2,901
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Biotechnological applications of Bacillus licheniformis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 609-627 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 16 Feb 2021

References

  • Banerjee S, Devaraja TN, Shariff M, et al. Comparison of four antibiotics with indigenous marine Bacillus spp. in controlling pathogenic bacteria from shrimp and Artemia. J Fish Dis. 2007;30(7):383–389.
  • Sayem SMA, Manzo E, Ciavatta L, et al. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact. 2011;10:74–86.
  • Vinoj G, Vaseeharan B, Thomas S, et al. Quorum-Quenching Activity of the AHL-Lactonase from Bacillus licheniformis DAHB1 Inhibits Vibrio Biofilm Formation In Vitro and Reduces Shrimp Intestinal Colonisation and Mortality. Mar Biotechnol (NY)). 2014;16(6):707–715.
  • Rey MW, Ramaiya P, Nelson BA, et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004;5(10):R77.
  • Veith B, Herzberg C, Steckel S, et al. The complete genome sequence of Bacillus licheniformis DMS13, an organism with great industrial potential. J Mol Microbiol Biotechnol. 2004;7(4):204–211.
  • Lee C, Kim JY, Song HS, et al. Genomic analysis of Bacillus licheniformis CBA7126 isolated from a human fecal sample. Front Pharmacol. 2017;8:724.
  • He S, Feng K, Ding T, et al. Complete genome sequence of Bacillus licheniformis BL-010. Microb Pathog. 2018;118:199–201.
  • Ishihara H, Takoh M, Nishibayashi R, et al. Distribution and variation of bacitracin synthetase gene sequences in laboratory stocks strains of Bacillus licheniformis. Curr Microbiol. 2002;45(1):18–23.
  • Madslien EH, Olsen JS, Granum PE, et al. Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST) scheme. BMC Microbiol. 2012;12:230
  • De Clerk E, De Vos P. Genotypic diversity among Bacillus licheniformis strains from various sources. FEMS Microbiol Lett. 2004;231:91–98.
  • Kim Y, Cho JY, Kuk JH, Moon JH, et al. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr Microbiol. 2004;48(4):312–317.
  • Yang HJ, Kwon DY, Kim HJ, et al. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostasis in diabetic rats with experimental Alzheimer's type dementia. Eur J Nutr. 2015;54(1):77–88.
  • Meng X, Wu Q, Wang L, et al. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Bacillus licheniformis for Chinese Maotai-flavor liquor making. J Ind Microbiol Biotechnol. 2015;42(12):1601–1608.
  • de Boer AS, Priest F, Diderichsen B. On the industrial use of Bacillus licheniformis: a review. Appl Microbiol Biotechnol. 1994;40(5):595–598.
  • Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004;50(1):1–17.
  • Borgmeier C, Bongaerts J, Meinhardt F. Genetic analysis of the Bacillus licheniformis degSU operon and the impact of regulatory mutations on protease production. J Biotecnhnol. 2012;159(1-2):12–20.
  • EFSA. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed. Efsa J. 1944;8:5966.
  • Salkinoja-Salonen MS, Vuorio R, Andersson MA, et al. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl Environ Microbiol. 1999;65:46–37.
  • Nieminen T, Rintaluoma N, Andersson M, et al. Toxigenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet Microbiol. 2007;124(3-4):329–339.
  • Pickering J, Teo TH, Thornton RB, et al. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium. Environ Res. 2018;164:248–254.
  • Gupta A, Gupta P, Dhawan A. Dietary supplementation of probiotics affects growth, immune response and disease resistance of Cyprinus carpio fry. Fish Shellfish Immunol. 2014;41(2):113–119.
  • Nakano M. Development of a multiplex real-time PCR assay for the identification and quantification of group-specific Bacillus spp. and the genus Paenibacillus. Int J Food Microbiol. 2020;323:108573.
  • Kumar P, Patel SKS, Lee JK, et al. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv. 2013b;31(8):1543–1561.
  • Gibson T, Abdel-Malek Y. The formation of carbon dioxide by lactic acid bacteria and Bacillus licheniformis and a cultural method of detecting the process. J Dairy Res. 1945;14(1-2):35–44.
