345
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey!

ORCID Icon & ORCID Icon
Pages 594-608 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 07 Mar 2021

References

  • Harada J. Seed biology. J Integr Plant Biol. 2019;61(5):530–532.
  • Ingram G, North H, Lepiniec L. Seeds as perfect factories for developing sustainable agriculture. New York, NY: Springer; 2018.
  • Pereira AM, Coimbra S. Advances in plant reproduction: from gametes to seeds. London: Oxford University Press; 2019.
  • Li N, Li Y. Maternal control of seed size in plants. J Exp Bot. 2015;66(4):1087–1097.
  • Li N, Xu R, Li Y. Molecular networks of seed size control in plants. Annu Rev Plant Biol. 2019;70:435–463.
  • Sundaresan V. Control of seed size in plants. Proc Natl Acad Sci U S A. 2005;102(50):17887–17888.
  • Sreenivasulu N, Wobus U. Seed-development programs: a systems biology–based comparison between dicots and monocots. Annu Rev Plant Biol. 2013;64(1):189–217.
  • Venglat P, Xiang D, Wang E, et al. Genomics of seed development: challenges and opportunities for genetic improvement of seed traits in crop plants. Biocatal Agric Biotechnol. 2014;3(1):24–30.
  • Achkar NP, Cambiagno DA, Manavella PA. miRNA biogenesis: a dynamic pathway. Trends Plant Sci. 2016;21(12):1034–1044.
  • Chorostecki U, Moro B, Rojas AM, et al. Evolutionary footprints reveal insights into plant microRNA biogenesis. Plant Cell. 2017;29(6):1248–1261.
  • Song X, Li Y, Cao X, et al. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol. 2019;70:489–525.
  • Budak H, Akpinar BA. Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics. 2015;15(5):523–531.
  • Anushree N, Shivaprasad P. Regulation of plant miRNA biogenesis. Proc Indian Natl Sci Acad. 2018;84(2):439–453.
  • Gebert LF, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37.
  • Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem. 2009;284(27):17897–17901.
  • Deng P, Muhammad S, Cao M, et al. Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnol J. 2018;16(5):965–975.
  • Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;64:137–159.
  • Tamim S, Cai Z, Mathioni SM, et al. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. New Phytol. 2018;220(3):865–877.
  • Nodine MD, Bartel DP. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev. 2010;24(23):2678–2692.
  • Seefried WF, Willmann MR, Clausen RL, et al. Global regulation of embryonic patterning in Arabidopsis by microRNAs. Plant Physiol. 2014;165(2):670–687.
  • Willmann MR, Mehalick AJ, Packer RL, et al. MicroRNAs regulate the timing of embryo maturation in Arabidopsis. Plant Physiol. 2011;155(4):1871–1884.
  • Armenta-Medina A, Lepe-Soltero D, Xiang D, et al. Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Dev Biol. 2017;431(2):145–151.
  • Tang X, Bian S, Tang M, et al. MicroRNA-mediated repression of the seed maturation program during vegetative development in Arabidopsis. PLoS Genet. 2012;8(11):e1003091.
  • Islam W, Adnan M, Huang Z, et al. Small RNAs from seed to mature plant. Crit Rev Plant Sci. 2019;38(2):117–139.
  • Singh A, Gautam V, Singh S, et al. Plant small RNAs: advancement in the understanding of biogenesis and role in plant development. Planta. 2018;248(3):545–558.
  • Vashisht D, Nodine MD. MicroRNA functions in plant embryos. London: Portland Press Limited; 2014.
  • Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol. 2016;33:23–32.
  • Fan Y, Li Y. Molecular, cellular and Yin-Yang regulation of grain size and number in rice. Mol Breeding. 2019;39(12):163.
  • Hu Z, Lu S-J, Wang M-J, et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant. 2018;11(5):736–749.
  • Lan T, He K, Chang L, et al. QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica. 2018;214(7):119.
  • Cheng R, Kong Z, Zhang L, et al. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theor Appl Genet. 2017;130(7):1405–1414.
  • Tao Y, Zhao X, Wang X, et al. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol J. 2019;18(4):1093–1105.
  • Sun L, Wang X, Yu K, et al. Mapping of QTLs controlling seed weight and seed-shape traits in Brassica napus L. using a high-density SNP map. Euphytica. 2018;214(12):228.
  • Dhaka N, Rout K, Yadava SK, et al. Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea. Theor Appl Genet. 2017;130(2):293–307.
