1,284
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives

ORCID Icon, , , , , & show all
Pages 491-512 | Received 23 Dec 2020, Accepted 23 Dec 2020, Published online: 04 Feb 2021

References

  • Rashmi D, Zanan R, John S, et al. Chapter 13 - γ-Aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications. In: Rahman A, editor. Studies in natural products chemistry. Vol. 57: Amsterdam: Elsevier; 2018. p. 413–452.
  • Li H, Cao Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids. 2010;39(5):1107–1116.
  • Xu N, Wei L, Liu J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J Microbiol Biotechnol. 2017;33(3):64.
  • Leventhal AG, Wang Y, Pu M, et al. GABA and its agonists improved visual cortical function in senescent monkeys. Science. 2003;300(5620):812–815.
  • Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol. 2011;9(5):330–343.
  • Diana M, Quílez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods. 2014;10:407–420.
  • Wu Q, Shah NP. High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Crit Rev Food Sci Nutr. 2017;57(17):3661–3672.
  • Lie Y, Farmer TJ, Macquarrie DJ. Facile and rapid decarboxylation of glutamic acid to γ-aminobutyric acid via microwave-assisted reaction: Towards valorisation of waste gluten. J Clean Prod. 2018;205:1102–1113.
  • Koubaa M, Delbecq F, Roohinejad S, et al. Gamma-aminobutyric acid. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Oxford: Academic Press; 2019. p. 528–534.
  • Boonstra E, de Kleijn R, Colzato LS, et al. Neurotransmitters as food supplements: the effects of GABA on brain and behavior. Front Psychol. 2015;6:1520.
  • Wang Q, Xin Y, Zhang F, et al. Enhanced γ-aminobutyric acid-forming activity of recombinant glutamate decarboxylase (gadA) from Escherichia coli. World J Microbiol Biotechnol. 2011;27(3):693–700.
  • Huang Y, Su L, Wu J. Pyridoxine supplementation improves the activity of recombinant glutamate decarboxylase and the enzymatic production of gama-aminobutyric acid. PLoS One. 2016;11(7):e0157466.
  • Lammens TM, Franssen MCR, Scott EL, et al. Synthesis of biobased N-methylpyrrolidone by one-pot cyclization and methylation of γ-aminobutyric acid. Green Chem. 2010;12(8):1430–1436.
  • Park SJ, Kim EY, Noh W, et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng. 2013;36(7):885–892.
  • Song H, Xu X, Wang H, et al. Exogenous gamma-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J Sci Food Agric. 2010;90(9):1410–1416.
  • Yu C, Zeng L, Sheng K, et al. γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem. 2014;159:29–37.
  • Yang J, Sun C, Zhang Y, et al. Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata. Food Chem. 2017;221:1014–1020.
  • Podlešáková K, Ugena L, Spíchal L, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N Biotechnol. 2019;48:53–65.
  • Cheng JB, Bu DP, Wang JQ, et al. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows. J Dairy Sci. 2014;97(9):5599–5607.
  • Tang J, Chen Z. The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress. J Anim Physiol Anim Nutr. 2016;100(4):768–777.
  • Inoue K, Shirai T, Ochiai H, et al. Blood-pressure-lowering effect of a novel fermented milk containing γ-aminobutyric acid (GABA) in mild hypertensives. Eur J Clin Nutr. 2003;57(3):490–495.
  • Powers ME, Yarrow JF, McCoy SC, et al. Growth hormone isoform responses to GABA ingestion at rest and after exercise. Med Sci Sports Exerc. 2008;40:104–110.
  • Shi F, Ni Y, Wang N. Metabolism and biotechnological production of gamma-aminobutyric acid (GABA). In: Vandamme EJ, Revuelta JL, editors. Industrial biotechnology of vitamins, biopigments, and antioxidants. 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. p. 445–468.
  • Kim JY, Lee MY, Ji GE, et al. Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol. 2009;130(1):12–16.