  • Qi G, Kang Y, Li L, et al. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels. 2014;7(1):16.
  • Wei X, Tian G, Ji Z, et al. A new strategy for enhacement of poly-γglutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. J Chem Technol Biotechnol. 2015;90(4):709–713.
  • Wei X, Zhou Y, Chen J, et al. Efficient expression of nattokinase in Bacillus licheniformis: host strains construction and signal peptide optimization. J Ind Microbiol Biotechnol. 2015;42(2):287–295.
  • Craynest M, Jorgensen S, Sarvas M, et al. Enhanced secretion of heterologous cyclodextrin glycosyltransferase by a mutant of Bacillus licheniformis defective in the D-alanylation of teichoic acids. Lett Appl Microbiol. 2003;37(1):75–80.
  • Niu D, Wang Z. Development of a pair of bifunctional expression vectors for Escherichia coli and Bacillus licheniformis. J Ind Microbiol Biotechnol. 2007;34(5):357–362.
  • Niu D, Zuo Z, Shi GY, et al. High yield recombinant thermostable alpha-amylase production using an improved Bacillus licheniformis system. Microb Cell Fact. 2009;8:58.
  • Niu D, Shi GY, Wang ZX. Genetic improvement of α-amylase producing Bacillus licheniformis by homolog-mediated α-amylase gene amplification. Chin J Biotech. 2009;25:375–380.
  • EFSA. Panel on food contact materials, enzymes, flavourings and processing aids. Safety Evaluation of the Food Enzyme β-Amylase from the Genetically Modified Bacillus licheniformis Strain NZYM-JA. 2017;15:e04896.
  • EFSA. Panel on food contact materials, enzymes, flavourings and processing aids. Safety Evaluation of the Food Enzyme Acetolactate Decarboxylase from the Genetically Modified Bacillus licheniformis (Strain NZYM-JB). 2018;16:e05476.
  • Sewalt VJ, Reyes TF, Bui Q. Safety evaluation of two α-amylase enzyme preparations derived from Bacillus licheniformis expressing an α-amylase gene from Cytophaga species. Reg Toxicol Pharmacol. 2018;98:140–150.
  • EFSA Panel on food contact materials, enzymes, flavourings and processing aids. Safety evaluation of the food enzyme pullulanase from the genetically modified Bacillus licheniformis (DP-Dzp39). EFSA J. 2019;17:e05549.
  • EFSA. Safety evaluation of the food enzyme maltogenic amylase from the genetically modified Bacillus licheniformis strain DP-Dzr50. EFSA J. 2020;18:e05972.
  • Hentel R, Volland S, Liesegang H. Conjugative reporter system for the use in Bacillus licheniformis and closely related Bacilli. Lett Appl Microbiol. 2014;60:162–167.
  • Muth C, Buchholz M, Schmidt C, et al. Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis. AMB Express. 2017;7(1):149.
  • Cai D, Rao Y, Zhan Y, et al. Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol. 2019;126(6):1632–161642.
  • Cai D, Wei X, Qiu Y, et al. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. J Appl Microbiol. 2016;121(3):704–712.
  • Cai D, Wang H, He P, et al. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb Cell Fact. 2017;16(1):70.
  • Nguyen TT, Nguyen MH, Nguyen HT, et al. A phosphate starvation-inducible ribonuclease of Bacillus licheniformis. J Microbiol Biotechnol. 2016;26(8):1464–1472.
  • Hertel R, Meyerjurgens S, Voigt B, et al. Small RAN mediated repression of subtilisin in Bacillus licheniformis. Sci Rep. 2017;7(1):5699.
  • Cai D, Zhang B, Rao Y, et al. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA-deficient strain of Bacillus licheniformis. Appl Microbiol Biotechnol. 2019;103(12):4789–4799.
  • Lakowitz A, Krull R, Biedendieck R. Recombinant production of the antibody fragment D1.3 scFv with different Bacillus strains. Microb Cell Fact. 2017;16(1):14.
