1,286
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms

ORCID Icon, , &
Pages 513-534 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 04 Feb 2021

References

  • Ramel F, Birtic S, Cuiné S, et al. Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol. 2012;158(3):1267–1278.
  • Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6(2):466–488.
  • Hou X, Rivers J, León P, et al. Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci. 2016;21(9):792–803.
  • Havaux M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014;79(4):597–606.
  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–679.
  • Felemban A, Braguy J, Zurbriggen MD, et al. Apocarotenoids involved in plant development and stress response. Front Plant Sci. 2019;10:1168.
  • Jia K-P, Baz L, Al-Babili S. From carotenoids to strigolactones. J Exp Bot. 2018;69(9):2189–2204.
  • Hong S-H, Kim K-R, Oh D-K. Biochemical properties of retinoid-converting enzymes and biotechnological production of retinoids. Appl Microbiol Biotechnol. 2015;99(19):7813–7826.
  • Pereira da Costa D, Campos Miranda-Filho K. The use of carotenoid pigments as food additives for aquatic organisms and their functional roles. Rev Aquacult. 2019;12(3):1567–1578.
  • Pacheco SDG, Gasparin AT, Jesus CHA, et al. Antinociceptive and anti-inflammatory effects of bixin, a carotenoid extracted from the seeds of Bixa orellana. Planta Med. 2019;85(16):1216–1224.
  • Sánchez AM, Winterhalter P. Carotenoid cleavage products in saffron (Crocus sativus L.). ACS Symp Ser. 2013;1134:45–63.
  • Rodrigo MJ, Alquézar B, Alós E, et al. A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. J Exp Bot. 2013;64(14):4461–4478.
  • Ramel F, Birtic S, Ginies C, et al. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A. 2012;109(14):5535–5540.
  • Dickinson AJ, Lehner K, Mi J, et al. β-Cyclocitral is a conserved root growth regulator. Proc Natl Acad Sci U S A. 2019;116(21):10563–10567.
  • Sun Q, Zhou M, Zuo Z. Toxic mechanism of eucalyptol and β-cyclocitral on Chlamydomonas reinhardtii by inducing programmed cell death. J Hazard Mater. 2020;389:121910.
  • Shumbe L, Bott R, Havaux M. Dihydroactinidiolide, a high light-induced β-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Mol Plant. 2014;7(7):1248–1251.
  • Ikawa M, Sasner JJ, Haney JF. Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia. 2001;443(1/3):19–22.
  • Murata M, Kobayashi T, Seo S. α-Ionone, an apocarotenoid, induces plant resistance to Western Flower Thrips, Frankliniella occidentalis, independently of jasmonic acid. Molecules. 2019;25(1):17.
  • Zuo Z. Why algae release volatile organic compounds-the emission and roles. Front Microbiol. 2019;10:491.
  • Ansari M, Emami S. β-Ionone and its analogs as promising anticancer agents. Eur J Med Chem. 2016;123:141–154.
  • Reyes P, Chichester CO, Nakayama TO. The mechanism of β-ionone stimulation of carotenoid and ergosterol biosynthesis in Phycomyces blakesleeanus. Biochim Biophys Acta. 1964;90(3):578–592.
  • Cataldo VF, López J, Cárcamo M, et al. Chemical vs. biotechnological synthesis of C13-apocarotenoids: current methods, applications and perspectives. Appl Microbiol Biotechnol. 2016;100(13):5703–5718.
  • Mendes-Pinto MM. Carotenoid breakdown products the-norisoprenoids-in wine aroma. Arch Biochem Biophys. 2009;483(2):236–245.
  • Murata M, Nakai Y, Kawazu K, et al. Loliolide, a carotenoid metabolite, is a potential endogenous inducer of herbivore resistance. Plant Physiol. 2019;179(4):1822–1833.
  • Li LL, Zhao HH, Kong CH. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J Exp Bot. 2020;71(4):1540–1550.
  • Jia K-P, Dickinson AJ, Mi J, et al. Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in Arabidopsis. Sci Adv. 2019;5(11):eaaw6787
  • Wang JY, Haider I, Jamil M, et al. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun. 2019;10(1):810.
  • Ablazov A, Mi J, Jamil M, et al. The apocarotenoid zaxinone is a positive regulator of strigolactone and abscisic acid biosynthesis in arabidopsis roots. Front Plant Sci. 2020;11:578.
  • Floss DS, Schliemann W, Schmidt J, et al. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of Medicago truncatula causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. Plant Physiol. 2008;148(3):1267–1282.
  • Schimek C, Wöstemeyer J. Carotene derivatives in sexual communication of zygomycete fungi. Phytochemistry. 2009;70(15-16):1867–1875.
  • Ahrazem O, Gómez-Gómez L, Rodrigo MJ, et al. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. IJMS. 2016;17(11):1781.
