20,755
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Valorization of fruits and vegetable wastes and by-products to produce natural pigments

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 535-563 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 26 Feb 2021

References

  • Burrows JDA. Palette of our palates: a brief history of food coloring and its regulation. Compr Rev Food Sci Food Saf. 2009;8(4):394–408.
  • Wolfe KL, Liu RH. Apple peels as a value-added food ingredient. J Agric Food Chem. 2003;51(6):1676–1683.
  • González-Montelongo R, Gloria LM, González M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010;119(3):1030–1039.
  • Mathew NS, Negi PS. Traditional uses, phytochemistry and pharmacology of wild banana (Musa acuminata Colla): a review. J Ethnopharmacol. 2017;196:124–140.
  • Boulekbache-Makhlouf L, Medouni L, Medouni-Adrar S, et al. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Ind Crops Prod. 2013;49:668–674.
  • APdF M, Rezende CA, Rodrigues RA, et al. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technol. 2018;340:553–562.
  • Espada-Bellido E, Ferreiro-González M, Carrera C, et al. Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): comparison between Ultrasound- and Microwave-Assisted Extraction Techniques. Agronomy. 2019;9(11):745.
  • Gordillo B, Sigurdson GT, Lao F, et al. Assessment of the color modulation and stability of naturally copigmented anthocyanin-grape colorants with different levels of purification. Food Res Int. 2018;106:791–799.
  • Farooque S, Rose PM, Benohoud M, et al. Enhancing the potential exploitation of food waste: extraction, purification, and characterization of renewable specialty chemicals from blackcurrants (Ribes nigrum L.). J Agric Food Chem. 2018;66(46):12265–12273. 
  • Yamashita C, Chung MM, dos Santos S, et al. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT. 2017;84:256–262.
  • Monrad JK, Suárez M, Motilva MJ, et al. Extraction of anthocyanins and flavan-3-ols from red grape pomace continuously by coupling hot water extraction with a modified expeller. Food Res Int. 2014;65:77–87.
  • Parra-Campos A, Ordóñez-Santos LE. Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in French meringue. Food Chem. 2019;285(1):59–66. 2019
  • Saraband K, Jafari SM, Mahoonak AS, et al. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int J Biol Macromol. 2019;140:59–68.
  • Šaponjac VT, Ćetković G, Čanadanović-Brunet J, et al. Sour cherry pomace extract encapsulated in whey and soy proteins: Incorporation in cookies. Food Chem. 2016;207:27–33.
  • Bleve M, Ciurlia L, Erroi E, et al. An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Sep Purif Technol. 2008;64(2):192–197.
  • Ghafoor K, Park J, Choi YH. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov Food Sci Emerg Technol. 2010;11(3):485–490.
  • Corrales M, Toepfl S, Butz P, et al. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov Food Sci Emerg Technol. 2008;9(1):85–91.
  • Barros HDFQ, Baseggio AM, Angolini CFF, et al. Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora). Food Res Int. 2019;124:16–26. 2019
  • Souza ACP, Gurak PD, Marczak LDF. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Biopdts P. 2017;102:186–194.
  • Santos DT, Albarelli JQ, Beppu MM, et al. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Res Int. 2013;50(2):617–624.
  • Rezende RRS, Nogueira JP, Narain N. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chem. 2018;254:281–291.
  • Albishi T, John JA, Al-Khalifa AS, et al. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J Func Foods. 2013;5(2):590–600.
  • Milea AȘ, Vasile AM, Cîrciumaru A, et al. Valorizations of sweet cherries skins phytochemicals by extraction, microencapsulation and development of value-added food products. Foods. 2019;8(6):188.
  • Drosou C, Kyriakopoulou K, Bimpilas A, et al. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind Crops Prod. 2015;75:141–149.
  • Wu L, Hsu H-W, Chen Y-C, et al. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006;95(2):319–327.
  • Rodriguez EB, Vidallon MLP, Mendoza DJR, et al. Health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by carbohydrate encapsulation. J Sci Food Agric. 2016;96(14):4679–4689.
  • Osorio-Esquivel O, Álvarez VB, Dorantes-Álvarez L, et al. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res Int. 2011;44(7):2160–2168.
  • Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, et al. Effect of Ultrafiltration of pitaya extract (Stenocereus thurberi) on its phytochemical content, antioxidant capacity, and UPLC-DAD-MS profile. Molecules. 2020;25(2):281.
  • Cejudo-Bastante MJ, Hurtado N, Mosquera N, et al. Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions. Food Res Int. 2014;64:465–471.
  • Varelis P, Melton L, Shahidi F. Encyclopedia of Food chemistry. Amsterdam, Netherlands: Elsevier; 2019.
  • Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, et al. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods. 2014;6:168–175.
  • Mello FR, de Bernardo C, Dias CO, et al. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Cienc Rural. 2014;45(2):323–328.
  • Cunha LCM, Monteiro MLG, Costa-Lima BRC, et al. Effect of microencapsulated extract of pitaya (Hylocereus costaricensis) peel on color, texture and oxidative stability of refrigerated ground pork patties submitted to high pressure processing. Innov Food Sci Emerg Technol. 2018;49:136–145.
  • Horuz TI, Belibağlı KB. Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chem. 2018;268:86–93.
  • Strati IF, Oreopoulou V. Process optimisation for recovery of carotenoids from tomato waste. Food Chem. 2011;129(3):747–752.
  • Rizk EM, El-Kady AT, El-Bialy AR. Characterization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Ann Agric Sci. 2014;59(1):53–61.
  • Chuyen HV, Roach PD, Golding JB, et al. Optimisation of extraction conditions for recovering carotenoids and antioxidant capacity from Gac peel using response surface methodology. Int J Food Sci Technol. 2017;52(4):972–980.
  • De Abreu FP, Dornier M, Dionisio AP, et al. Cashew apple (Anacardium occidentale L.) extract from by-product of juice processing: A focus on carotenoids. Food Chem. 2013;138(1):25–31.
  • Goula AM, Ververi M, Adamopoulou A, et al. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason Sonochem. 2017;34:821–830.
  • Ghosh S, Chatterjee JK, Chakraborty B, et al. Estimation of beta carotene from fruit peel wastes by high performance thin layer chromatography. J Pharmacog Phytochem. 2019;8(1):2598–2600.
  • Ghosh S, Chatterjee JK, Chakraborty B, et al. Total phenolic, flavonoid, β- carotene and in-vitro anti-oxidant activity of vegetable wastes collected from hotels and food processing centre. FSRJ. 2018;9(1):169–174.
  • Chantaro P, Devahastin S, Chiewchan N. Production of antioxidant high dietary fiber powder from carrot peels. LWT. 2008;41(10):1987–1994.
  • Zeyada NN, Zeitoum M, Barbary O. Utilization of some vegetables and fruit waste as natural antioxidants. Alex J Food Sci Technol. 2008;5:1–11.
  • Palozza P, Colangelo M, Simone R, et al. Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis. 2010;31(10):1813–1821.
  • Kehili M, Kammlott M, Choura S, et al. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Biopdts P. 2017;102:340–349.
  • Wang X, Wang C, Zha X, et al. Supercritical carbon dioxide extraction of β-carotene and α-tocopherol from pumpkin: a Box–Behnken design for extraction variables. Anal Methods. 2017;9(2):294–303.
  • de Andrade Lima M, Kestekoglou I, Charalampopoulos D, et al. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules. 2019;24(3):466.
  • Derrien M, Aghabararnejad M, Gosselin A, et al. Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT. 2018;93:79–87.
  • Derrien M, Badr A, Gosselin A, et al. Optimization of a green process for the extraction of lutein and chlorophyll from spinach by-products using response surface methodology (RSM). LWT. 2017;79:170–177.
  • Kang J-H, Kim S, Moon B. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction. Food Chem. 2016;205:140–145.
  • Baysal T, Ersus S, Starmans DAJ. Supercritical CO(2) extraction of beta-carotene and lycopene from tomato paste waste. J Agric Food Chem. 2000;48(11):5507–5511.
  • Martínez-Hernández GB, Castillejo N, Artés-Hernández F. Effect of fresh–cut apples fortification with lycopene microspheres, revalorized from tomato by-products, during shelf life. Postharvest Biol Technol. 2019;156:110925.
