. Colchicine effect on P-glycoprotein expression and activity: in silico and in vitro studies. Chem Biol Interact. 2014;218:50–62.
  • Dumont R, Brossi A, Chignell CF, et al. A novel synthesis of colchicide and analogues from thiocolchicine and congeners: reevaluation of colchicide as a potential antitumor agent. J Med Chem. 1987;30:732–735.
  • Trellu M, Filali-Ansary A, Françon D, et al. New metabolic and pharmacokinetic characteristics of thiocolchicoside and its active metabolite in healthy humans. Fundam Clin Pharmacol. 2004;18:493–501.
  • Dubey KK, Ray AR, Behera BK. Production of demethylated colchicine through microbial transformation and scale-up process development. Process Biochem. 2008;43:251–257.
  • Dubey KK, Jawed A, Haque S. Enhanced bioconversion of colchicine to regiospecific 3-demethylated colchicine (3-DMC) by whole cell immobilization of recombinant E. coli harboring P450 BM-3 gene. Process Biochem. 2013;48:1151–1158.
  • Kerekes P, Sharma PN, Brossi A, et al. Synthesis and biological effects of novel thiocolchicines. 3. Evaluation of N-acyldeacetylthiocolchicines, N-(alkoxycarbonyl) deacetylthiocolchicines, and O- ethyldemethylthiocolchicines. New synthesis of thiodemecolcine and antileukemic effects of 2-demethyl- and 3-demethylthiocolchicine. J Med Chem. 1985;28:1204–1208.
  • Tang YF, Xu JH, Ye Q, et al. Biocatalytic preparation of (TIS)-phenyl glycidyl ether using newly isolated Bacillus megaterium ECU1001. J Mole Catal B: Enzym. 2001;13:61–68.
  • Leete E. The biosynthesis of the alkaloids of colchicum. III. The incorporation of phenylalanine-2-C14 into colchicine and demecolcine. J Am Chem Soc. 1963;85:3666–3669.
  • Maier UH, Zenk MH. Colchicine is formed by para-para phenol coupling from autumnaline. Tetrahedron Lett. 1997;38:7357–7360.
  • Dewick PM. Medicinal natural products: a biosynthetic Approach. 3rd ed. West Sussex, UK: John Wiley & Sons: 2009. p. 360–362.
  • Dubey KK, Haque S, Jawed A, et al. Construction of recombinant Escherichia coli for enhanced bioconversion of colchicine into 3-demethylated colchicine at 70l bioreactor level. Process Biochem. 2010;45:1036–1042.
  • De Vincenzo R, Ferlini C, Distefano M, et al. Biological evaluation on different human cancer cell lines of novel colchicine analogs. Oncol Res. 1999;11:145–152.
  • Uppuluri S, Knipling L, Sackett DL, et al. Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci USA. 1993;90:11598–11602.
  • Lowe J, Li H, Downing KH, et al. Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol. 2001;313:1045–1057.
  • Muzaffar A, Brossi A, Lin CM, et al. Antitubulin effects of derivatives of 3-demethylthiocolchicine, methylthio ethers of natural colchicinoids, and thioketones derived from thiocolchicine. Comparison with colchicinoids. J Med Chem. 1988;33:567–571.
  • Kurek J, Boczon W, Myszkowski K, et al. Synthesis of sulfur containing Colchicine derivatives and their biological evaluation as cytotoxic agents. LDDD. 2014;11:279–289.
  • Capraro HG, Brossi A. Simple conversion of Colchicine into demecolcine. Helv Chim Acta. 1979;62:965–970.
  • Hufford CD, Capraro HG, Brossi A. 13C- and 1H-NMR. Assignments for colchicine derivatives. Helv Chim Acta. 1980;63:50–56.
  • Rosner M, Capraro HG, Jacobson AE, et al. Biological effects of modified colchicines. Improved preparation of 2-demethylcolchicine, 3-demethylcolchicine, and (+)-colchicine and reassignment of the position of the double bond in dehydro-7-deacetamidocolchicines. J Med Chem. 1981;24:257–261.