  • Zhao M, Ma Y, Wei ZZ, et al. Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese Tea. J Agric Food Chem. 2011;59(8):3641–3648.
  • Abd El-Fattah A, Sakr S, El-Dieb S, et al. Developing functional yogurt rich in bioactive peptides and gamma-aminobutyric acid related to cardiovascular health. LWT - Food Sci Technol. 2018;98:390–397.
  • Liu CF, Tung YT, Wu CL, et al. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J Agric Food Chem. 2011;59(9):4537–4543.
  • Han M, Liao WY, Wu SM, et al. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. J Dairy Sci. 2020;103(1):98–105.
  • Zhang H, Yao HY, Chen F. Accumulation of gamma-aminobutyric acid in rice germ using protease. Biosci Biotechnol Biochem. 2006;70(5):1160–1165.
  • Cai S, Gao F, Zhang X, et al. Evaluation of γ- aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. J Food Sci Technol. 2014;51(10):2544–2551.
  • Joye IJ, Lamberts L, Brijs K, et al. In situ production of γ-aminobutyric acid in breakfast cereals. Food Chem. 2011;129(2):395–401.
  • Dai SF, Gao F, Xu XL, et al. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, pH, composition, and water-holding characteristic in broilers under cyclic heat stress. Br Poult Sci. 2012;53(4):471–481.
  • Yamakoshi J, Fukuda S, Satoh T, et al. Antihypertensive and natriuretic effects of less-sodium soy sauce containing gamma-aminobutyric acid in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2007;71(1):165–173.
  • Kuda T, Tanibe R, Mori M, et al. Microbial and chemical properties of aji-no-susu, a traditional fermented fish with rice product in the Noto Peninsula. Fish Sci. 2009;75(6):1499–1506.
  • Zareian M, Oskoueian E, Majdinasab M, et al. Production of GABA-enriched idli with ACE inhibitory and antioxidant properties using Aspergillus oryzae: the antihypertensive effects in spontaneously hypertensive rats. Food Funct. 2020;11(5):4304–4313.
  • Nakamura H, Takishima T, Kometani T, et al. Psychological stress-reducing effect of chocolate enriched with γ-aminobutyric acid (GABA) in humans: assessment of stress using heart rate variability and salivary chromogranin A. Int J Food Sci Nutr. 2009;60(sup5):106–113.
  • Wang C, Fan L, Gao H, et al. Polyamine biosynthesis and degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-stressed melon roots. Plant Physiol Biochem. 2014;82:17–26.
  • Li Z, Yu J, Peng Y, et al. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Sci Rep. 2016;6:30338.
  • Brasca M, Hogenboom JA, Morandi S, et al. Proteolytic activity and production of γ-aminobutyric acid by Streptococcus thermophilus cultivated in microfiltered pasteurized milk. J Agric Food Chem. 2016;64(45):8604–8614.
  • Ohmori T, Tahara M, Ohshima T. Mechanism of gamma-aminobutyric acid (GABA) production by a lactic acid bacterium in yogurt-sake. Process Biochem. 2018;74:21–27.
  • Shekh SL, Dave JM, Vyas BRM. Characterization of Lactobacillus plantarum strains for functionality, safety and gamma-amino butyric acid production. LWT - Food Sci Technol. 2016;74:234–241.
  • Ly D, Mayrhofer S, Agung Yogeswara IB, et al. Identification, classification and screening for γ-amino-butyric acid production in lactic acid bacteria from Cambodian fermented foods. Biomolecules. 2019;9(12):768.
  • Li HX, Qiu T, Huang GD, et al. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact. 2010;9:85.
  • Tamura T, Noda M, Ozaki M, et al. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biol Pharm Bull. 2010;33(10):1673–1679.
  • Lyu CJ, Zhao WR, Hu S, et al. Physiology-oriented engineering strategy to improve gamma-aminobutyrate production in Lactobacillus brevis. J Agric Food Chem. 2017;65(4):858–866.