  • Lavecchia R, Zuorro A. Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur Food Res Technol. 2008;228(1):153–158.
  • Sigurdson GT, Tang P, Giusti MM. Natural Colorants: Food Colorants from Natural Sources. Annu Rev Food Sci Technol. 2017;8(1):261–280.
  • Joshi VK, Kumar A, Kumar V. Antimicrobial, antioxidant and phyto-chemicals from fruit and vegetable wastes: A review. Int J Food Fermt Technol. 2012;2(2):123–136.
  • Ayala-Zavala JF, Rosas-Domínguez C, Vega-Vega V, et al. Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: looking for integral exploitation. J Food Sci. 2010;75(8):R175–R181.
  • Sagar NA, Pareek S, Sharma S, et al. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf. 2018;17(3):512–531.
  • Fernández-López JA, Fernández-Lledó V, Angosto JM. New insights into red plant pigments: more than just natural colorants. RSC Adv. 2020;10(41):24669–24682.
  • Faustino M, Veiga M, Sousa P, et al. Agro-food byproducts as a new source of natural food additives. Molecules. 2019;24(6):1056.
  • Parashar S, Sharma H, Garg M. Antimicrobial and antioxidant activities of fruits and vegetable peels: A review. J of Pharmacognosy Phytochem. 2014;3(1):160–164.
  • Rodriguez-Amaya DB. Natural food pigments and colorants. In: Mérillon JM, Ramawat K, editors. Bioactive molecules in food. Reference Series in Phytochemistry. Switzerland: Springer International Publishing; 2019, p. 1–35.
  • Andersen ØM, Jordheim M. Basic anthocyanin chemistry and dietary sources. In: Wallace TC, Giusti MM, editors. Anthocyanins in health and disease. Boca Raton, FL: CRC Press; 2014, p. 13–90.
  • Brazinha C, Cadima M, Crespo JG. Optimization of extraction of bioactive compounds from different types of grape pomace produced at wineries and distilleries. J Food Sci. 2014;79(6):E1142–E1149.
  • Stintzing FC, Carle R. Betalains – emerging prospects for food scientists. Trends Food Sci Technol. 2007;18(10):514–525.
  • Ochoa-Velasco CE, Guerrero-Beltrán JÁ. The effects of modified atmospheres on prickly pear (Opuntia albicarpa) stored at different temperatures. Postharvest Biol Technol. 2016;111:314–321.
  • Herbach KM, Stintzing FC, Carle R. Betalain stability and degradation? structural and chromatic aspects. J Food Science. 2006;71(4):R41–R50.
  • Kushwaha R, Kumar V, Vyas G, et al. Optimization of different variable for eco-friendly extraction of betalains and phytochemicals from beetroot pomace. Waste Biomass Valor. 2018;9(9):1485–1494.
  • Thirugnanasambandham K, Sivakumar V. Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. J Saudi Soc Agri Sc. 2017;16(1):41–48.
  • Melgar B, Dias MI, Barros L, et al. Ultrasound and microwave assisted extraction of Opuntia fruit peels biocompounds: optimization and comparison using RSM-CCD. Molecules. 2019;24(19):3618.
  • Rivera SM, Canela-Garayoa R. Analytical tools for the analysis of carotenoids in diverse materials. J Chromatogr A. 2012;1224:1–10.
  • Bian Q, Gao S, Zhou J, et al. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med. 2012;53(6):1298–1307.
  • British Pharmacopoeia Commission, Great Britain. Department of Health. British pharmacopoeia 2013 London: The Stationery Office; 2013. Available from: https://www.worldcat.org/title/british-pharmacopoeia-2013/oclc/992371858?referer=di&ht=edition
  • Rodriguez-Amaya DB. Food carotenoids: chemistry, biology and technology. Oxford: IFT Press-Wiley; 2015.
  • Tiwari S, Upadhyay N, Singh AK, et al. Organic solvent-free extraction of carotenoids from carrot bio-waste and its physico-chemical properties. J Food Sci Technol. 2019;56(10):4678–4687.
  • Murador DC, Braga ARC, Martins PLG, et al. Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Res Int. 2019;126:108653.