  • Li Y, Wang H, Zhang L, et al. Efficient genome editing in Bacillus licheniformis mediated by a conditional CRISPR/Cas9 system. Microorganisms. 2020;8(5):754.
  • Li K, Cai D, Wang Z, et al. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol. 2018;84(6):e02608.
  • Zhou C, Zhou H, Li D, et al. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Micro Cell Fact. 2020;19:45.
  • Rao Y, Cai D, Wang H, et al. Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol. 2020;312:1–10.
  • Vihinen M, Mantsiila P. Microbial amylotytic enzyme. Crit Rev Biochem Mol Biol. 1989;24(4):329–418.
  • Viara N, Elena P, Elka I. Purification and characterization of a thermostable alpha-amylase from Bacillus licheniformis. J Bacteriol. 1993;2:277–289.
  • Ibrahim D, Zhu HL, Yusof N, et al. Bacillus licheniformis BT5.9 Isolated from Changar Hot Spring, Malang, Indonesia, as a potential producer of Thermostable α-amylase. Trop Life Sci Res. 2013;24:71–84.
  • Toharisman A, Suhartono MT, Spindler-Barth M, et al. Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World J Microbiol Biotechnol. 2005;21(5):733–738.
  • Seo JK, Park TS, Kwon IH, et al. Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Australas J Anim Sci. 2013;26(1):50–58.
  • Zafar A, Aftab MN, Din ZU, et al. Cloning, expression, and purification of xylase gene from Bacillus licheniformis for use in saccharification of plant biomass. Appl Biochem Biotechnol. 2016;178(2):294–311.
  • Martínez AC, Parsons CM, Baker DH. Effect of microbial phytase and citric acid on phosphorus bioavailability, apparent metabolizable energy, and amino acid digestibility in distillers dried grains with solubles in chicks. Poultry Sci. 2006;85:470–475.
  • Borgi MA, Boudebbouze S, Aghajari N, et al. The attractive recombinant phytase from Bacillus licheniformis: biochemical and molecular characterization. Appl Microbiol Biotechnol. 2014;98(13):5937–5947.
  • Zhang K, Guo Y, Yao P, et al. Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis. Enzyme Microb Technol. 2016;85:12–18.
  • van Dyk JS, Sakka M, Sakka K, et al. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidences for production of a large multi-enzyme complex. Enzyme Microb Technol. 2009;45(5):372–378.
  • Martínez-Gómez AI, Soriano-Maldonado P, Andújar-Sánchez M, et al. Biochemical and mutational studies of allantoinase from Bacillus licheniformis CECT 20T. Biochemie. 2014;99:178–188.
  • Zohra RR, Aman A, Zohra RR, et al. Dextranase: Hyper production of dextran degrading enzyme from newly isolated strain of Bacillus licheniformis. Carbohydr Polym. 2013;92(2):2149–2153.
  • Machado CB, Citadini AP, Goldbeck R, et al. Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinase from Bacillus licheniformis. Biotechnol Lett. 2015;37(7):1455–1462.
  • Lloberas J, Perez-Pons JA, Querol E. Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur J Biochem. 1991;197(2):337–343.
  • Voigt B, Schroeter R, Schweder T, et al. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J Biotechnol. 2014;191:139–149.
  • Lin S, Zhang M, Liu J, et al. Construction and application of recombinant strains for the production of an alkaline protease from Bacillus licheniformis. J Biosci Bioeng. 2015;3:284–288.
  • Yan L, Boyd KG, Adams DR, et al. Biofilm-specific cross-species induction of antimicrobial compounds in bacilli. Appl Environ Microbiol. 2003;69(7):3719–3727.
  • Muras A, López-Pérez M, Mayer C, et al. High prevalence of quorum-sensing and quorum-quenching activity among cultivable bacteria and metagenomic sequences in the Mediterranean Sea. Genes. 2018;9(2):100.
  • Mayer C, Muras A, Romero M, et al. Multiple quorum quenching enzymes are active in the nosocomial pathogen Acinetobacter baumannii ATCC17978. Front Cell Infect Microbiol. 2018;8:310.