  • Hacisalihoglu G, Burton AL, Gustin JL, et al. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. J Integr Plant Biol. 2018;60(3):232–241.
  • Zhang S, Hu X, Miao H, et al. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol. 2019;19(1):537.
  • Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007;52(1):133–146.
  • Na G, Mu X, Grabowski P, et al. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Plant J. 2019;98(2):346–358.
  • Peng T, Sun H, Qiao M, et al. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice. BMC Plant Biol. 2014;14(1):196.
  • Liu N, Wu S, Li Z, et al. Repression of microRNA 160 results in retarded seed integument growth and smaller final seed size in cotton. Crop J. 2020;8(4):602–612.
  • Zhai L, Xu L, Wang Y, et al. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.). Sci Rep. 2016;6:21652.
  • Zhao YF, Peng T, Sun HZ, et al. miR1432-Os ACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnol J. 2019;17(4):712–723.
  • Song X-J. Crop seed size: BR matters. Mol Plant. 2017;10(5):668–669.
  • Zhang Y-C, Yu Y, Wang C-Y, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol. 2013;31(9):848–852.
  • Wang CY, Zhang S, Yu Y, et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol J. 2014;12(8):1132–1142.
  • Xia K, Ou X, Tang H, et al. Rice microRNA osa-miR1848 targets the obtusifoliol 14α-demethylase gene OsCYP51G3 and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytol. 2015;208(3):790–802.
  • Gao J, Chen H, Yang H, et al. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. New Phytol. 2018;220(2):488–501.
  • Liu M, Tan X, Yang Y, et al. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnol J. 2020;18(1):207–221.
  • Sun X, Shantharaj D, Kang X, et al. Transcriptional and hormonal signaling control of Arabidopsis seed development. Curr Opin Plant Biol. 2010;13(5):611–620.
  • Agarwal P, Kapoor S, Tyagi AK. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays. 2011;33(3):189–202.
  • Zheng L, Zhang X, Zhang H, et al. The miR164-dependent regulatory pathway in developing maize seed. Mol Genet Genomics. 2019;294(2):501–517.
  • Mallory AC, Dugas DV, Bartel DP, et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol. 2004;14(12):1035–1046.
  • Hu J, Wang Y, Fang Y, et al. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant. 2015;8(10):1455–1465.
  • Li S, Gao F, Xie K, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J. 2016;14(11):2134–2146.
  • Chen X, Jiang L, Zheng J, et al. A missense mutation in LGS1 increases grain size and enhances cold tolerance in rice. J Exp Bot. 2019;70(15):3851–3866.
  • Miao C, Wang D, He R, et al. Mutations in MIR 396e and MIR 396f increase grain size and modulate shoot architecture in rice. Plant Biotechnol J. 2019;18(2):491–501.
  • Liebsch D, Palatnik JF. MicroRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol. 2020;53:31–42.
  • Sun P, Zhang W, Wang Y, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J Integr Plant Biol. 2016;58(10):836–847.
  • Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet. 2012;44(8):950–954.
  • Sun Z, Su C, Yun J, et al. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J. 2019;17(1):50–62.
  • Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–544.
  • Sun M, Shen Y, Li H, et al. The multiple roles of OsmiR535 in modulating plant height, panicle branching and grain shape. Plant Sci. 2019;283:60–69.
  • Jiang L, Ma X, Zhao S, et al. The APETALA2-like transcription factor *SUPERNUMERARY BRACT controls rice seed shattering and seed size. Plant Cell. 2019;31(1):17–36.
  • Zhang H, Zhang J, Yan J, et al. Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proc Natl Acad Sci U S A. 2017;114(20):5277–5282.
  • Sun W, Xu XH, Li Y, et al. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol. 2020;226(3):823–837.
  • Pan J, Huang D, Guo Z, et al. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol. 2018;60(4):323–340.
  • Aguirre M, Kiegle E, Leo G, et al. Carbohydrate reserves and seed development: an overview. Plant Reprod. 2018;31(3):263–290.
  • Baud S. Seeds as oil factories. Plant Reprod. 2018;31(3):213–235.
  • Fatihi A, Boulard C, Bouyer D, et al. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds. Plant Sci. 2016;250:198–204.
  • Devic M, Roscoe T. Seed maturation: simplification of control networks in plants. Plant Sci. 2016;252:335–346.
  • Lepiniec L, Devic M, Roscoe T, et al. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reprod. 2018;31(3):291–307.
  • Roscoe TJ, Vaissayre V, Paszkiewicz G, et al. Regulation of FUSCA3 expression during seed development in Arabidopsis. Plant Cell Physiol. 2019;60(2):476–487.
