359
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review of mathematical models of photo fermentation

ORCID Icon, , &
Pages 628-648 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 18 Feb 2021

References

  • Bianchi L, Mannelli F, Viti C, et al. Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno (Naples, Italy). Int J Hydrogen Energy. 2010;35(22):12216–12223.
  • De Philippis R, Ena A, Guastiini M, et al. Factors affecting poly-β-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria. FEMS Microbiol Lett. 1992;103(2-4):187–194.
  • Luongo V, Ghimire A, Frunzo L, et al. Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products. Bioresour Technol. 2017;228:171–175.
  • Sasikala CH, Ramana CHV, Rao PR. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy. 1995;20(2):123–126.
  • Eroğlu E, Eroğlu İ, Gündüz U, et al. Effect of clay pretreatment on photofermentative hydrogen production from olive mill wastewater. Bioresour Technol. 2008;99(15):6799–6808.
  • Ghosh S, Dairkee UK, Chowdhury R, et al. Hydrogen from food processing wastes via photofermentation using Purple Non-sulfur Bacteria (PNSB) – a review. Energy Convers Manag. 2017;141:299–314.
  • Seifert K, Waligorska M, Laniecki M. Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy. 2010;35(9):4085–4091.
  • Madukasi EI, Zhang G. Microaerobic biodegradation of high organic load wastewater by phototrophic bacteria. African J Biotechnol. 2010;9:3852–3860.
  • Monroy I, Guevara-López E, Buitrón G. A mechanistic model supported by data-based classification models for batch hydrogen production with an immobilized photo-bacteria consortium. Int J Hydrogen Energy. 2016;41(48):22802–22811.
  • Nath K, Das D. Modeling and optimization of fermentative hydrogen production. Bioresour Technol. 2011;102(18):8569–8581.
  • Wang J, Wan W. Kinetic models for fermentative hydrogen production: a review. Int J Hydrogen Energy. 2009;34(8):3313–3323.
  • Das D, Veziroglu TN. Advances in biological hydrogen production processes. Int J Hydrogen Energy. 2008;33(21):6046–6057.
  • Ghosh D, Sobro IF, Hallenbeck PC. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresour Technol. 2012a;123:199–206.
  • Khatipov E, Miyake M, Miyake J, et al. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiol Lett. 1998;162(1):39–45.
  • Adessi A, De Philippis R. 2012. Hydrogen production: photofermentation. In: Hallenbeck, PC, editor. Microbial technologies in advanced biofuels production. Boston (MA): Springer US; 2012. pp. 53–75.
  • Androga DD, Özgür E, Eroglu I, et al. Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int J Hydrogen Energy. 2011;36(24):15583–15594.
  • Wang X, Fang Y, Wang Y, et al. Single-stage photo-fermentative hydrogen production from hydrolyzed straw biomass using Rhodobacter sphaeroides. Int J Hydrogen Energy. 2018;43(30):13810–13820.
  • Lazaro CZ, Bosio M, Ferreira J. d S, et al. The biological hydrogen production potential of agroindustrial residues. Waste Biomass Valor. 2015;6(3):273–280.
  • Wu SC, Liou SZ, Lee CM. Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5. Bioresour Technol. 2012;113:44–50.
  • Montiel-Corona V, Revah S, Morales M. Hydrogen production by an enriched photoheterotrophic culture using dark fermentation effluent as substrate: effect of flushing method, bicarbonate addition, and outdoor–indoor conditions. Int J Hydrogen Energy. 2015;40(30):9096–9105.
  • Adessi A, De Philippis R. Photobioreactor design and illumination systems for H2 production with anoxygenic photosynthetic bacteria: a review. Int J Hydrogen Energy. 2014;39(7):3127–3141.
  • Reungsang A, Zhong N, Yang Y, et al. Hydrogen from photo fermentation. In: Liao, Q, Chang, J, Herrmann, C, Xia, A, editors, Bioreactors for Microbial Biomass and Energy Conversion. Singapore: Springer Singapore; 2018. pp. 221–317.
  • Sağır E., Hallenbeck PC. Photofermentative hydrogen production. In: Pandey A, Venkata Mohan S, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen: Amsterdam (Netherlands): Elsevier BV; 2019. p. 141–157.
  • Obeid J, Magnin JP, Flaus JM, et al. Modelling of hydrogen production in batch cultures of the photosynthetic bacterium Rhodobacter capsulatus. Int J Hydrogen Energy. 2009;34(1):180–185.
  • Sevinç P, Gündüz U, Eroglu I, et al. Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus. Int J Hydrogen Energy. 2012;37(21):16430–16436.