  • Devi P, Wahidullah S, Rodrigues C, et al. The sponge-associated bacterium Bacillus licheniformis SAB1: a source of antimicrobial compounds. Mar Drugs. 2010;8(4):1203–1212.
  • Cui TB, Chai HY, Jiang LX. Isolation and partial characterization of an antifungal protein produced by Bacillus licheniformis BS-3. Molecules. 2012;17(6):7336–7347.
  • Wang Z, Wang Y, Zheng L, et al. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10. Biochem Biophys Res Commun. 2015;7:48–52.
  • Tareq FS, Lee H-S, Lee Y-J, et al. Ieodoglucomide C and Ieodoglycolipid, new glycolipids from a marine-derived bacterium Bacillus licheniformis 09IDYM23. Lipids. 2015;50(5):513–519.
  • Ji ZL, Peng S, Chen LL, Liu Y, et al. Identification and characterization of a serine protease from Bacillus licheniformis W10: a potential antifungal agent. Int J Biol Macromol. 2020;145:594–603.
  • Pattnaik P, Kaushik JK, Grover S, et al. Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis isolated from water buffalo. J Appl Microbiol. 2001;91(4):636–645.
  • Martirani L, Varcamonti M, Naclerio G, et al. Purification and partial characterization of bacillonin 490, a novel bacteriocin produced by a thermophilic strains of B. licheniformis. Microb Cell Fact. 2002;1(1):1–682.
  • He LL, Chen WL, Liu Y. Production and partial characterization of bacteriocin-like pepitdes by Bacillus licheniformis ZJU12. Microbiol Res. 2006;161(4):321–326.
  • Kim SY, Ohk S, Bai DH, et al. Purification and properties of bacteriolytic enzymes from Bacillus licheniformis YS-1005 against Streptococcus mutans. Biosci Biotechnol Biochem. 1999;63(1):73–77.
  • Larsen N, Thorsen L, Kpikpi EN, et al. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Appl Microbiol Biotechnol. 2014;98(3):1105–1118.
  • Guo Y, Yu Z, Xie J, et al. Identification of a new Bacillus licheniformis strains producing a bacteriocin-like substantance. J Microbiol. 2012;50(3):452–458.
  • Okoroma EA, Purchase D, Garelick H, et al. Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PloS One. 2013;8(7):e68099.
  • Langeveld JPM, Wang JJ, Van de Wirl DFM, et al. Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis. 2003;188(11):1782–1789.
  • Mahajan RV, Kumar V, Rajendran V, et al. Purification and characterization of a novel and robust L-Asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties. PLoS One. 2014;9(6):e99037.
  • Alrumman SA, Mostafa YS, Al-Izran KA, Alfaifi MY, et al. Production and anticancer activity of an L-asparaginase from B. licheniformis isolated from the Red Sea. Sci Rep. 2019;9(1):3756.
  • Abdelrazek NA, Elkhatib WF, Raafat MM, et al. Experimental and bioinformatics study for production of L-asparaginase from Bacillus licheniformis: a promising enzyme for medical application. AMB Express. 2019;9(1):39.
  • Sonkusre P. Specificity of biogenic Selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study. Front Oncon. 2019;9:1514.
  • Arena A, Maugeri TL, Pavone B, et al. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int Immunol. 2006;6:8–13.
  • Abinaya M, Vaseeharan B, Divya M, et al. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide-antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors. Environ Sci Pollut Res. 2018;25(19):18604–18619.
  • Elbeshehy EKF, Elazzazy AM, Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol. 2015;6:453–466.
  • King RE, Bomser JA, Min DB. Bioactivity of resveratrol. Comp Rev Food Sci Food Safety. 2006;5(3):65–70.
  • Pandey RP, Parajuli P, Shin JY, et al. Enzymatic biosynthesis of novel resveratrol glucoside and glycoside derivatives. Appl Environ Microbiol. 2014;80(23):7235–7243.
  • Kekez BD, Gojgic-Cvijovic GD, Jakovljevic DM, et al. High levan production by Bacillus licheniformis NS032 using ammonium chloride as the sole nitrogen source. Appl Biochem Biotechnol. 2015;175(6):3068–3083.