  • Cubas C, Gloria-Lobo M, González M. Optimization of the extraction of chlorophylls in green beans (Phaseolus vulgaris L.) by N,N-dimethylformamide using response surface methodology. J Food Comp Anlys. 2008;21(2):125–133.
  • Humphrey AM. Chlorophyll as a color and functional ingredient. J Food Sci. 2006;69(5):C422–C425.
  • Steet JA, Tong CH. Degradation kinetics of green color and chlorophylls in peas by colorimetry and HPLC. J Food Science. 1996;61(5):924–928.
  • Ferruzzi MG, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res. 2007;27(1):1–12.
  • Viera I, Pérez-Gálvez A, Roca M. Green natural colorants. Molecules. 2019;24(1):154.
  • Wang W, Bostic TR, Gu L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010;122(4):1193–1198.
  • Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr. 2017;57(15):3243–3259.
  • Aberoumand A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J Dairy Food Sci. 2011;6(1):71–78.
  • Poojary MM, Passamonti P. Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste . Food Chem. 2015;188:84–91.
  • García-Cruz L, Dueñas M, Santos-Buelgas C, et al. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus). Food Chem. 2017;234:111–118.
  • Martins PL, de Rosso VV. Carotenoids achieving from tomatoes discarded using ionic liquids as extracting for application in food industry, presented at XIV Safety, health and environment world Congress conference, Cubatäo, Brazil, July 20–23, 2014.
  • Da Silva RPFF, Rocha-Santos TAP, Duarte AC. Supercritical fluid extraction of bioactive compounds. TrAC. 2016;76:40–51.
  • Machado APDF, Pasquel-Reátegui JL, Barbero GF, et al. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: a comparison with conventional methods. Food Res Int. 2015;77:675–683.
  • Eh AL, Teoh SG. Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason Sonochem. 2012;19(1):151–159.
  • Rajha HN, Boussetta N, Louka N, et al. Effect of alternative physical pretreatments (pulsed electric field, high voltage electrical discharges and ultrasound) on the dead-end ultrafiltration of vine-shoot extracts. Sep Purif Technol. 2015;146:243–251.
  • Pap N, Beszédes S, Pongrácz E, et al. Microwave-assisted extraction of anthocyanins from black currant marc. Food Bioprocess Technol. 2013;6(10):2666–2674.
  • Li Y, Fabiano-Tixier AS, Vian MA, et al. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC. 2013;47:1–11.
  • Brianceau S, Turk M, Vitrac X, et al. High voltage electric discharges assisted extraction of phenolic compounds from grape stems: effect of processing parameters on flavan-3-ols, flavonols and stilbenes recovery. Innov Food Sci Emerg Technol. 2016;35:67–74.
  • Barba FJ, Zhu Z, Koubaa M, et al. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Technol. 2016;49:96–109.
  • López N, Puértolas E, Condón S, et al. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Eng. 2009;90(1):60–66.
  • Briones-Labarca V, Plaza-Morales M, Giovagnoli-Vicuña C, et al. High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: effects of extraction conditions and methods. LWT. 2015;60(1):525–534.
  • Mohapatra D, Kate A. Extraction techniques of color pigments from fruits and vegetables. In: Khan KA, Goyal MR, Kalne AA, editors. Processing of fruits and vegetables from farm to fork. United Kingdom: Apple Academic Press, CRC press, Taylor and Francis; 2019, p. 175–200.
  • Chemat F, Abert VM, Ravi HK, et al. Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules. 2019;24(16):3007.
  • Azmir J, Zaidul ISM, Rahman MM, et al. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng. 2013;117(4):426–436.
  • Tiwari BK. Ultrasound: a clean, green extraction technology. TrAC. 2015;71:100–109.
  • Jacotet-Navarro M, Rombaut N, Deslis S, et al. Towards a “dry” bio-refinery without solvents or added water using microwaves and ultrasound for total valorization of fruit and vegetable by-products. Green Chem. 2016;18(10):3106–3115.
  • Strati IF, Gogou E, Oreopoulou V. Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Biopdts Proc. 2015;94:668–674.
  • Usmani Z, Sharma M, Gupta P, et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol. 2020;304:123003.
