728
Views
16
CrossRef citations to date
0
Altmetric
Review Article

High value added lipids produced by microorganisms: a potential use of sugarcane vinasse

, , , , &
Pages 1048-1061 | Received 12 May 2016, Accepted 21 Dec 2016, Published online: 20 Apr 2017

References

  • CEPEA. Centro de estudos avançados em economia. CEPEA–Centro de estudos avançados em economia aplicada. PIB do agronegócio 2010 [Internet]. Cent. Estud. avançados em Econ. CEPEA – Cent. Estud. avançados em Econ. Apl. PIB do agronegócio; 2010 [cited 2015 Sep 20]. Available from: http://www.cepea.esalq.usp.br/pib
  • Da Silva LF, Gomez JGC, Rocha RCS, et al. Produção biotecnológica de poli-hidroxialcanoatos para a geração de polímeros biodegradáveis no Brasil. Quím Nova. 2007;30:1732–1743.
  • Dias MOS, Cunha MP, Jesus CDF, et al. Second generation ethanol in Brazil: can it compete with electricity production?. Bioresour Technol. 2011;102:8964–8971.
  • Moraes BS, Junqueira TL, Pavanello LG, et al. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl Energy. 2014;113:825–835.
  • Werpy T, Petersen G. Top value added chemicals from biomass. Vol. I, Results of screening for potential candidates from sugars and synthesis gas; 2004.
  • Oliveira B. Vinhaça de cana-de-açucar: fluxo de gases de estufa e comunidades archaea presente no sedimento do canal de distribuição. Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo; 2015.
  • Doelsch E, Masion A, Cazevieille P, et al. Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation. Waste Manag. 2009;29:1929–1935. doi:10.1016/j.wasman.2008.12.009.
  • Parnaudeau V, Condom N, Oliver R, et al. Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresour Technol. 2008;99:1553–1562.
  • Robertiello A. Upgrading of agricultural and agro-industrial wastes: the treatment of distillery efluents (vinasses) in Italy. Agric Wastes. 1982;4:387–395.
  • Leman J, Olsztyn M. Lipids, Production.Lipids, production. encyclopedia of microbiology. 3rd ed. 2009; p. 393–406.
  • Moreton RS Single cell oil. s.l. Harlow: Longmans; 1988.
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol. 2011;113:1052–1073.
  • Mikhailova Z, Zhakovskaya Z, Andreec A, et al. Microbiological method of producing vitamins of the D group. Pharm Chem J. 1987;21:889–891.
  • Ward O, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005;40:3627–3652.
  • Kaewsuk J, Thorasampan W, Thanuttamavong M, et al. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. Manag. 2010;91:1161–1168.
  • Lu HF, Zhang GM, Dai X, et al. A novel wastewater treatment and biomass cultivation system combining photosynthetic bacteria and membrane bioreactor technology. Desalination. 2013;322:176–181.
  • Zhou Q, Zhang P, Zhang G. Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: effects of light intensity. Bioresour Technol. 2014;171:330.
  • Onbasli D, Déziel E. Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol. 2009;30:161–163.
  • Nayak AS, Vijaykumar MH, Karegoudar TB. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegrad. 2009;63:73–79.
  • Thiele OW, Oulevey J. Occurrence of phosphatidylcholine in hydrogen-oxidizing bacteria. Eur J Biochem. 1981;186:183–186.
  • MAPA. Ministério da Agricultura, Pecuária e Abastecimento [Internet]. Ministério da Agric. Pecuária e Abast; 2012. [cited 2012 May 11]. Available from: http://www.agricultura.gov.br/
  • Syaichurrozi I, Rusdi R, Dwicahyanto S, et al. Biogas production from co-digestion vinasse waste and TOFU-prosessing waste water and kinetics. Int J Renewable Energy Res. 2016;6:1057–1070.