  • Xavier JR, Ramana KV. Optimization of levan production by cold-active Bacillus licheniformis ANT 179 and fructooligosaccharide synthesis by its Levansucrase. Appl Biochem Biotechnol. 2017;181(3):986–1006.
  • Dahech I, Belghith KS, Hamden K, et al. Antidiabetic antivity of levan polysaccharide in alloxan-induced diabetic rats. Int J Biol Macromolec. 2011;49(4):742–746.
  • Kyriakis SC, Tsiloyiannis VK, Vlemmas J, et al. The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Res Vet Sci. 1999;67(3):223–228.
  • Liu X, Yan H, Lv L, et al. Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian Australas J Anim Sci. 2012;25(5):682–689.
  • Deng W, Dong XF, Tong JM, et al. The probiotic Bacillus licheniformis ameliorates a heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens. Poult Sci. 2012;91(3):575–582.
  • Lei K, Li YL, Yu DY, et al. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activies, and intestinal barrier function of laying hens. Poult Sci. 2013;92(9):2389–2395.
  • Sorokulova IB. A comparative study of the biological properties of Biosporin and other commercial Bacillus-based preparations. Mikrobiol Zh. 1997;59:43–49.
  • Sorokulova IB, Beliavskaia VA, Masycheva VA, et al. Recombinant probiotics: problems and prospects of their use for medicine and veterinary practice. Vestn Ross Akad Med Nauk. 1997;3:46–49.
  • McFarlin B, Henning A, Bowman E, et al. Oral spore-based probiotic supplementation was associated with reduced incidence of post-prandial dietary endotoxin, triglycerides, and disease risk biomarkers. WJGP. 2017;8(3):117–126.
  • SCAN. Opinion of the scientific committee on animal nutrition (SCAN) on the use of Bacillus licheniformis NCTC 12123 in feedings stuff for pigs (product AlCare). European commission, health and consumer protection directorate general. (SCAN) Scientific committee on animal nutrition. 2002.
  • Adimpong DB, Sorensen KI, Thorsen L, et al. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl Environ Microbiol. 2012;78(22):7903–7914.
  • Sorokulova IB, Pinchuk IV, Denayrolles M, et al. The safety of two Bacillus probiotics strains for human use. Dig Dis Sci. 2008;53(4):954–963.
  • EFSA. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Technical Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA J. 2011;9:2445.
  • EFSA. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition. EFSA J. 2014;12:3665.
  • Hong HA, Duc LH, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29(4):813–835.
  • Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28(2):214–220.
  • Elshaghabee FMF, Rokana N, Gulhane RD, et al. Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol. 2017;8:1490.
  • Messora MR, Pereira LJ, Foureaux R, et al. Favourable effects of Bacillus subtilis and Bacillus licheniformis on experimental periodontitis in rats. Arch Oral Biol. 2016;66:108–119.
  • Wang S, Hou Q, Guo Q, et al. Isolation and characterization of a deoxynivalenol-degrading bacterium Bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins (Basel). 2020;12(3):184.
  • Li Y, Liu M, Zhou J, et al. Bacillus licheniformis Zhengchangsheng® attenuates DDS-induced colitis and modulates the gut microbiota in mice. Benef Microbes. 2019;10(5):543–553.
  • Neag MA, Catinean A, Muntean DM, et al. Probiotic Bacillus Spores Protect Against Acetaminophen induced acute injury in rats. Nutrients. 2020;12(3):632.
  • Yang HK, Kim HJ, Kang S, et al. Standardized chungkookjang, short-term fermented soybeans with Bacillus licheniformis, improves glucose homeostasis as much as traditionally made chungkookjang in diabetic rats. J Clin Biochem Nutr. 2013;52(1):49–57.
  • Yun HS, Heo JH, Son SJ, Park MP, et al. Bacillus licheniformis isolated from Korean traditional food resources enhances the resistance of Caenorhabditis elegans to infection by Staphyloccocus aureus. J Microbiol Biotechnol. 2014;24(8):1105–1108.
