1,104
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

P(3HB-co-4HB) as high value polyhydroxyalkanoate: its development over recent decades and current advances

ORCID Icon, ORCID Icon & ORCID Icon
Pages 474-490 | Received 10 Mar 2020, Accepted 18 Sep 2020, Published online: 16 Mar 2021

References

  • Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol. 2007;82:233–247.
  • Liu CC, Zhang LL, An J, et al. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms. Lett Appl Microbiol. 2016;62:9–15.
  • Jendrossek D. Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol. 2009;191:3195–3202.
  • Chen GQ, Hajnal I. The ‘PHAome’. Trends Biotechnol. 2015;33:559–564.
  • Yin J, Chen JC, Wu Q, et al. Halophiles, coming stars for industrial biotechnology. Biotechnol Adv. 2015;33:1433–1442.
  • Tyo KEJ, Ajikumar PK, Stephanopoulos G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol. 2009;27:760–765.
  • Yin J, Wang H, Fu XZ, et al. Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp. Appl Microbiol Biotechnol. 2015;99:5523–5534.
  • Gu P, Yang F, Su T, et al. A rapid and reliable strategy for chromosomal integration of gene(s) with multiple copies. Sci Rep. 2015;5:9684.
  • Hiroe A, Tsuge K, Nomura CT, et al. Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol. 2012;78:3177–3184.
  • Li T, Ye J, Shen R, et al. Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening. ACS Synth Biol. 2016;5:1308–1317.
  • Zou H, Zhang T, Li L, et al. Systematic engineering for improved carbon economy in the biosynthesis of polyhydroxyalkanoates and isoprenoids. Mat. 2018;11:1271.
  • Taguchi S, Doi Y. Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: successful case studies of directed evolution. Macromol Biosci. 2004;4:145–156.
  • Singh AK, Srivastava JK, Chandel AK, et al. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks and solution. Appl Microbiol Biotechnol. 2019;103:2007–2032.
  • Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. EuroBiotech J. 2018;2:89–103.
  • Koller M, Hesse P, Bona R, et al. Biosynthesis of high quality polyhydroxyalkanoate co- and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp. 2007;253:33–39.
  • Luef KP, Stelzer F, Wiesbrock F. Poly(hydroxy alkanoate)s in medical applications. Chem Biochem Eng Q. 2015;29:287–297.
  • Huu Phong T, Van Thuoc D, Sudesh K. Biosynthesis of poly(3-hydroxybutyrate) and its copolymers by Yangia sp. ND199 from different carbon sources. Int J Biol Macromol. 2016;84:361–366.
  • Doi Y, Segawa A, Kunioka M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol. 1990;12:106–111.
  • Saito Y, Nakamura S, Hiramitsu M, et al. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int. 1996;39:169–174.
  • Cesário MT, Raposo RS, Almeida M, et al. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. Int J Biol Macromol. 2014;71:59–67.
  • Riedel SL, Lu J, Stahl U, et al. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products. Appl Microbiol Biotechnol. 2014;98:1469–1483.
  • Volodina E, Raberg M, Steinbüchel A. Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology. Crit Rev Biotechnol. 2016;36:978–991.
  • Doi Y, Kunioka M, Nakamura Y, et al. Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate. Macromol. 1988;21:2722–2727.
  • Kunioka M, Tamaki A, Doi Y. Crystalline and thermal properties of bacterial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromol. 1989;22:694–697.
  • Nakamura S, Doi Y, Scandola M. Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromol. 1992;25:4237–4241.
  • Kimura H, Ohura T, Takeishi M, et al. Effective microbial production of poly(4-hydroxybutyrate) homopolymer by Ralstonia eutropha H16. Polym Int. 1999;48:1073–1079.
  • Ishida K, Wang Y, Inoue Y. Comonomer unit composition and thermal properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)s biosynthesized by Ralstonia eutropha. Biomacromolecules. 2001;2:1285–1293.
  • Kim JS, Lee BH, Kim BS. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J. 2005;23:169–174.
  • Rao U, Sridhar R, Sehgal PK. Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem Eng J. 2010;49:13–20.
  • Lee YH, Kang MS, Jung YM. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J Biosci Bioeng. 2000;89:380–383.
  • Orita I, Iwazawa R, Nakamura S, et al. Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production. J Biosci Bioeng. 2012;113:63–69.
  • Kimura H, Yoshida Y, Doi Y. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Pseudomonas acidovorans. Biotechnol Lett. 1992;14:445–450.
  • Saito Y, Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol. 1994;16:99–104.
  • Mitomo H, Hsieh WC, Nishiwaki K, et al. (3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Comamonas acidovorans. Polym. 2001;42:3455–3461.