  • Renewable Fuel Association [Internet]. 2016 [cited 2016 Nov 30]. Available from: http://ethanolrfa.org/resources/industry/statistics/#1454098996479-8715d404-e546
  • PAQUES. PAQUES BV [Internet]. PAQUES BV 2013 [cited 2013 May 18]. Available from: http://www.paques.nl/?pid=57
  • Müller MM, Hausmann R. Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol. 2011;91:251–264.
  • Fernandes BS, Peixoto G, Albrecht FR, et al. Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev. 2010;14:143–148.
  • Gamboa E, Cortes J, Zarate G, et al. Methane production by treating vinasse from hydrous ethanol using a modified UASB reactor. Biotechnol Biofeuls. 2012;5:82.
  • Lammens TM, Franssen MCR, Scott EL, et al. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Biomass Bioenergy. 2012;44:168–181.
  • Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol. 2007;98:2321–2334.
  • Sowmeyan R, Swaminathan G. Effluent treatment process in molasses-based distillery industries: a review. J Hazard Mater. 2008;152:453–462.
  • Weigand E, Kirchgessner M. Protein and energy value of vinasse for pigs. Anim Feed Sci Technol. 1980;5:221–231.
  • Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenergy. 2000;19:63–102.
  • Santos SC, Ferreira Rosa PR, Sakamoto IK, et al. Continuous thermophilic hydrogen production and microbial community analysis from anaerobic digestion of diluted sugar cane stillage. Int J Hydrogen Energy. 2014;39:9000–9011.
  • Berg-shmidt. Berg-shmidt [Internet] 2015 [cited 2015 May 20]. Available from: http://www.berg-schmidt.de/en/index.php
  • Cuppari L, Garcia Lopes MG, Kamimura MA. Vitamin D biology: from the discovery to its significance in chronic kidney disease. J Ren Nutr. 2011;21:113–116.
  • Market Research Report [Internet]. Global phosphatidylcholine market research report; 2013 [cited 2015 May 20]. Available from: http://www.micromarketmonitor.com/market-report/phosphatidylcholine-reports-5345348522.html
  • Rubio-Rodríguez N, Beltrán S, Jaime I, et al. Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg Technol. 2010;11:1–12.
  • Grand View Research [Internet]. Omega 3 market analysis and segment forecasts to 2020; 2014 [cited 2015 May 17]. Available from: http://www.grandviewresearch.com/industry-analysis/omega-3-market
  • Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng. 1999;87:1–14.
  • Sahena F, Zaidul ISM, Jinap S, et al. PUFAs in fish: extraction, fractionation, importance in health. Compr Rev Food Sci Food Saf. 2009;8:59–74.
  • Elrazak A, Ward AC, Glassey J. Polyunsaturated fatty acid production by marine bacteria. Bioprocess Biosyst Eng. 2013;36:1641–1652.
  • Nikoopour H, Griffiths M. Production of EPA by Shewanella putrefaciens MAC1 in Selected Culture Media. Iran J Food Sci Technol. 2008;5:75–81.
  • Ravi S. Fungal oil with EPA in Mucor circinelloides cultivated on thin stillage from corn-to-ethanol production [thesis]. Ames (IA): Iowa State University; 2014.
  • Liang Y, Zhao X, Strait M, et al. Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Bioresour Technol. 2012;111:404–409.
  • Kim JI, Lee NK, Yeo I-C, et al. Isolation of carotenoid-producing yeast, Rhodosporidium babjevae JI-1, and evaluation of cell extract toxicity against rat hepatic cells. J Korean Soc Appl Biol Chem. 2012;55:137–140.
  • Ishida BK, Chapman MH. Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem. 2009;57:1051–1059.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Markets and Markets [Internet]. Carotenoids Market by Type (Astaxanthin, Beta-Carotene, Canthaxanthin, Lutein, Lycopene, & Zeaxanthin), Source (Synthetic and Natural), Application (Supplements, Food, Feed, and Cosmetics), & by Region – Global Trends & Forecasts to 2019; 2015 [cited 2015 May 18]. Available from: http://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html
  • Brennan L, Owende P. Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–577.