  • Park MR, Oh S, Son SJ, et al. Bacillus licheniformis isolated from traditional Korean food resources enhances the longevity of Caenorhabditis elegans though serotonin signalling. J Agric Food Chem. 2015;63(47):10227–10233.
  • Yeon SJ, Hong GE, Kim CK, et al. Effects of yogurt containing fermented pepper juice on the body fat and cholesterol level in high fat and high cholesterol diet fed rat. Korean J Food Sci An. 2015;35(4):479–485.
  • Qiao GH, Shan AS, Ma N, et al. Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J Anim Physiol Anim Nutr (Berl). 2010;94:429–436.
  • Wang Z, He Z, Beachemin KA, et al. Comparison of two live Bacillus species as feed additives for improving in vitro fermentation of cereal straws. Anim Sci J. 2016;87:37–36.
  • Wang Y, Du W, Lei K, et al. Effects of dietary Bacillus licheniformis on gut physical barrier, immunity, and reproductive hormones of laying hens. Probiotics Antimicrob Proteins. 2017;9(3):292–299.
  • Knap I, Lund B, Kehlet A, et al. Bacillus licheniformis prevents necrotic enteritis in broiler chickens. Avian Dis. 2010;54(2):931–935.
  • Zhao Ym Zeng D, Wang H, Qing X, et al. Dietary probiotic Bacillus licheniformis H2 enhanced growth performance, morphology of small intestine and liver, and antioxidant capacity of boilers chickens against Clostridium perfringens-induced subclinical necrotic enteritis. Probiotics Antimicrob Proteins. 2019;12(3):883–895.
  • Alexopoulos C, Georgoulakis E, Tzivara A, et al. Field evalulation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and the carcass quality of grower and finsher pigs. J Vet Med Series A. 2004;51(6):306–312.
  • Kritas SK, Govaris A, Christodoulopoulos G, et al. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. J Vet Med Series A. 2006;53(4):170–173.
  • Mutuş R, Kocabağli N, Alp M, et al. The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poul Sci. 2006;85(9):1621–1625.
  • Wang YB, Li JR, Lin J. Probiotics in aquaculture: Challenges and Outlook. Aquaculture. 2008;281(1-4):1–4.
  • Raida MK, Larsen JL, Nielsen ME, et al. Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J Fish Diseases. 2003;26(8):495–498.
  • Li K, Zheng T, Tian Y, et al. Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp, Litopanaeus vannamei. Biotechnol Lett. 2007;29(4):525–530.
  • Zhang Q, Tan B, Mai K, et al. Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Panaeus japonicus (Decapoda: Penaeidae. Aquaculture Res. 2011;42(7):943–952.
  • Kumar NR, Raman RP, Jadhao SB, et al. Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquacult Int. 2013;21(2):387–403.
  • Zhang CN, Li XF, Xu WN, et al. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistencae of triangular bream (Megabrama terminalis). Fish Shellfish Immunol. 2013;35(5):1380–1386.
  • Ninawe AS, Selvin J. Probiotics in shrimp aquaculture: avenues and challenges. Crit Rev Microb. 2009;35(1):43–66.
  • Nunes AJP. Probiotic application improves survival of the pacific shrimp, Litopenaeus vannamei, infected with infectious Myonecrosis virus (IMNV). Aqua Feeds: formulations and Beyond. 2005;2:6–8.
  • Ziaei-Nejad S, Rezaei MH, Takami GA, et al. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture. 2006;252(2-4):516–524.
  • Gómez RGD, Shen MA. Influence of probiotics on the growth and digestive enzyme activity of white pacific shrimp (Litopenaeus vannamei). J Ocean Univ China. 2008;7(2):215–218.
  • Garrido-Pereira MA, Schwarz M, Delbos B, et al. Probiotic effects on cobia Rachycentron canadum larvae reared in a recirculatin aquaculture system. Lat Am Aquat Res. 2014;42:1169–1174.
  • Chen XM, Lu HM, Niu XT, et al. Enhancement of secondary metabolites from Bacillus licheniformis XY-52 on immune response and expression of some immune-related genes in common carp, Cyprinus carpio. Fish Shellfish Immunol. 2015;45(1):124–131.