  • Lyu C, Zhao W, Peng C, et al. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb Cell Fact. 2018;17(1):180.
  • Li H, Li W, Liu X, et al. gadA gene locus in Lactobacillus brevis NCL912 and its expression during fed-batch fermentation. FEMS Microbiol Lett. 2013;349(2):108–116.
  • Gao D, Chang K, Ding G, et al. Genomic insights into a robust gamma-aminobutyric acid-producer Lactobacillus brevis CD0817. AMB Express. 2019;9(1):72.
  • Zhao A, Hu X, Pan L, et al. Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol. 2015;99(7):3191–3200.
  • Gong L, Ren C, Xu Y. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis. Microb Cell Fact. 2019;18(1):108.
  • Ab Kadir S, Wan-Mohtar WAI, Mohammad R, et al. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for gamma-aminobutyric acid (GABA) production. J Ind Microbiol Biotechnol. 2016;43(10):1387–1395.
  • Lin ST, Lan JCW. Evaluation of gamma-aminobutyric acid (GABA) production from waste feedstocks by an isolated Bacillus subtilis. New Biotechnol. 2018;44:S133.
  • Wan-Mohtar W, Sohedein MNA, Ibrahim MF, et al. Isolation, identification, and optimization of γ-aminobutyric acid (GABA)-producing Bacillus cereus strain KBC from a commercial soy sauce moromi in submerged-liquid fermentation. Processes. 2020;8(6):652.
  • Su YC, Wang JJ, Lin TT, et al. Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol. 2003;30(1):41–46.
  • Ding W, Cui J, Zhao Y, et al. Enhancing Haematococcus pluvialis biomass and γ-aminobutyric acid accumulation by two-step cultivation and salt supplementation. Bioresour Technol. 2019;285:121334.
  • Perpetuini G, Tittarelli F, Battistelli N, et al. γ-aminobutyric acid production by Kluyveromyces marxianus strains. J Appl Microbiol. 2020;129(6):1609–1619.
  • Zhang Q, Sun Q, Tan X, et al. Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing. J Biosci Bioeng. 2020;129(4):447–453.
  • Aoki H, Uda I, Tagami K, et al. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Biosci Biotechnol Biochem. 2003;67(5):1018–1023.
  • Guo XF, Hagiwara T, Masuda K, et al. Optimal reaction conditions for the production of γ-aminobutyric acid by the marine yeast isolate Pichia anomala MR-1 strain. Biosci Biotechnol Biochem. 2011;75(10):1867–1871.
  • Guo XF, Aoki H, Hagiwara T, et al. Identification of high gamma-aminobutyric acid producing marine yeast strains by physiological and biochemical characteristics and gene sequence analyses. Biosci Biotechnol Biochem. 2009;73(7):1527–1534.
  • Masuda K, Guo XF, Uryu N, et al. Isolation of marine yeasts collected from the Pacific Ocean showing a high production of gamma-aminobutyric acid. Biosci Biotechnol Biochem. 2008;72(12):3265–3272.
  • Soma Y, Fujiwara Y, Nakagawa T, et al. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose. Metab Eng. 2017;43(Pt A):54–63.
  • Pham VD, Lee SH, Park SJ, et al. Production of gamma-aminobutyric acid from glucose by introduction of synthetic scaffolds between isocitrate dehydrogenase, glutamate synthase and glutamate decarboxylase in recombinant Escherichia coli. J Biotechnol. 2015;207:52–57.
  • Zhang R, Yang T, Rao Z, et al. Efficient one-step preparation of γ-aminobutyric acid from glucose without an exogenous cofactor by the designed Corynebacterium glutamicum. Green Chem. 2014;16(9):4190–4197.
  • Cho JS, Choi KR, Prabowo CPS, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157–167.
  • Kurihara S, Kato K, Asada K, et al. A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12. J Bacteriol. 2010;192(18):4582–4591.