  • Bilanovic D, Andargatchew A, Kroeger T, et al. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations: response surface methodology analysis. Energy Convers Manag. 2009;50:262–267.
  • Braunwald T, Schwemmlein L, Graeff-Hönninger S, et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol. 2013;97:6581–6588.
  • Aksu Z, Eren AT. Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem. 2005;40:2985–2991.
  • Buzzini P, Martini A. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin. Bioresour Technol. 1999;71:5–8.
  • Naghavi FS, Hanachi P, Saboora A. Effect of temperature, pH and salinity on carotenoid production in Rodotorula mucilaginosa. Res Biotechnol. 2014;5:1–4.
  • Petrik S, Marova I, Haronikova A, et al. Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production: a comparative screening study. Ann Microbiol. 2013;63:1537–1551.
  • Del Campo J. a, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol. 2007;74:1163–1174.
  • Mata-gómez LC, Montañez JC, Méndez-zavala A, et al. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact. 2014;13:12–11.
  • Norman W. Vitamin D: the calcium homostatic steroid hormone; 1979.
  • Hohman EE, Martin BR, Lachcik PJ, et al. Bioavailability and efficacy of vitamin D 2 from UV-irradiated yeast in growing. J Agric Food Chem. 2011;59:2341–2346.
  • Markets and Markets [Internet]. Vitamin D Market by Analog (Vitamin D2 & Vitamin D3), Application (Functional Food & Beverage, Pharmaceuticals, Feed & Pet Food, and Personal Care), End-User (Children, Adult, and Pregnant Women) & Region – Global Trends & Forecast to 2020; 2015b Mark. Mark; [cited 2015 May 17]. Available from: http://www.marketsandmarkets.com/Market-Reports/vitamin-d-market-22034298.html
  • Rosa C. Vitamin d [Internet]. Diasorin; 2013.
  • Lallemand [Internet]. 2015 [cited 2015 Jan 7]. Available from: http://vitamind.lallemand.com
  • Baeke F, Takiishi T, Korf H, et al. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–496.
  • Dupont S, Lemetais G, Ferreira T, et al. Ergosterol biosynthesis: a fungal pathway for life on land? Evolution. 2012;66:2961–2968. doi:10.5061/dryad.pd28pm7n.
  • Mattila P, Lampi A, Ronkainen R, et al. Sterol and vitamin D 2 contents in some wild and cultivated mushrooms. Food Chem. 2002;76:293–298.
  • Degré R, Edwards G, Zhang Z. Novel vitamin D2 yeast preparation, a method for producing the same, and the use thereof. EP2092055 A1; 2009.
  • Lallemand. Application for the approval of the vitamin D2 yeast concentrate – registration document. Montreal, Québec; 2012.
  • Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133:183–198.
  • Grand View Research. Biosurfactants market analysis by product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters) and segment forecast to 2020; 2015.
  • Morya V, Ahn C, Jeon S, et al. Medicinal and cosmetic potentials of sophorolipids. Mini Rev Med Chem. 2013;13:1761–1768.
  • Mulligan C, Sharma S, Mudhoo A. Biosurfactants: research trends and applications. Boca Raton (FL): Taylor & Francis; 2014.
  • Biotech Support Services. Biotech support base [Internet]. 2014 [cited 2015 May 24]. Available from: http://biotechsupportbase.com/2014/02/07/developments-in-biosurfactants/
  • Shete AM, Wadhawa G, Banat IM, et al. Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res (India). 2006;65:91–115.
  • Abdel-Mawgoud A, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86:1323–1336.
  • Hošková M, Schreiberová O, Ježdík R, et al. Characterization of rhamnolipids produced by non-pathogenic Acinetobacter and Enterobacter bacteria. Bioresour Technol. 2013;130:510–516.
  • Rooney A, Price N, Ray K, et al. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett. 2009;295:82–87.