  • Haywood GW, Anderson AJ, Williams DR, et al. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol. 1991;13:83–88.
  • Amirul AA, Yahya ARM, Sudesh K, et al. Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour Technol. 2008;99:4903–4909.
  • Lee WH, Azizan MNM, Sudesh K. Effect of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym Degrad Stab. 2004;84:129–1134.
  • Renner G, Pongratz K, Braunegg G. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Comamonas testosteronii A3. Food Technol Biotechnol. 1996;34:91–95.
  • Mothes G, Ackermann JU. Synthesis of poly(3-hydroxybutyrate-co-4-hydrobutyrate) with a target mole fraction of 4-hydroxybutyric acid units by two-stage continuous cultivation of Delftia acidovorans P4a. Eng Life Sci. 2005;5:58–62.
  • Yamane T, Fukunaga M, Lee YW. Increased PHB productivity by high-cell-density fed-batch culture of Alcaligenes latus, a growth-associated PHB producer. Biotechnol Bioeng. 1996;50:197–202.
  • Wang F, Lee SY. Poly(3-Hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol. 1997;63:3703–3706.
  • Yezza A, Halasz A, Levadoux W, et al. Production of poly-beta-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap. Appl Microbiol Biotechnol. 2007;77:269–274.
  • Choi MH, Yoon SC, Lenz RW. Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol. 1999;65:1570–1577.
  • Choi MH, Song JJ, Yoon SC. Biosynthesis of copolyesters by Hydrogenophaga pseudoflava from various lactones. Can J Microbiol. 1995;41:60–67.
  • Ramachandran H, Shafie NAH, Sudesh K, et al. Cupriavidus malaysiensis sp. nov., a novel poly(3-hydroxybutyrate-co-4-hydroxybutyrate) accumulating bacterium isolated from the Malaysian environment. Antonie Van Leeuwenhoek. 2018;111:361–372.
  • Md. Iqbal N, Amirul AA. Synthesis of P(3HB-co-4HB) copolymer with target-specific 4HB molar fractions using combinations of carbon substrates. J Chem Technol Biotechnol. 2014;89:407–418.
  • Vigneswari S, Vijaya S, Majid MIA, et al. Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. J Ind Microbiol Biotechnol. 2009;36:547–556.
  • Chai HL, Ahmad R, Yahya ARM, et al. Microbial synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp.USMAA2-4 through a two-step cultivation process. African J Biotechnol. 2009;8:4189–4196.
  • Rahayu A, Zaleha Z, Yahya ARM, et al. Production of copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process. World J Microbiol Biotechnol. 2008;24:2403–2409.
  • Ramachandran H, Amirul AA. Bioconversion of glycerine pitch into a novel yellow-pigmented P(3HB-co-4HB) copolymer: synergistic effect of ammonium acetate and polymer characteristics. Appl Biochem Biotechnol. 2014;172:891–909.
  • Ismail I, Gurusamy TP, Ramachandran H, et al. Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer and antimicrobial yellow pigmentation from Cupriavidus sp. USMAHM13 with antibiofilm capability. Prep Biochem Biotechnol. 2017;47:388–396.
  • Kang CK, Lee HS, Kim JH. Accumulation of PHA and its copolyesters by Methylobacterium sp. KCTC 0048. Biotechnol Lett. 1993;15:1017–1020.
  • Myung J, Flanagan JCA, Waymouth RM, et al. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express. 2017;7:118.
  • Kimura H, Iwama M, Sasaki S, et al. Production of polyester blend of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyalkanoate) with saturated and unsaturated monomers from 4-hydroxybutyric acid by Chromobacterium sp. Chem Lett. 1999;28:737–738.
  • Sedlacek P, Pernicova I, Novackova I, et al. Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers–2. Material study on the produced copolymers. Polymers. 2020;12:1298.
  • Van Thuoc D, Ngoc My D, Thi Loan T, et al. Utilization of waste fish oil and glycerol as carbon sources for polyhydroxyalkanoate production by Salinivibrio sp. M318. Int J Biol Macromol. 2019;141:885–892.
  • Tanweer S, Panda B. Prospect of Synechocystis sp. PCC 6803 for synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Algal Res. 2020; 50:1–10.
  • Meng CJ, Sadasivam M, Vigneswari S. Isolation and identification of P(3HB-co-4HB) producing bacteria from various location in Kuala Terengganu. Malays Appl Biol. 2019; 48:199–206.
  • Vigneswari S, Nik LA, Majid MIA, et al. Improved production of poly(3-hydroxybutyrate-co-4-hydroxbutyrate) copolymer using a combination of 1,4-butanediol and γ-butyrolactone. World J Microbiol Biotechnol. 2010;26:743–746.