  • Ma D, Lu P, Yan C, et al. Structure and mechanism of a glutamate-GABA antiporter. Nature. 2012;483(7391):632–636.
  • Liu Y, Tang H, Lin Z, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv. 2015;33(7):1484–1492.
  • Sarasa SB, Mahendran R, Muthusamy G, et al. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): its production and role in microbes. Curr Microbiol. 2020;77(4):534–544.
  • Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol. 2013;114(1):11–24.
  • Dhakal R, Bajpai VK, Baek K-H. Production of GABA (γ - Aminobutyric acid) by microorganisms: a review. Braz J Microbiol. 2012;43(4):1230–1241.
  • Cao J, Barbosa JM, Singh NK, et al. GABA shunt mediates thermotolerance in Saccharomyces cerevisiae by reducing reactive oxygen production. Yeast. 2013;30(4):129–144.
  • Francis GA, Scollard J, Meally A, et al. The glutamate decarboxylase acid resistance mechanism affects survival of Listeria monocytogenes LO28 in modified atmosphere-packaged foods. J Appl Microbiol. 2007;103(6):2316–2324.
  • Zhao Y, Qiao T, Han B, et al. Simultaneous enhancement of biomass and lipid production of Monoraphidium sp. QLZ-3 in a photobioreactor by using walnut shell extracts. Energy Convers Manage. 2020;204:112326.
  • Zhao Y, Song X, Zhong DB, et al. γ-Aminobutyric acid (GABA) regulates lipid production and cadmium uptake by Monoraphidium sp. QLY-1 under cadmium stress. Bioresour Technol. 2020;297:122500.
  • Li X, Zhang X, Zhao Y, et al. Cross-talk between gama-aminobutyric acid and calcium ion regulates lipid biosynthesis in Monoraphidium sp. QLY-1 in response to combined treatment of fulvic acid and salinity stress. Bioresour Technol. 2020;315:123833.
  • Wu Q, Shah NP. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria. J Dairy Sci. 2015;98(2):790–797.
  • Villegas JM, Brown L, Savoy de Giori G, et al. Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT - Food Sci Technol. 2016;67:22–26.
  • Binh TTT, Ju WT, Jung WJ, et al. Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol Lett. 2014;36(1):93–98.
  • Hsueh YH, Liaw WC, Kuo JM, et al. Hydrogel film-immobilized Lactobacillus brevis RK03 for γ-aminobutyric acid production. IJMS. 2017;18(11):2324.
  • Wu CH, Hsueh YH, Kuo JM, et al. Characterization of a potential probiotic Lactobacillus brevis RK03 and efficient production of gamma-aminobutyric acid in batch fermentation. IJMS. 2018;19(1):143.
  • Wang Q, Liu X, Fu J, et al. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microb Cell Fact. 2018;17(1):80.
  • Zhang Y, Song L, Gao Q, et al. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol. 2012;94(6):1619–1627.
  • Kim DH, Dasagrandhi C, Park SK, et al. Optimization of gamma-aminobutyric acid production using sea tangle extract by lactic acid bacterial fermentation. LWT - Food Sci Technol. 2018;90:636–642.
  • Hasegawa M, Yamane D, Funato K, et al. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis. J Biosci Bioeng. 2018;125(3):316–319.
  • Hasegawa M, Fujii S, Funato K, et al. Expression of two glutamate decarboxylase genes in Lactobacillus brevis during gamma-aminobutyric acid production with date residue extract. Biosci Biotechnol Biochem. 2020;84(5):1069–1072.
  • Ko CY, Lin HTV, Tsai GJ. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem. 2013;48(4):559–568.
  • Shi X, Chang C, Ma S, et al. Efficient bioconversion of L-glutamate to γ-aminobutyric acid by Lactobacillus brevis resting cells. J Ind Microbiol Biotechnol. 2017;44(4–5):697–704.