  • Liang M-H, Zhu J, Jiang J-G. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci Nutr. 2018;58(14):2314–2333.
  • Sui X, Kiser PD, Lintig J, et al. Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys. 2013;539(2):203–213.
  • Sun T, Tadmor Y, Li L. Pathways for carotenoid biosynthesis, degradation, and storage. In: Rodriguez-Concepcion M, Welsch R, editors. Plant and food carotenoids. Methods in molecular biology. New York (NY): Humana; 2020; p. 3–23.
  • Bouvier F, Dogbo O, Camara B. Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science. 2003;300(5628):2089–2091.
  • Frusciante S, Diretto G, Bruno M, et al. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A. 2014;111(33):12246–12251.
  • Ma G, Zhang L, Matsuta A, et al. Enzymatic formation of β-citraurin from β-cryptoxanthin and zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit. Plant Physiol. 2013;163(2):682–695.
  • Fiorilli V, Wang JY, Bonfante P, et al. Apocarotenoids: old and new mediators of the arbuscular mycorrhizal symbiosis. Front Plant Sci. 2019;10:1186.
  • Cui H, Wang Y, Qin S. Genomewide analysis of carotenoid cleavage dioxygenases in unicellular and filamentous cyanobacteria. Comp Funct Genomics. 2012;2012(1):164690–164685.
  • Delaux P-M, Xie X, Timme RE, et al. Origin of strigolactones in the green lineage. New Phytol. 2012;195(4):857–871.
  • Marasco EK, Vay K, Schmidt-Dannert C. Identification of carotenoid cleavage dioxygenases from Nostoc sp. PCC 7120 with different cleavage activities. J Biol Chem. 2006;281(42):31583–31593.
  • Rodríguez-Bustamante E, Sánchez S. Microbial production of C13-norisoprenoids and other aroma compounds via carotenoid cleavage. Crit Rev Microbiol. 2007;33(3):211–230.
  • Tan B-C, Joseph LM, Deng W-T, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003;35(1):44–56.
  • Li H-H, Hao R-L, Wu S-S, et al. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochem Pharmacol. 2011;82(7):701–712.
  • Hartung W. The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Functional Plant Biol. 2010;37(9):806–812.
  • Takino J, Kozaki T, Ozaki T, et al. Elucidation of biosynthetic pathway of a plant hormone abscisic acid in phytopathogenic fungi. Biosci Biotechnol Biochem. 2019;83(9):1642–1649.
  • Otto M, Teixeira PG, Vizcaino MI, et al. Integration of a multi-step heterologous pathway in Saccharomyces cerevisiae for the production of abscisic acid. Microb Cell Fact. 2019;18(1):205.
  • López-Ráez JA, Charnikhova T, Gómez-Roldán V, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol. 2008;178(4):863–874.
  • Ahrazem O, Diretto G, Argandoña J, et al. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. J Exp Bot. 2017;68(16):4663–4677.
  • Xu Z, Pu X, Gao R, et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol. 2020;18(1):63.
  • Bukhari SI, Manzoor M, Dhar M. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother. 2018;98:733–745.
  • Baba SA, Ashraf N. Pharmacological importance of Crocus sativus apocarotenoids. In: Baba SA, Ashraf N, editors. Apocarotenoids of Crocus sativus L: from biosynthesis to pharmacology. Singapore: Springer; 2016. p. 39–61.
  • Kim YS, Park C-S, Oh D-K. Retinal production from beta-carotene by beta-carotene 15,15'-dioxygenase from an unculturable marine bacterium. Biotechnol Lett. 2010;32(7):957–961.
  • Scherzinger D, Scheffer E, Bär C, et al. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J. 2010;277(22):4662–4673.
  • Prado-Cabrero A, Scherzinger D, Avalos J, et al. Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukaryot Cell. 2007;6(4):650–657.
  • Beltran JCM, Stange C. Apocarotenoids: a new carotenoid-derived pathway. In: Stange C, editors. Carotenoids in nature: biosynthesis, regulation and function. Cham, Switzerland: Springer International Publishing; 2016; p. 239–272.
  • Mathieu S, Terrier N, Procureur J, et al. A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot. 2005;56(420):2721–2731.
  • Lätari K, Wüst F, Hübner M, et al. Tissue-specific apocarotenoid glycosylation contributes to carotenoid homeostasis in Arabidopsis leaves. Plant Physiol. 2015;168(4):1550–1562.
  • Mi J, Jia K-P, Balakrishna A, et al. An LC-MS profiling method reveals a route for apocarotene glycosylation and shows its induction by high light stress in Arabidopsis. Analyst. 2019;144(4):1197–1204.
  • Havaux M. β-Cyclocitral and derivatives: emerging molecular signals serving multiple biological functions. Plant Physiol Biochem. 2020;155:35–41.