  • Rivardo F, Turner RJ, Allegrone G, et al. Anti-adhesion activity of two biosurfactants produced by Bacillus sp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol. 2009;83(3):541–553.
  • Dusane DH, Damare SR, Nancharaiah YV, et al. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One. 2013;8(5):e64501
  • Gutiérrez-Almada K, González-Acosta B, Borges-Souza JM, et al. Marine bacteria associated with shallow hydrothermal systems in the Gulf of California with the capacity to produce biofilm inhibiting compounds. Arch Microbiol. 2020;202(6):1477–1488.
  • Nhan DT, Cam DTV, Wille M, et al. Quorum quenching bacteria protect Macrobrachium rosenbergii larvae from Vibrio harveyi infection. J Appl Microbiol. 2010;109(3):1007–1016.
  • Defoirdt T, Thanh LD, Van Delsen B, et al. N-acylhomoserine lactone-degrading Bacillus isolate strains isolated from aquaculture animals. Aquaculture. 2011;311(1-4):258–260.
  • Dong YH, Gusti AR, Zhang Q, et al. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol. 2002;68(4):1754–1759.
  • Lee SJ, Park SY, Lee JJ, et al. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol. 2002;68(8):3919–3924.
  • Han Y, Chen F, Li N, et al. Bacillus marcorestinctum sp. nov., a novel soil acylhomoserine lactone quorum-sensing signal quenching bacterium. Int J Mol Sci. 2010;11(2):507–520.
  • Romero M, Martín-Cuadrado AM, Roca-Rivada A, et al. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol. 2011;75(2):205–217.
  • Romero M, Mayer C, Muras A, et al. Silencing bacterial communication through enzymatic quorum sensing inhibition. In: Kalia VC, editor. Quorum sensing vs quorum quenching: a battle with no end in sight. Delhi: Springer; 2015. p. 219–236.
  • Chen B, Peng M, Tong W, et al. The quorum quenching bacterium Bacillus licheniformis T-1 Protects Zebrafish against Aeromonas hydrophila Infection. Probiotics Antimicrob Proteins. 2020;12(1):160–171.
  • Romero M, Martín-Cuadrado AB, Otero A. Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable and metagenomics sequences. Appl Environ Microbiol. 2012;78(17):6345–6348.
  • Grandclément C, Tannières M, Moréra S, et al. Quorum Quenching: Role in Nature and Applied Developments. FEMS Microbiol Rev. 2016;40(1):86–116.
  • Lalloo R, Ramchuran S, Ramduth D, et al. Isolation and selection of Bacillus spp. as potencial biological agents for enhancement of water quality in culture of ornamental fish. J Appl Microbiol. 2007;103(5):1471–1479.
  • Liang Q, Zhang X, Lee KH, et al. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4. World J Microbiol Biotechnol. 2015;31(11):1711–1718.
  • Liang Z, Liu Y, Ge F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis. Chemosphere. 2013;92(10):1383–1389.
  • Ji X, Jiang M, Zhang J, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater. Bioresour Technol. 2018;247:44–50.
  • Ye S, Zeng G, Wu H, et al. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol. 2017;37(8):1062–1076.
  • Ye S, Zeng G, Wu J, et al. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour Conser Recy. 2019;140:278–285.
  • Jamil M, Zeb S, Anees M, et al. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytoremediat. 2014;16(6):554–571.
  • Yasin M, El-Mehdawi AF, Pilon-Smits EAH, et al. Selenium-fortified wheat: potential of microbes for biofortification of selenium and other essential nutrients. Int J Phytoremediat. 2015;17(8):777–786.
  • Felshia CS, Karthick AN, Thilagam R, et al. Efficacy of free and encapsulated ppstrain SL10 on degradation of phenol: A comparative study of degradation kinetics. J Environ Manage. 2017;197:373–383.
  • Upadhyay KH, Vaishnav AM, Tipre DR, et al. Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate Bacillus licheniformis. 3 Biotech. 2017;7(5):313.