  • Cataldo PG, Villegas JM, Savoy de Giori G, et al. Enhancement of γ-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation. Int J Food Microbiol. 2020;333:108792.
  • Gangaraju D, Murty VR, Prapulla SG. Probiotic-mediated biotransformation of monosodium glutamate to gamma-aminobutyric acid: differential production in complex and minimal media and kinetic modelling. Ann Microbiol. 2014;64(1):229–237.
  • Song HY, Yu RC. Optimization of culture conditions for gamma-aminobutyric acid production in fermented adzuki bean milk. J Food Drug Anal. 2018;26(1):74–81.
  • Kook MC, Cho SC. Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Korean J Food Sci An. 2013;33(3):377–389.
  • Kook MC, Seo MJ, Cheigh CI, et al. Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J Microbiol Biotechnol. 2010;20(4):763–766.
  • Tajabadi N, Ebrahimpour A, Baradaran A, et al. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules. 2015;20(4):6654–6669.
  • Shan Y, Man CX, Han X, et al. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J Dairy Sci. 2015;98(4):2138–2149.
  • Yang T, Rao Z, Kimani BG, et al. Two-step production of gamma-aminobutyric acid from cassava powder using Corynebacterium glutamicum and Lactobacillus plantarum. J Ind Microbiol Biotechnol. 2015;42(8):1157–1165.
  • Laroute V, Yasaro C, Narin W, et al. GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. Front Microbio. 2016;7:1050.
  • Sanchart C, Watthanasakphuban N, Boonseng O, et al. Tuna condensate as a promising low-cost substrate for glutamic acid and GABA formation using Candida rugosa and Lactobacillus futsaii. Process Biochem. 2018;70:29–35.
  • Divyashri G, Prapulla SG. An insight into kinetics and thermodynamics of gamma-aminobutyric acid production by Enterococcus faecium CFR 3003 in batch fermentation. Ann Microbiol. 2015;65(2):1109–1118.
  • Zhu H, Sadiq FA, Li Y, et al. Application of ion-exchange resin as solid acid for buffer-free production of gamma-aminobutyric acid using Enterococcus faecium cells. LWT - Food Sci Technol. 2018;98:341–348.
  • Yang SY, Liu SM, Jiang M, et al. Enhancing effect of macroporous adsorption resin on gamma-aminobutyric acid production by Enterococcus faecium in whole-cell biotransformation system. Amino Acids. 2020;52(5):771–780.
  • Yang SY, Lu FX, Lu ZX, et al. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp thermophilus Y2 under submerged fermentation. Amino Acids. 2008;34(3):473–478.
  • Wang JJ, Lee CL, Pan TM. Improvement of monacolin K, gamma-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol. 2003;30(11):669–676.
  • Lee EJ, Lee SP. Novel bioconversion of sodium glutamate to gamma-amino butyric acid by co-culture of Lactobacillus plantarum K154 in Ceriporia lacerata culture broth. Food Sci Biotechnol. 2014;23(6):1997–2005.
  • Kim JA, Park MS, Kang SA, et al. Production of gamma-aminobutyric acid during fermentation of Gastrodia elata Bl. by co-culture of Lactobacillus brevis GABA 100 with Bifidobacterium bifidum BGN4. Food Sci Biotechnol. 2014;23(2):459–466.
  • Kwon SY, Garcia CV, Song YC, et al. GABA-enriched water dropwort produced by co-fermentation with Leuconostoc mesenteroides SM and Lactobacillus plantarum K154. LWT - Food Sci Technol. 2016;73:233–238.
  • Li YC, Ku S, Park MS, et al. Acceleration of aglycone isoflavone and γ-aminobutyric acid production from doenjang using whole-cell biocatalysis accompanied by protease treatment. J Microbiol Biotechnol. 2017;27(11):1952–1960.