  • Walter MH, Strack D. Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep. 2011;28(4):663–692.
  • Vogel JT, Tan B-C, McCarty DR, et al. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem. 2008;283(17):11364–11373.
  • Ilg A, Beyer P, Al-Babili S. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS J. 2009;276(3):736–747.
  • Schwartz SH, Qin X, Zeevaart JAD. Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem. 2001;276(27):25208–25211.
  • Simkin AJ, Schwartz SH, Auldridge M, et al. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J. 2004;40(6):882–892.
  • Huang F-C, Molnár P, Schwab W. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot. 2009;60(11):3011–3022.
  • Rubio A, Rambla JL, Santaella M, et al. Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem. 2008;283(36):24816–24825.
  • Lashbrooke JG, Young PR, Dockrall SJ, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biol. 2013;13(1):156–117.
  • Watson SB. Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia. 2003;42(4):332–350.
  • Jüttner F, Höflacher B. Evidence of β-carotene 7, 8 (7′, 8′) oxygenase (β-cyclocitral, crocetindial generating) in Microcystis. Arch Microbiol. 1985;141(4):337–343.
  • Scherzinger D, Al-Babili S. In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight. Mol Microbiol. 2008;69(1):231–244.
  • Zhu M-M, Wang S-L, Fan M-T, et al. In vitro study of the carotenoid-cleavage enzyme from Staphylococcus pasteuri TS-82 revealed substrate specificities and generation of norisoprenoid flavors . Food Sci Biotechnol. 2016;25(1):221–227.
  • Zorn H, Langhoff S, Scheibner M, et al. A peroxidase from Lepista irina Cleaves beta,beta-carotene to flavor compounds . Biol Chem. 2003;384(7):1049–1056.
  • Schüttmann I, Bouws H, Szweda RT, et al. Induction, characterization, and heterologous expression of a carotenoid degrading versatile peroxidase from Pleurotus sapidus. J Mol Catal B: Enzym. 2014;103:79–84.
  • Scheibner M, Hülsdau B, Zelena K, et al. Novel peroxidases of Marasmius scorodonius degrade beta-carotene. Appl Microbiol Biotechnol. 2008;77(6):1241–1250.
  • Lanfermann I, Linke D, Nimtz M, et al. Manganese peroxidases from Ganoderma applanatum degrade β-carotene under alkaline conditions. Appl Biochem Biotechnol. 2015;175(8):3800–3812.
  • Perveen I, Raza MA, Sehar S, et al. Purification of recombinant peroxidase from Thermobifida fusca IP1 for β-carotene degradation into industrial flavouring agents. Int Food Res J. 2019;26(2):731–736.
  • Gayen D, Ali N, Sarkar SN, et al. Down-regulation of lipoxygenase gene reduces degradation of carotenoids of golden rice during storage. Planta. 2015;242(1):353–363.
  • Ramel F, Mialoundama AS, Havaux M. Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. J Exp Bot. 2013;64(3):799–805.
  • Lv F, Zhou J, Zeng L, et al. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. J Exp Bot. 2015;66(15):4719–4732.
  • Liang M-H, Wu F-C, Liang Z-C, et al. Induction of carotenoid cleavage by salt stress and the effect of their products on cell growth and pigment accumulation in Dunaliella sp. FACHB-847. Algal Res. 2020;48:101901.
  • Shao J, Xu Y, Wang Z, et al. Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquat Toxicol. 2011;104(1-2):48–55.
  • Vereshchagina OA, Tereshina VM. Trisporoids and carotenogenesis in Blakeslea trispora. Microbiology. 2014;83(5):438–449.
  • Eslava AP, Alvarez MI, Cerdá-Olmedo E. Regulation of carotene biosynthesis in phycomyces by vitamin A and β‐ionone. Febs J. 2010;48(2):617–623.
  • Rios JJ, Fernandez-Garcia E, Minguez-Mosquera MI, et al. Description of volatile compounds generated by the degradation of carotenoids in paprika, tomato and marigold oleoresins. Food Chem. 2008;106(3):1145–1153.
  • Vogel JT, Walter MH, Giavalisco P, et al. SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. Plant J. 2010;61(2):300–311.
  • Sun J, Li H, Sun X, et al. Trisporic acid stimulates gene transcription of terpenoid biosynthesis in Blakeslea trispora. Process Biochem. 2012;47(12):1889–1893.
  • Tagua VG, Medina HR, Martín-Domínguez R, et al. A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol. 2012;49(5):398–404.
  • Medina HR, Cerdá‐Olmedo E, Al‐Babili S. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces. Mol Microbiol. 2011;82(1):199–208.
  • Prado-Cabrero A, Estrada AF, Al ‐Babili S, et al. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway. Mol Microbiol. 2007;64(2):448–460.