  • Cerquaglia C, Diaco M, Nucera G, et al. Pharmacological and clinical basis of treatment of familial Mediterranean fever (FMF) with colchicine or analogues: an update. Curr Drug Targets Inflamm Allergy. 2005;4:117–124.
  • Sun L, Hamel E, Lin CM, et al. Antitumor agents. 141. Synthesis and biological evaluation of novel thiocolchicine analogs: N-acyl-, N-aroyl-, and N-(substituted benzyl) deacetylthiocolchicines as potent cytotoxic and antimitotic compounds. J Med Chem. 1993;36:1474–1479.
  • McNulty J, van den Berg S, Ma D, et al. Antimitotic activity of structurally simplified biaryl analogs of the anticancer agents colchicine and combretastatin A4. Bioorg Med Chem Lett. 2015;25:117–121.
  • Bombuwala K, Kinstle T, Popik V, et al. Colchitaxel, a coupled compound made from microtubule inhibitors colchicine and paclitaxel. Beilstein J Org Chem. 2006;2:13.
  • Brumm PJ, Hebeda RE, Teague WM. Purification and characterization of the commercialized, Cloned Bacillus megaterium α-amylase. Part II: transferase properties. Starch/Stärke. 1991;43:319–323.
  • Krishnamurthi P, Karnani MK, inventor. Alkaloids Corporation, assignee. Process for the conversion of colchicinoids to their 3-glycosylated derivatives via their respective 3-demethyl analogues. WO 2015097567 A1. 2015.
  • Huczyński A, Rutkowski J, Popiel K, et al. Synthesis, antiproliferative and antibacterial evaluation of C-ring modified colchicine analogues. Eur J Med Chem. 2015;90:296–301.
  • Fournier-Dit-Chabert J, Vinader V, Santos AR, et al. Synthesis and biological evaluation of colchicine C-ring analogues tethered with aliphatic linkers suitable for prodrug derivatisation. Bioorg Med Chem Lett. 2012;22:7693–7696.
  • Kim SK, Cho SM, Kim H, et al. The colchicine derivative CT20126 shows a novel microtubule-modulating activity with apoptosis. Exp Mol Med. 2013;45:e19.
  • Dubey KK, Jawed A, Haque S. Enhanced extraction of 3‐demethylated colchicine from fermentation broth of Bacillus megaterium: optimization of process parameters by statistical experimental design. Eng Life Sci. 2011;11:598–606.
  • Guan J, Zhu XK, Tachibana Y, et al. Antitumor agents. 185. Synthesis and biological evaluation of tridemethylthiocolchicine analogues as novel topoisomerase II inhibitors. J Med Chem. 1998;41:1956–1961.
  • Tateishi T, Soucek P, Caraco Y, et al. Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation. Biochem Pharmacol. 1997;53:111–116.
  • Poulev A, Bombardelli E, Ponzone C, et al. Regioselective bioconversion of Colchicine and thiocolchicine into their corresponding 3-demethyl derivatives. J Ferment Bioeng. 1995;79:33–38.
  • Solet JM, Bister-Miel F, Galons H, et al. Glucosylation of thiocolchicine by a cellsuspension culture of Centella asiatica. Phytochemistry. 1993;33:817–820.
  • Venisetty RK, Ciddi V. Application of microbial biotransformation for the new drug discovery using natural drugs as substrates. Curr Pharm Biotechnol. 2003;4:153–167.
  • Bombardelli E, Ponzone C, inventor. Indena SPA, assignee. Process for the biotransformation of colchicinoid compounds into the corresponding 3-glycosyl derivatives. United States patent US 6150140A. 2000.
  • Pandey DK, Banik RK. Optimization of extraction conditions for colchicine from Gloriosa superba tubers using response surface methodology. J Agr Techn. 2012;8:1301–1315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.