  • Vasconcellos SP, Cereda MP, Cagnon JR, et al. In vitro degradation of linamarin by microorganisms isolated from cassava wastewater treatment lagoons. Braz J Microbiol. 2009;40(4):879–883.
  • Mao X, Liu P, He S, et al. Antioxidant properties of bio-active substances from shrimp head fermented by Bacillus licheniformis OPL-007. Appl Biochem Biotechnol. 2013;171(5):1240–1252.
  • Joshi SJ, Geetha SJ, Desai A. Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Appl Biochem Biotechnol. 2015;177(2):346–361.
  • Ali N, Wang F, Xu B, et al. Production and Application of Biosurfactant produced by Bacillus licheniformis Ali5 in enhanced oil recovery and motor oil removal from contaminated sand. Molecules. 2019;24(24):4448.
  • Vahabi A, Ramezanianpour AA, Sharafi H, et al. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials. J Basic Microbiol. 2015;55(1):105–111.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15:168–193.
  • Centers for Disease Control and Prevention. Issues in Healthcare Settings: CDC's Seven Healthcare Safety Challenges. Unites States Department of Health and Human Services; Atlanta, GA, USA; 2001.
  • Chapman J, Hellio C, Sullivan T, et al. Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeter Biodegr. 2014;86:6–13.
  • Nijland R, Hall M, Burgess JG. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One. 2010;5(12):e15668
  • Spanò A, Laganà P, Visalli G, et al. In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14. Curr Microbiol. 2016;72(5):518–528.
  • Coronel-León J, Marqués AM, Bastida J, et al. Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J Appl Microbiol. 2016;120(1):99–111.
  • Burgess JG, Boyd KG, Armstrong E, et al. The development of a marine natural product-based antifouling paint. Biofouling. 2003;19(sup1):197–205.
  • Burgess JG, Hall MJ, Nijland R. Compounds and methods for biofilm disruption and prevention. B1002396. 2010.
  • Liu J, Yang C, Chi Y, et al. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake. J Basic Microbiol. 2019;59(11):1112–1124.
  • Javaheri M, Jenneman GE, Mcinerney MJ, et al. Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl Environ Microbiol. 1985;50(3):698–700.
  • Lin SC, Minton MA, Sharma MM, et al. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol. 1994;60(1):31–38.
  • Nithya V, Murthy PSK, Halami PM. Development and application of active films for food packaging using antibacterial peptide of Bacillus licheniformis Me1. J Appl Microbiol. 2013;115(2):475–483.
  • Nithya V, Prakash M, Halami PM. Utilization of industrial waste for the production of bio-preservative from Bacillus licheniformis Me1 and its application in milk and milk-based food products. Probiotics Antimicrob Proteins. 2018;
  • Krishnapriya S, Venkatesh Babu DL, G PA. Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res. 2015;174:48–55.
  • Li L, Zhang L, Li K, et al. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels. 2013;6(1):123–135.
  • He S, Fan X, Katukuri NR, et al. Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresour Technol. 2016;204:145–151.
  • Espacenet. Available at: http://worldwide.espacenet.com.
  • Huang J. Method for preparing cattle and sheep feed by fermenting bagasse. CN105076753; 2015.
  • Li C. Natural feed for pigs and preparation method of natural feed. CN105192255; 2015.
  • Pu L, Ma L, Ma H. Preparation of goat feed. CN105166516; 2015.
  • Guo Z. Preparation method of quail feed. CN1051166513; 2015.
  • Qiping Z, Linhai Y. Water quality ameliorant for aquaculture. CN102757131; 2012.
  • Jiang C, Chen R. Microbial preparation for improving freshwater aquaculture water body and preparation method thereof. CN103395890; 2013.
  • Jiang C. Microbial preparation for improving aquaculture water environments for largemouth bass and method for preparing microbial preparation. CN105112330; 2015.
  • Suhr-Jessen P, Jensen M. Health and/or nutritional status of an aquatic animal. US20050031732; 2005.
  • Quan Limin S. Prebiotics for aquaculture. CN101028007; 2007.
  • Cui Y. Bacillus licheniformis probiotics for abalone and sea cucumber aquaculture. CN103845365; 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.