  • Cai Y, Sun M, Schliemann W, et al. Chemical stability and colorant properties of betaxanthin pigments from Celosia argentea. J Agric Food Chem. 2001;49(9):4429–4435.
  • Ersus S, Yurdagel U. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng. 2007;80(3):805–812.
  • Robert P, Gorena T, Romero N, et al. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int J Food Sci Technol. 2010;45(7):1386–1394.
  • Flores FP, Singh RK, Kong F. Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. J Food Eng. 2014;137:1–6.
  • Correia R, Grace MH, Esposito D, et al. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chem. 2017;235:76–85. 2017
  • Kuck LS, Noreña CPZ. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016;194:569–576.
  • Baldin JC, Michelin EC, Polizer YJ, et al. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Sci. 2016;118:15–21.
  • Chuyen HV, Roach PD, Golding JB, et al. Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technol. 2019;344:373–379.
  • Vulić J, Šeregelj V, Kalušević A, et al. Bioavailability and bioactivity of encapsulated phenolics and carotenoids isolated from red pepper waste. Molecules. 2019;24(15):2837.
  • Šeregelj V, Šaponjac V, Lević S, et al. Application of encapsulated natural bioactive compounds from red pepper waste in yogurt. J Microencapsul. 2019;36(8):704–714.
  • Ordoñez-Santos LE, Martínez-Girón J, Villamizar-Vargas RH. Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. DYNA. 2018;85(206):128–134.
  • Amr AS, Hussein DS. Tomato pomace pigment: extraction and use as food colorant. JJAS. 2013;9(1):72–85.
  • Tonon RV, Brabet C, Hubinger MD. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J Food Eng. 2008;88(3):411–418.
  • Vidal PJ, López-Nicolás JM, Gandía-Herrero F, et al. Inactivation of lipoxygenase and cyclooxygenase by natural betalains and semi-synthetic analogues. Food Chem. 2014;154:246–254.
  • Gengatharan A, Dykes GA, Choo WS. Betalains: natural plant pigments with potential application in functional foods. LWT. 2015;64(2):645–649.
  • Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99(1):191–203.
  • Gomez-Estaca J, Calvo MM, Sanchez-Faure A, et al. Development, properties, and stability of antioxidant shrimp muscle protein films incorporating carotenoid-containing extracts from food by-products. LWT. 2015;64(1):189–196.
  • Radočaj O, Vujasinović V, Dimić E, et al. Blackberry (Rubus fruticosus L.) and raspberry (Rubus idaeus L.) seed oils extracted from dried press pomace after longterm frozen storage of berries can be used as functional food ingredients. Eur J Lipid Sci Technol. 2014;116(8):1015–1024.
  • Oszmiański J, Wojdyło A, Lachowicz S, et al. Comparison of bioactive potential of cranberry fruit and fruit-based products versus leaves. J Func Foods. 2016;22:232–242.
  • Jae-Hee P, Minhee L. Eunju P. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev Nutr Food Sci. 2014;19:291–298.
  • Masci A, Coccia A, Lendaro E, et al. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chem. 2016;202:59–69.
  • del Carmen Robles-Ramírez M, Monterrubio-López R, Mora-Escobedo R, et al. Evaluation of extracts from potato and tomato wastes as natural antioxidant additives. Arch Latinoam Nutr. 2016;66:66–73.
  • Núñez Selles AJ, Daglia M, Rastrelli L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. Biofactors. 2016;42(5):475–491.
  • Rugină D, Diaconeasa Z, Coman C, et al. Chokeberry anthocyanin extract as pancreatic beta-cell protectors in two models of induced oxidative stress. Oxid Med Cell Longev. 2015;2015:429075–429010.
  • Cho H, Jung H, Lee H, et al. Chemopreventive activity of ellagitannins and their derivatives from black raspberry seeds on HT-29 colon cancer cells. Food Funct. 2015;6(5):1675–1683.
  • Tow WW, Premier R, Jing H, et al. Antioxidant and antiproliferation effects of extractable and nonextractable polyphenols isolated from apple waste using different extraction methods. J Food Sci. 2011;76(7):T163–T172.
  • Orgil O, Schwartz E, Baruch L, et al. The antioxidative and anti-proliferative potential of non-edible organs of the pomegranate fruit and tree. LWT. 2014;58(2):571–577.