  • Zhou Y, Honda M, Zhu H, et al. Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Rep. 2015;10(11):1819–1827.
  • Wang F, Perry SE. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol. 2013;161(3):1251–1264.
  • Song JB, Shu XX, Shen Q, et al. Altered fruit and seed development of transgenic rapeseed (Brassica napus) over-expressing microRNA394. PLoS One. 2015;10(5):e0125427.
  • Gao L-C, Wang Y-F, Zhu Z, et al. EgmiR5179 from the mesocarp of oil palm (Elaeis guineensis Jacq.) regulates oil accumulation by targeting NAD transporter 1. Ind Crops Prod. 2019;137:126–136.
  • Xia K, Zeng X, Jiao Z, et al. Formation of protein disulfide bonds catalyzed by OsPDIL1;1 is mediated by microRNA5144-3p in rice. Plant Cell Physiol. 2018;59(2):331–342.
  • Liao P-F, Ouyang J-X, Zhang J-J, et al. OsDCL3b affects grain yield and quality in rice. Plant Mol Biol. 2019;99(3):193–204.
  • Rajjou L, Duval M, Gallardo K, et al. Seed germination and vigor. Annu Rev Plant Biol. 2012;63:507–533.
  • TeKrony DM, Egli DB. Relationship of seed vigor to crop yield: a review. Crop Sci. 1991;31(3):816–822.
  • Zhou Y, Zhou S, Wang L, et al. miR164c and miR168a regulate seed vigor in rice. J Integr Plant Biol. 2019;62;470–486.
  • Dong Y, Wang Y-Z. Seed shattering: from models to crops. Front Plant Sci. 2015;6:476.
  • Debernardi JM, Greenwood JR, Finnegan EJ, et al. Wheat APETALA2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development. Plant J. 2019;101(1):171–187.
  • Debernardi JM, Lin H, Chuck G, et al. microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability. Development. 2017;144(11):1966–1975.
  • Xie Q, Li N, Yang Y, et al. Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta. 2018;247(5):1089–1098.
  • Li F, Numa H, Hara N, et al. Identification of a locus for seed shattering in rice (Oryza sativa L.) by combining bulked segregant analysis with whole-genome sequencing. Mol Breeding. 2019;39(3):36.
  • Yao X, Chen J, Zhou J, et al. An essential role for miRNA167 in maternal control of embryonic and seed development. Plant Physiol. 2019;180(1):453–464.
  • Zhao Y, Wang S, Wu W, et al. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nat Commun. 2018;9(1):5011.
  • McJunkin K, Ambros V. The embryonic mir-35 family of microRNAs promotes multiple aspects of fecundity in Caenorhabditis elegans. G3. G3 (Bethesda). 2014;4(9):1747–1754.
  • Plotnikova A, Kellner MJ, Schon MA, et al. MicroRNA dynamics and functions during Arabidopsis embryogenesis. Plant Cell. 2019;31(12):2929–2946.
  • Guo G, Liu X, Sun F, et al. Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell. 2018;30(4):796–814.
  • Liu Y, Wang Y, Zhu Q-H, et al. Identification of phasiRNAs in wild rice (Oryza Rufipogon). Plant Signaling & Behavior. 2013;8(8):e25079.
  • Liu Q, Yang T, Yu T, et al. Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Front Plant Sci. 2017;8:43.
  • Huan T, Rong J, Liu C, et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat Commun. 2015;6:6601.
  • Jiang Q, Zhao H, Li R, et al. In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins. BMC Genet. 2019;20(1):46.
  • Wilk G, Braun R. regQTLs: single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors. PLoS Genet. 2018;14(12):e1007837.
  • Smith MR, Rao IM, Merchant A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front Plant Sci. 2018;9:1889.
  • Peng T, Qiao M, Liu H, et al. A resource for inactivation of microRNAs using short tandem target mimic technology in model and crop plants. Mol Plant. 2018;11(11):1400–1417.
  • Peng T, Teotia S, Tang G, et al. MicroRNAs meet with quantitative trait loci: small powerful players in regulating quantitative yield traits in rice. *Wiley Interdiscip Rev Rna. 2019;10(6):e1556.
  • Maor R, Nesher I. Transgenic plants with modified sugar content and methods of generating same. Google Patents; 2019.
  • Basso MF, Ferreira PCG, Kobayashi AK, et al. MicroRNA s and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J. 2019;17(8):1482–1500.