  • Park EJ, Garcia CV, Youn SJ, et al. Fortification of γ-aminobutyric acid and bioactive compounds in Cucurbita moschata by novel two-step fermentation using Bacillus subtilis and Lactobacillus plantarum. LWT - Food Sci Technol. 2019;102:22–29.
  • Carafa I, Stocco G, Nardin T, et al. Production of naturally γ-aminobutyric acid-enriched cheese using the dairy strains Streptococcus thermophilus 84C and Lactobacillus brevis DSM 32386. Front Microbiol. 2019;10:93.
  • Li HX, Qiu T, Liu XH, et al. Continuous cultivation of Lactobacillus brevis NCL912 for production of gamma-aminobutyric acid. Ann Microbiol. 2013;63(4):1649–1652.
  • Li HX, Qiu T, Gao DD, et al. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids. 2010;38(5):1439–1445.
  • Ke C, Yang X, Rao H, et al. Whole-cell conversion of L-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli. Springerplus. 2016;5:591.
  • Yang X, Ke C, Zhu J, et al. Enhanced productivity of gamma-amino butyric acid by cascade modifications of a whole-cell biocatalyst. Appl Microbiol Biotechnol. 2018;102(8):3623–3633.
  • Lyu CJ, Liu L, Huang J, et al. Biosynthesis of γ-aminobutyrate by engineered Lactobacillus brevis cells immobilized in gellan gum gel beads. J Biosci Bioeng. 2019;128(2):123–128.
  • Yuan H, Wang H, Fidan O, et al. Identification of new glutamate decarboxylases from Streptomyces for efficient production of γ-aminobutyric acid in engineered Escherichia coli. J Biol Eng. 2019;13:24.
  • Fan LQ, Li MW, Qiu YJ, et al. Increasing thermal stability of glutamate decarboxylase from Escherichia. coli by site-directed saturation mutagenesis and its application in GABA production. J Biotechnol. 2018;278:1–9.
  • Wang C, Cui Y, Qu X. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch Microbiol. 2018;200(2):195–201.
  • Kubota H, Senda S, Nomura N, et al. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng. 2008;106(4):381–386.
  • Lyu C, Hu S, Huang J, et al. Contribution of the activated catalase to oxidative stress resistance and γ-aminobutyric acid production in Lactobacillus brevis. Int J Food Microbiol. 2016;238:302–310.
  • Tajabadi N, Baradaran A, Ebrahimpour A, et al. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production. Microb Biotechnol. 2015;8(4):623–632.
  • Liu J, Meng F, Du Y, et al. Co-production of nisin and gamma-aminobutyric acid by engineered Lactococcus lactis for potential application in food preservation. Front Microbio. 2020;11:49.
  • Lyu CJ, Fei JY, Yan JP, et al. Improvement of γ-aminobutyrate biosynthesis by genetically engineered Lactococcus lactis. Biochem Eng J. 2020;157:107525.
  • Zhao Z, Ding JY, Ma WH, et al. Identification and characterization of γ-aminobutyric acid uptake system GabPCg (NCgl0464) in Corynebacterium glutamicum. Appl Environ Microbiol. 2012;78(8):2596–2601.
  • Shi F, Li Y. Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett. 2011;33(12):2469–2474.
  • Shi F, Jiang J, Li Y, et al. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol. 2013;40(11):1285–1296.
  • Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum. Biotechnol Lett. 2015;37(7):1473–1481.
  • Shi F, Zhang M, Li Y. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. World J Microbiol Biotechnol. 2017;33(6):122.
  • Takahashi C, Shirakawa J, Tsuchidate T, et al. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol. 2012;51(3):171–176.
  • Okai N, Takahashi C, Hatada K, et al. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express. 2014;4:20.
  • Choi JW, Yim SS, Lee SH, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact. 2015;14:21.
  • Baritugo KA, Kim HT, David Y, et al. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb Cell Fact. 2018;17(1):129.
  • Jorge JMP, Leggewie C, Wendisch VF. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids. 2016;48(11):2519–2531.