  • Özgür E, Mars AE, Peksel B, et al. Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrogen Energy. 2010a;35(2):511–517.
  • Uyar B, Eroglu I, Yücel M, et al. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrogen Energy. 2009;34(10):4517–4523.
  • Obeid J, Flaus J-M, Adrot O, et al. State estimation of a batch hydrogen production process using the photosynthetic bacteria Rhodobacter capsulatus. Int J Hydrogen Energy. 2010;35(19):10719–10724.
  • Gadhamshetty V, Sukumaran A, Nirmalakhandan N, et al. Photofermentation of malate for biohydrogen production - A modeling approach. Int J Hydrogen Energy. 2008;33(9):2138–2146.
  • Basak N, Jana AK, Das D. CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. Int J Hydrogen Energy. 2016;41(18):7301–7317.
  • Akbari L, Mahmoodzadeh Vaziri B. Comprehensive modeling of photo-fermentation process for prediction of hydrogen production. Int J Hydrogen Energy. 2017;42(21):14449–14457.
  • Chen CY, Lu WB, Liu CH, et al. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresour Technol. 2008;99(9):3609–3616.
  • Koku H, Eroǧlu I, Gündüz U, et al. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy. 2003;28(4):381–388.
  • Zhang D, Xiao N, Mahbubani KT, et al. Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chem Eng Sci. 2015;130:68–78.
  • Frunzo L, Garra R, Giusti A, et al. Modeling biological systems with an improved fractional Gompertz law. Commun Nonlinear Sci Numer Simul. 2019;74:260–267.
  • Puyol D, Barry EM, Hülsen T, et al. A mechanistic model for anaerobic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM). Water Res. 2017;116:241–253.
  • Wang YZ, Liao Q, Zhu X, et al. Effect of culture conditions on the kinetics of hydrogen production by photosynthetic bacteria in batch culture. Int J Hydrogen Energy. 2011;36(21):14004–14013.
  • Nath K, Muthukumar M, Kumar A, et al. Kinetics of two-stage fermentation process for the production of hydrogen. Int J Hydrogen Energy. 2008;33(4):1195–1203.
  • Özgür E, Uyar B, Öztürk Y, et al. Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures. Resour Conserv Recycl. 2010b;54(5):310–314.
  • Zhang XW, Zhang YM, Chen F. Kinetic models for phycocyanin production by high cell density mixotrophic culture of the microalga Spirulina platensis. J Ind Microbiol Biotechnol. 1998;21(6):283–288.
  • Akman MC, Erguder TH, Gündüz U, et al. Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production by response surface methodology. Int J Hydrogen Energy. 2015;40(15):5042–5049.
  • Androga DD, Sevinç P, Koku H, et al. Optimization of temperature and light intensity for improved photofermentative hydrogen production using Rhodobacter capsulatus DSM 1710. Int J Hydrogen Energy. 2014;39(6):2472–2480.
  • Ghosh D, Sobro IF, Hallenbeck PC. Stoichiometric conversion of biodiesel derived crude glycerol to hydrogen: response surface methodology study of the effects of light intensity and crude glycerol and glutamate concentration. Bioresour Technol. 2012b;106:154–160.
  • Basak N, Jana AK, Das D. Optimization of molecular hydrogen production by Rhodobacter sphaeroides O.U.001 in the annular photobioreactor using response surface methodology. Int J Hydrogen Energy. 2014;39(23):11889–11901.
  • Shi XY, Yu HQ. Optimization of glutamate concentration and pH for H production from volatile fatty acids by Rhodopseudomonas capsulata. Lett Appl Microbiol. 2005;40(6):401–406.
  • Jamil Z, Mohamad Annuar MS, Ibrahim S, et al. Optimization of phototrophic hydrogen production by Rhodopseudomonas palustris PBUM001 via statistical experimental design. Int J Hydrogen Energy. 2009;34(17):7502–7512.
  • Sun Q, Xiao W, Xi D, et al. Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int J Hydrogen Energy. 2010;35(9):4076–4084.
  • Mirza SS, Qazi JI, Zhao Q, et al. Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw. Biotechnol Biofuels. 2013;6(1):144–113.
  • Chen C-Y, Lu W-B, Wu J-F, et al. Enhancing phototrophic hydrogen production of Rhodopseudomonas palustris via statistical experimental design. Int J Hydrogen Energy. 2007;32(8):940–949.
  • Aghbashlo M, Hosseinpour S, Tabatabaei M, et al. Multi-objective exergetic optimization of continuous photo-biohydrogen production process using a novel hybrid fuzzy clustering-ranking approach coupled with Radial Basis Function (RBF) neural network. Int J Hydrogen Energy. 2016;41(41):18418–18430.