  • Amirul AA, Yahya ARM, Sudesh K, et al. Isolation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) producer from Malaysian environment using γ-butyrolactone as carbon source. World J Microbiol Biotechnol. 2009;25:1199–1206.
  • Hiramitsu M, Koyama N, Doi Y. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Alcaligenes latus. Biotechnol Lett. 1993;15:461–464.
  • Ramachandran H, Amirul AA. Yellow-pigmented Cupriavidus sp., a novel bacterium capable of utilizing glycerine pitch for the sustainable production of P(3HB-co-4HB). J Chem Technol Biotechnol. 2013;88:1030–1038.
  • Ramachandran H, Amirul AA. Evaluation of unrefined glycerine pitch as an efficient renewable carbon resource for the biosynthesis of novel yellow-pigmented P(3HB-co-4HB) copolymer towards green technology. Biotechnol Bioproc E. 2013;18:1250–1257.
  • Martin DP, Williams SF. Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J. 2003;16:97–105.
  • Harder W, Dijkhuizen L, Postgate JR. Strategies of mixed substrate utilization in microorganisms [and Discussion]. Philos Trans R Soc B Biol Sci. Royal Society B: Biological Sciences. 1982;297:459–480.
  • Huong KH, Kannusamy S, Lim SYH, et al. Biosynthetic enhancement of single-stage Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by manipulating the substrate mixtures. J Ind Microbiol Biotechnol. 2015;42:1291–1297.
  • Huong KH, Teh CH, Amirul AA. Microbial-based synthesis of highly elastomeric biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic. Int J Biol Macromol. 2017;101:983–995.
  • Huong KH, Azuraini MJ, Aziz NA, et al. Pilot scale production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. J Biosci Bioeng. 2017;124:76–83.
  • Song JY, Kim BS. Characteristics of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Ralstonia eutropha NCIMB 11599 and ATCC 17699. Biotechnol Bioprocess Eng. 2005;10:603–606.
  • Chanprateep S, Buasri K, Muangwong A, et al. Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab. 2010;95:2003–2012.
  • Kahar P, Tsuge T, Taguchi K, et al. High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab. 2004;83:79–86.
  • Park DH, Kim BS. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. N Biotechnol. 2011;28:719–724.
  • Cavalheiro JMBT, Raposo RS, de Almeida MCMD, et al. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol. 2012;111:391–397.
  • Raposo RS, de Almeida MCMD, da Fonseca MMR, et al. Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari. Int J Biol Macromol. 2017;105:825–833.
  • Faezah AN, Rahayu A, Vigneswari S, et al. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by biological fermentation and enzymatic degradation. World J Microbiol Biotechnol. 2011;27:2455–2459.
  • Huong KH, Elina KAR, Amirul AA. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus malaysiensis USMAA1020 utilising substrate with longer carbon chain. Int J Biol Macromol. 2018;116:217–223.
  • Miranda De Sousa Dias M, Koller M, Puppi D, et al. Fed-batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioeng. 2017;4:36.
  • Kunioka M, Nakamura Y, Doi Y. New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polymer Commun. 1988;29:174–176.
  • Valentin HE, Zwingmann G, Schönebaum A, et al. Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Eur J Biochem. 1995;227:43–60.
  • Söhling B, Gottschalk G. Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri. J Bacteriol. 1996;178:871–880.
  • Valentin HE, Dennis D. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol. 1997;58:33–38.
  • Hein S, Söhling B, Gottschalk G, et al. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett. 1997;153:411–418.
  • Valentin HE, Reiser SE, Gruys KJ. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate. Biotechnol Bioeng. 2000;67:291–299.
  • Li ZJ, Shi ZY, Jian J, et al. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng. 2010;12:352–359.
  • Zhou XY, Yuan XX, Shi ZY, et al. Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact. 2012;11:54.
  • Le Meur S, Zinn M, Egli T, et al. Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb Cell Fact. 2013;12:123.
  • Le Meur S, Zinn M, Egli T, et al. Improved productivity of poly (4-hydroxybutyrate) (P4HB) in recombinant Escherichia coli using glycerol as the growth substrate with fed-batch culture. Microb Cell Fact. 2014;13:131.
  • Kämpf MM, Thöny-Meyer L, Ren Q. Biosynthesis of poly(4-hydroxybutyrate) in recombinant Escherichia coli grown on glycerol is stimulated by propionic acid. Int J Biol Macromol. 2014;71:8–13.
  • Wang Y, Wu H, Jiang X, et al. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng. 2014;25:183–193.
  • Zhang S, Liu Y, Bryant DA. Metabolic engineering of Synechococcus sp. PCC 7002 to produce poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-4-hydroxybutyrate. Metab Eng. 2015;32:174–183.