  • Vasileva-Tonkova E, Galabova D, Stoimenova E, et al. Production and properties of biosurfactants from a newly isolated Pseudomonas fluorescens HW-6 growing on hexadecane. Z Nat Forsch C J Biosci. 2006;61:553–559.
  • Heyd M. Continuous production of rhamnolipids by means of process integration. Universität Fridericiana Karlsruhe; 2009.
  • Gunther I, Nereus W, Nunez A, et al. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol. 2005;71:2288–2293.
  • Van Bogaert IN, Zhang J, Soetaert W. Microbial synthesis of sophorolipids. Process Biochem. 2011;46:821–833.
  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, et al. Sophorolipids production by Candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol. 2015;6:1324.
  • Luna JN, Rufino RD, Sarubbo LA, et al. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B: Biointerfaces. 2013;102:202–209.
  • Daverey A, Pakshirajan K. Colloids and Surfaces B: Biointerfaces Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf B Biointerfaces. 2010;79:246–253.
  • Daverey A, Pakshirajan K. Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int. 2009;42:499–504.
  • Satpute SK, Kulkarni GR, Banpurkar AG, Banat IM, et al. Biosurfactant/s from Lactobacilli species: properties, challenges and potential biomedical applications. J Basic Microbiol. 2016;56:1140–1158.
  • Banat IM, Satpute SK, Cameotra SS, et al. Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol. 2014;5:697.
  • Grand View Research. Egg phosphatidylcholine market analysis by application (Cosmetics, Pharmaceutical, Dietary Supplements) and segment forecasts to 2020 [Internet]. 2014 [cited 2015 May 17]. Available from: http://www.grandviewresearch.com/industry-analysis/egg-phosphatidylcholine-market
  • Szuhaj B. Lecithins: Sources, Manufacture and Uses (AOCS Monograph). Urbana, USA; 1989.
  • Kent C. Regulatory enzymes of phosphatidylcholine biosynthesis: a personal perspective. Biochim Biophys Acta. 2005;1733:53–66.
  • Aktas M, Wessel M, Hacker S, et al. Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur J Cell Biol. 2010;89:888–894.
  • López-Lara IM, Geiger O. Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J Biotechnol. 2001;91:211–221.
  • Solís-Oviedo RL, Martínez-Morales F, Geiger O, et al. Functional and topological analysis of phosphatidylcholine synthase from Sinorhizobium meliloti. Biochim Biophys Acta. 2012;1821:573–581.
  • Boumann HA, Damen MJA, Versluis C, et al. The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling. Biochemistry. 2003;42:3054–3059.
  • Sohlenkamp C, López-Lara IM, Geiger O. Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res. 2003;42:115–162.
  • Greenberg ML, Klig LS, Letts VA, et al. Yeast mutant defective in phosphatidylcholine synthesis. J Bacteriol. 1983;153:791–799.
  • Patil VV, Galge RV, Thorat BN. Extraction and purification of phosphatidylcholine from soyabean lecithin. Sep Purif Technol. 2010;75:138–144.
  • World Bank. Global Economic Prospects¬ e Global Economy in Transition. 2015 International Bank for Reconstruction and Development; 2015.
  • Vieira JPF, Ienczak JL, Costa PS, et al. Conceptual design, process specifications and economic analysis using molasses as raw material. Ind Crops Prod. 2016;98:478–485.
  • Soccol CR, Neto CJD, Soccol VT, et al. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminar economy study. Bioresource Technol. 2017;223:259–268.
  • Del Valle JM, Luke B, Brown M, Missmer S, et al. Assisted reproductive technology use and outcomes among women with a history of cancer. Hum Reprod. 2016;31:199.
  • Ochserreither K, Glück C, Stressler T, et al. Production strategies and applications of microbial single cell oils. Front Microbiol. 2016;7:1539.
  • Bellou S, Triantaphyllidou I, Aggeli D, et al. Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol. 2016;37:24–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.