  • Jorge JMP, Nguyen AQD, Pérez-García F, et al. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng. 2017;114(4):862–873.
  • Le Vo TD, Kim TW, Hong SH. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst Eng. 2012;35(4):645–650.
  • Le Vo TD, Ko JS, Park SJ, et al. Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli. J Ind Microbiol Biotechnol. 2013;40(8):927–933.
  • Somasundaram S, Tran KNT, Ravikumar S, et al. Introduction of synthetic protein complex between Pyrococcus horikoshii glutamate decarboxylase and Escherichia coli GABA transporter for the improved production of GABA. Biochem Eng J. 2017;120:1–6.
  • Yu P, Ren Q, Wang XX, et al. Enhanced biosynthesis of gamma-aminobutyric acid (GABA) in Escherichia coli by pathway engineering. Biochem Eng J. 2019;141:252–258.
  • Zhao A, Hu X, Li Y, et al. Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production. AMB Express. 2016;6(1):55.
  • Tang CD, Li X, Shi HL, et al. Efficient expression of novel glutamate decarboxylases and high level production of γ-aminobutyric acid catalyzed by engineered Escherichia coli. Int J Biol Macromol. 2020;160:372–379.
  • Park S-H, Sohn YJ, Park SJ, et al. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions. Microb Cell Fact. 2020;19(1):64.
  • Pham VD, Somasundaram S, Lee SH, et al. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. J Ind Microbiol Biotechnol. 2016;43(1):79–86.
  • Im DK, Hong J, Gu B, et al. 13C Metabolic flux analysis of Escherichia coli engineered for gamma-aminobutyrate production. Biotechnol J. 2020;15(6):1900346.
  • Hou CY, Kang TJ. Production of gamma-aminobutyric acid by Escherichia coli using glycerol as a sole carbon source. J Chem Technol Biotechnol. 2018;93(1):184–190.
  • Zhao A, Hu X, Wang X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol. 2017;101(9):3587–3603.
  • Zhang C, Lu J, Chen L, et al. Biosynthesis of γ-aminobutyric acid by a recombinant Bacillus subtilis strain expressing the glutamate decarboxylase gene derived from Streptococcus salivarius ssp. thermophilus Y2. Process Biochem. 2014;49(11):1851–1857.
  • Irla M, Naerdal I, Brautaset T, et al. Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains. Ind Crop Prod. 2017;106:12–20.
  • Yuan H, Zhang W, Xiao G, et al. Efficient production of gamma-aminobutyric acid by engineered Saccharomyces cerevisiae with glutamate decarboxylases from Streptomyces. Biotechnol Appl Biochem. 2020;67(2):240–248.
  • Jaichumjai P, Valyasevi R, Assavanig A, et al. Isolation and characterization of acid-sensitive Lactobacillus plantarum with application as starter culture for Nham production. Food Microbiol. 2010;27(6):741–748.
  • Somasundaram S, Maruthamuthu MK, Ganesh I, et al. Enchancement of gamma-aminobutyric acid production by co-localization of Neurospora crassa OR74A glutamate decarboxylase with Escherichia coli GABA transporter via synthetic scaffold complex. J Microbiol Biotechnol. 2017;27(9):1664–1669.
  • Su L, Huang Y, Wu J. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. Bioresour Technol. 2015;198:63–69.
  • Pham VD, Somasundaram S, Park SJ, et al. Co-localization of GABA shunt enzymes for the efficient production of gamma-aminobutyric acid via GABA shunt pathway in Escherichia coli. J Microbiol Biotechnol. 2016;26(4):710–716.
  • Cui Y, Miao K, Niyaphorn S, et al. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. IJMS. 2020;21(3):995.
  • Jönsson LJ, Martín C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112.
  • Luo H, Yang R, Zhao Y, et al. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol. 2018;253:343–354.
  • Shi F, Xie Y, Jiang J, et al. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol. 2014;61-62:35–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.