  • Ćetković G, Savatović S, Čanadanović-Brunet J, et al. Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem. 2012;133(3):938–945.
  • Vulić J, Čanadanović-Brunet J, Ćetković G, et al. Antioxidant and cell growth activities of beet root pomace extracts. J Func Foods. 2012;4(3):670–678.
  • Szymanowska U, Baraniak B. Antioxidant and potentially anti-inflammatory activity of anthocyanin fractions from pomace obtained from enzymatically treated raspberries. Antioxidants. 2019;8(8):299.
  • Ishisono K, Yabe T, Kitaguchi K. Citrus pectin attenuates endotoxin shock via suppression of Toll-like receptor signaling in Peyer’s patch myeloid cells. J Nutr Biochem. 2017;50:38–45.
  • Liu S, Zhang S, Lv X, et al. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int Immunopharmacol. 2019;75:105768.
  • Huynh NT, Smagghe G, Gonzales GB, et al. Extraction and bioconversion of kaempferol metabolites from cauliflower outer leaves through fungal fermentation. Biochem Eng J. 2016;116:27–33.
  • Kashyap D, Sharma A, Tuli HS, et al. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods. 2017;30:203–219.
  • Tremocoldi MA, Rosalen PL, Franchin M, et al. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One. 2018;13(2):e0192577.
  • Calderon-Oliver M, Escalona-Buendıa HB, Medina-Campos ON, et al. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT. 2016;65:46–52.
  • Rodrıguez-Carpena JG, Morcuende D, Andrade MJ, et al. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem. 2011;59(10):5625–5635.
  • Kosińska A, Karamać M, Estrella I, et al. Phenolic compound profiles and antioxidant capacity of persea americana mill. peels and seeds of two varieties. J Agric Food Chem. 2012;60(18):4613–4619.
  • Kapadia SP, Pudakalkatti PS, Shivanaikar S. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: an in vitro study. Contemp Clin Dent. 2015;6(4):496–499.
  • Mattos GN, Tonon RV, Furtado AA, et al. Grape by-product extracts against microbial proliferation and lipid oxidation: a review. J Sci Food Agric. 2017;97(4):1055–1064.
  • Garavaglia J, Markoski MM, Oliveira A, et al. Grape seed oil compounds: biological and chemical actions for health. Nutr Metab Insights. 2016;9:59–64.
  • Sanz-Puig M, Pina-Perez MC, Rodrigo D, et al. Antimicrobial activity of cauliflower (Brassica oleracea var. Botrytis) by-product against Listeria monocytogenes. Food Cntrl. 2015;50:435–440.
  • Burton-Freeman BM, Sandhu AK, Edirisinghe I. Mangos and their bioactive components: adding variety to the fruit plate for health. Food Funct. 2017;8(9):3010–3032.
  • Alam MA, Subhan N, Hossain H, et al. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab. 2016;13(1):27.
  • Zhao G, He F, Wu C, et al. Betaine in inflammation: mechanistic aspects and applications. Front Immunol. 2018;9:1070.
  • Gao X, Wang Y, Randell E, et al. Higher dietary choline and betaine intakes are associated with better body composition in the adult population of Newfoundland. PLoS One. 2016;11(5):e0155403.
  • Devalaraja S, Jain S, Yadav H. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Res Int. 2011;44(7):1856–1865.
  • Shin SK, Cho SJ, Jung UJ, et al. Phlorizin supplementation attenuates obesity, inflammation, and hyperglycemia in diet-induced obese mice fed a high-fat diet. Nutrients. 2016;8(2):92.
  • Vu HT, Scarlett CJ, Vuong QV. Phenolic compounds within banana peel and their potential uses: a review. J Funct. Foods. 2018;40:238–248.
  • Patel SN, Sharma M, Lata K, et al. Improved operational stability of D-psicose 3-epimerase by a novel protein engineering strategy, and D-psicose production from fruit and vegetable residues. Bioresour Technol. 2016;216:121–127.
  • Angeloni C, Malaguti M, Barbalace M, et al. Bioactivity of olive oil phenols in neuroprotection. IJMS. 2017;18(11):2230.