  • Chen X, Yin J, Ye J, et al. Engineering Halomonas bluephagenesis TD01 for non-sterile production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate. Bioresour Technol. 2017;244:534–541.
  • Ye J, Hu D, Che X, et al. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng. 2018;47:143–152.
  • Ye J, Huang W, Wang D, et al. Pilot scale-up of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production by Halomonas bluephagenesis via cell growth adapted optimization process. Biotechnol J. 2018;13:1800074.
  • Shen R, Yin J, Ye JW, et al. Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis. ACS Synth Biol. 2018;7:1897–1906.
  • Lv L, Ren YL, Chen JC, et al. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: controllable P(3HB-co-4HB) biosynthesis. Metab Eng. 2015;29:160–168.
  • Lau N, Sudesh K. Revelation of the ability of Burkholderia sp. USM (JCM 15050) PHA synthase to polymerize 4-hydroxybutyrate monomer. AMB Express. 2012;2:41.
  • Al-Kaddo KB, Mohamad F, Murugan P, et al. Production of P(3HB-co-4HB) copolymer with high 4HB molar fraction by Burkholderia contaminans Kad1 PHA synthase. Biochem Eng J. 2020;153:107394.
  • Foong CP, Lakshmanan M, Abe H, et al. A novel and wide substrate specific polyhydroxyalkanoate (PHA) synthase from unculturable bacteria found in mangrove soil. J Polym Res. 2018; 25:1–9.
  • Sudesh K, Fukui T, Doi Y. Genetic analysis of Comamonas acidovorans polyhydroxyalkanoate synthase and factors affecting the incorporation of 4-hydroxybutyrate monomer. Appl Environ Microbiol. 1998;64:3437–3443.
  • Sudesh K, Fukui T, Taguchi K, et al. Improved production of poly(4-hydroxybutyrate) by Comamonas acidovorans and its freeze-fracture morphology. Int J Biol Macromol. 1999;25:79–85.
  • Seo I, Jung Y, Lee Y. Production of P(3-hydroxybutyrate-3-hydroxyvalerate) and P(3-hydroxy-butyrate-4-hydroxybutyrate) using transformant Alcaligenes latus enforcing its own phbC gene. J Microbiol Biotechnol. 2001;11:333–336.
  • Syafiq IM, Huong KH, Shantini K, et al. Synthesis of high 4-hydroxybutyrate copolymer by Cupriavidus sp. transformants using one-stage cultivation and mixed precursor substrates strategy. Enzyme Microb Technol. 2017;98:1–8.
  • Norhafini H, Thinagaran L, Shantini K, et al. Synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with high 4HB composition and PHA content using 1,4-butanediol and 1,6-hexanediol for medical application. J Polym Res. 2017;24:189.
  • Norhafini H, Huong KH, Amirul AA. High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. Int J Biol Macromol. 2019;125:1024–1032.
  • Song S, Hein S, Steinbüchel A. Production of poly(4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol Lett. 1999;21:193–197.
  • Siew EL, Rajab NF, Osman AB, et al. In vitro biocompatibility evaluation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer in fibroblast cells. J Biomed Mater Res A. 2007;81:317–325.
  • Ying TH, Ishii D, Mahara A, et al. Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials. 2008;29:1307–1317.
  • Vigneswari S, Amirul AA. Biodegradability and cellular compatibility of P(3HB-co-4HB) via subcutaneous implantation in rat model. Malays Appl Biol. 2017;46:1–8.
  • Grigore ME, Grigorescu RM, Iancu L, et al. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review. J Biomater Sci Polym Ed. 2019;30:695–712.
  • Ali I, Jamil N. Polyhydroxyalkanoates: current applications in the medical field. Front Biol. 2016;11:19–27.
  • Vigneswari S, Abdul Khalil MIA, Amirul AA. Designing of collagen based poly(3-hydroxybutyrate-co-4-hydroxybutyrate) scaffolds for tissue engineering. Int J Polym Sci. 2015;2015:1–10.
  • Liu D, Yang F, Xiong F, et al. The smart drug delivery system and its clinical potential. Theranostics. 2016;6:1306–1323.
  • Shrivastav A, Kim HY, Kim YR. Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int. 2013;2013:581684.
  • Vigneswari S, Chai JM, Shantini K, et al. Designing novel interfaces via surface functionalization of short-chain-length polyhydroxyalkanoates. Adv Polym Tech. 2019;2019:1–15.
  • Amirah MG, Amirul AA, Wahab HA. Formulation and characterization of rifampicin-loaded P(3HB-co-4HB) nanoparticles. Int J Pharm Pharm Sci. 2014;6:140.
  • Environmental degradation of microbial polyhydroxyalkanoates and oil palm-based composites. Appl Biochem Biotechnol. 2012; 167:314–326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.