  • Zhang B, Wang Q. MicroRNA-based biotechnology for plant improvement. J Cell Physiol. 2015;230(1):1–15.
  • Tyagi S, Mazumdar PA, Mayee P, et al. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. Plant Sci. 2018;277:251–266.
  • Tyagi S, Sri T, Singh A, et al. Suppressor of overexpression of CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in Brassica juncea cv. Varuna. Funct Integr Genomics. 2019;19(1):43–60.
  • Gautam T, Gupta PK. Sequence variation in genes encoding miRNAs/targets and other related approaches for possible use in crop improvement. Plant Breed. 2020;139(1):28–41.
  • Gasparis S, Kała M, Przyborowski M, et al. Artificial MicroRNA-based specific gene silencing of grain hardness genes in polyploid cereals appeared to be not stable over transgenic plant generations. Front Plant Sci. 2016;7:2017.
  • Wang M, Jin H. Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol. 2017;25(1):4–6.
  • Wang M, Weiberg A, Lin F-M, et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016;2(10):16151.
  • Li D, Liu Z, Gao L, et al. Genome-wide identification and characterization of microRNAs in developing grains of Zea mays L. PLoS One. 2016;11(4):e0153168.
  • Bai B, Shi B, Hou N, et al. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol. 2017;17(1):150.
  • Li T, Ma L, Geng Y, et al. Small RNA and degradome sequencing reveal complex roles of miRNAs and their targets in developing wheat grains. PLoS One. 2015;10(10):e0139658.
  • Wang J, Jian H, Wang T, et al. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing. Front Plant Sci. 2016;7:1570.
  • Ding J, Ruan C, Guan Y, et al. Identification of microRNAs involved in lipid biosynthesis and seed size in developing sea buckthorn seeds using high-throughput sequencing. Sci Rep. 2018;8(1):4022.
  • Gao C, Wang P, Zhao S, et al. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics. 2017;18(1):220.
  • Yu L, Guo R, Jiang Y, et al. Genome-wide identification and characterization of novel microRNAs in seed development of soybean. Biosci Biotechnol Biochem. 2019;83(2):233–242.
  • Hu J, Jin J, Qian Q, et al. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genomics. 2016;17(1):684.
  • Yin D-D, Li S-S, Shu Q-Y, et al. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds. Gene. 2018;666:72–82.
  • Allen RS, Li J, Stahle MI, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A. 2007;104(41):16371–16376.
  • Liu X, Huang J, Wang Y, et al. The role of floral organs in carpels, an Arabidopsis loss-of-function mutation in MicroRNA160a, in organogenesis and the mechanism regulating its expression. Plant J. 2010;62(3):416–428.
  • Miyashima S, Honda M, Hashimoto K, et al. A comprehensive expression analysis of the Arabidopsis microRNA165/6 gene family during embryogenesis reveals a conserved role in meristem specification and a non-cell-autonomous function. Plant Cell Physiol. 2013;54(3):375–384.
  • Takanashi H, Sumiyoshi H, Mogi M, et al. miRNAs control HAM1 functions at the single-cell-layer level and are essential for normal embryogenesis in Arabidopsis. Plant Mol Biol. 2018;96(6):627–640.
  • Cao S, Zhu Q-H, Shen W, et al. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L.) plants. Front Plant Sci. 2013;4:489.
  • Jin Y, Liu L, Hao X, et al. Unravelling the microRNA-mediated gene regulation in developing Pongamia seeds by high-throughput small RNA profiling. IJMS. 2019;20(14):3509.
  • Wu F-Y, Tang C-Y, Guo Y-M, et al. Comparison of miRNAs and their targets in seed development between two maize inbred lines by high-throughput sequencing and degradome analysis. PLoS One. 2016;11(7):e0159810.
  • DeBoer K, Melser S, Sperschneider J, et al. Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development. BMC Genomics. 2019;20(1):1–16.
  • Ma X, Zhang X, Zhao K, et al. Small RNA and degradome deep sequencing reveals the roles of microRNAs in seed expansion in peanut (Arachis hypogaea L.). Front Plant Sci. 2018;9:349.
  • Luo X, Cao D, Zhang J, et al. Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardness. Sci Rep. 2018;8(1):1–14.
  • Wei W, Li G, Jiang X, et al. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus. PLoS One. 2018;13(10):e0204998.
  • Zhang T, Li Z, Song X, et al. Identification and characterization of microRNAs in the developing seed of linseed flax (Linum usitatissimum L.). IJMS. 2020;21(8):2708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.