  • Monroy I, Buitrón G. Diagnosis of undesired scenarios in hydrogen production by photo-fermentation. Water Sci Technol. 2018;78(8):1652–1657.
  • Baş D, Boyacı İH. Modeling and optimization I: usability of response surface methodology. J Food Eng. 2007;78(3):836–845.
  • Khuri AI, Mukhopadhyay S. Response surface methodology. WIREs Comp Stat. 2010;2(2):128–149.
  • Okkerman PC, van de Plassche EJ, Emans HJ, et al. Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotoxicol Environ Saf. 1993;25(3):341–359.
  • Chezeau B, Vial C. Modeling and simulation of the biohydrogen production processes. In: Pandey A, Venkata Mohan S, Chang JS, Hallenbeck PC, Larroche C, editors. Biohydrogen. Amsterdam (Netherlands): Elsevier BV; 2019. p. 445–483.
  • Ardabili SF, Najafi B, Shamshirband S, et al. Computational intelligence approach formodeling hydrogen production: a review. Eng Appl Comput Fluid Mech. 2018;12(1):438–458.
  • Kanat G, Saral A. Estimation of biogas production rate in a thermophilic UASB reactor using artificial neural networks. Environ Model Assess. 2009;14(5):607–614.
  • Rosales-Colunga LM, García RG, De León Rodríguez A. Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network. Int J Hydrogen Energy. 2010;35(24):13186–13192.
  • Monroy I, Guevara-López E, Buitrón G. Biohydrogen production by batch indoor and outdoor photo-fermentation with an immobilized consortium: a process model with Neural Networks. Biochem Eng J. 2018;135:1–10.
  • Yang Y, Liao Q, Zhu X, et al. Lattice Boltzmann simulation of substrate flow past a cylinder with PSB biofilm for bio-hydrogen production. Int J Hydrogen Energy. 2011;36(21):14031–14040.
  • Liao Q, Yang YX, Zhu X, et al. Lattice Boltzmann simulation of substrate solution through a porous granule immobilized PSB-cell for biohydrogen production. Int J Hydrogen Energy. 2013;38(35):15700–15709.
  • Liao Q, Yang Y-X, Zhu X, et al. Pore-scale lattice Boltzmann simulation of flow and mass transfer in bioreactor with an immobilized granule for biohydrogen production. Sci Bull. 2017;62(1):22–30.
  • Liao Q, Liu DM, Ye DD, et al. Mathematical modeling of two-phase flow and transport in an immobilized-cell photobioreactor. Int J Hydrogen Energy. 2011;36(21):13939–13948.
  • Guo CL, Cao HX, Pei HS, et al. A multiphase mixture model for substrate concentration distribution characteristics and photo-hydrogen production performance of the entrapped-cell photobioreactor. Bioresour Technol. 2015;181:40–46.
  • Zhiping Z, Quanguo Z, Jianzhi Y, et al. CFD modeling and experiment of heat transfer in a tubular photo-bioreactor for photo-fermentation bio-hydrogen production. Int J Agric Biol Eng. 2017;10:209–217.
  • Katsuda T, Arimoto T, Igarashi K, et al. Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus. Biochem Eng J. 2000;5:157–164.
  • Liotta F, Chatellier P, Esposito G, et al. Hydrodynamic mathematical modelling of aerobic plug flow and nonideal flow reactors: a critical and historical review. Crit Rev Environ Sci Technol. 2014;44(23):2642–2673.
  • Wang X, Ding J, Guo WQ, et al. Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation. Int J Hydrogen Energy. 2010;35(20):10960–10966.
  • Wang CY, Cheng P. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media—I. Model development. Int J Heat Mass Transf. 1996;39(17):3607–3618.
  • Framework BLBM. Lattice Boltzmann models (LBMs) 4.1. Framework. 1992;4:31–54.
  • Chen S, Doolen GD. Lattice–Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30(1):329–364.
  • Suh IS, Lee SB. A light distribution model for an internally radiating photobioreactor. Biotechnol Bioeng. 2003;82(2):180–189.
  • Acién Fernández FG, García Camacho F, Sánchez Pérez JA, et al. A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng. 1997;55(5):701–714.
  • Cornet J-F, Dussap CG, Gros J-B, et al. A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem Eng Sci. 1995;50(9):1489–1500.
  • Zhang Z, Wu Q, Zhang C, et al. Effect of inlet velocity on heat transfer process in a novel photo-fermentation biohydrogen production bioreactor using computational fluid dynamics simulation. BioResources. 2014;10(1):469–481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.