  • Saelices L, Youssar L, Holdermann I, et al. Identification of the gene responsible for torulene cleavage in the Neurospora carotenoid pathway. Mol Genet Genomics. 2007;278(5):527–537.
  • Parra-Rivero O, Barros MPd, Prado MM, et al. Neurosporaxanthin overproduction by Fusarium fujikuroi and evaluation of its antioxidant properties. Antioxidants. 2020;9(6):528.
  • Avendaño-Vázquez A-O, Cordoba E, Llamas E, et al. an uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell. 2014;26(6):2524–2537.
  • Alagoz Y, Nayak P, Dhami N, et al. cis-Carotene biosynthesis, evolution and regulation in plants: the emergence of novel signaling metabolites. Arch Biochem Biophys. 2018;654:172–184.
  • Cazzonelli CI, Hou X, Alagoz Y, et al. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. eLife. 2020;9:9.
  • Yuan H, Zhang J, Nageswaran D, et al. Carotenoid metabolism and regulation in horticultural crops. Hortic Res. 2015;2:15036.
  • Liang M-H, Wang L, Wang Q, et al. High-value bioproducts from microalgae: strategies and progress. Crit Rev Food Sci Nutr. 2019;59(15):2423–2441.
  • Watkins JL, Pogson BJ. Prospects for carotenoid biofortification targeting retention and catabolism. Trends Plant Sci. 2020;25(5):501–512.
  • García-Limones C, Schnäbele K, Blanco-Portales R, et al. Functional characterization of FaCCD1: a carotenoid cleavage dioxygenase from strawberry involved in lutein degradation during fruit ripening. J Agric Food Chem. 2008;56(19):9277–9285.
  • Chiou C-Y, Pan H-A, Chuang Y-N, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta. 2010;232(4):937–948.
  • Gonzalez-Jorge S, Ha SH, Magallanes-Lundback M, Gilliland LU, et al. CAROTENOID CLEAVAGE DIOXYGENASE4 is a negative regulator of β-carotene content in arabidopsis seeds. Plant Cell. 2013;25(12):4812–4826.
  • Rubio-Moraga A, Rambla JL, Fernández-de-Carmen A, et al. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Mol Biol. 2014;86(4-5):555–569.
  • Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 2006;142(3):1193–1201.
  • Luan Y, Wang S, Wang R, et al. Accumulation of red apocarotenoid β-citraurin in peel of a spontaneous mutant of huyou (Citrus changshanensis) and the effects of storage temperature and ethylene application. Food Chem. 2020;309:125705.
  • Simkin AJ, Underwood BA, Auldridge M, et al. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol. 2004;136(3):3504–3514.
  • Zhang B, Tieman DM, Jiao C, et al. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc Natl Acad Sci USA. 2016;113(44):12580–12585.
  • Gao L, Gonda I, Sun H, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019;51(6):1044–1051.
  • Ledger SE, Janssen BJ, Karunairetnam S, et al. Modified CAROTENOID CLEAVAGE DIOXYGENASE8 expression correlates with altered branching in kiwifruit (Actinidia chinensis). New Phytol. 2010;188(3):803–813.
  • Gao J, Zhang T, Xu B, et al. CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 (CCD8) in tobacco affects shoot and root architecture. IJMS. 2018;19(4):1062.
  • Wang Y, Shang L, Yu H, et al. A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant. 2020;13(6):923–932.
  • López-Ráez JA, Fernández I, García JM, et al. Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Sci. 2015;230:59–69.
  • Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27(4):325–333.
  • Ahrazem O, Rubio-Moraga A, Trapero A, et al. Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. J Exp Bot. 2012;63(2):681–694.
  • Huang Y, Guo Y, Liu Y, et al. 9-cis-Epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci. 2018;9:162.
  • Sun L, Sun Y, Zhang M, et al. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol. 2012;158(1):283–298.
  • Leenhardt F, Lyan B, Rock E, et al. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J Agric Food Chem. 2006;54(5):1710–1715.
  • Verlotta A, Simone VD, Mastrangelo AM, et al. Insight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol. 2010;10(1):263–263.
  • Carrera A, Echenique V, Zhang W, et al. A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J Cereal Sci. 2007;45(1):67–77.
  • Ying SL, Jeon YA, Lim SH, et al. Vascular-specific activity of the Arabidopsis carotenoid cleavage dioxygenase 7 gene promoter. Plant Cell Rep. 2011;30(6):973–980.
  • Behnam B, Iuchi S, Fujita M, et al. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res. 2013;20(4):315–324.
  • Imai A, Takahashi S, Nakayama K, et al. The promoter of the carotenoid cleavage dioxygenase 4a-5 gene of Chrysanthemum morifolium (CmCCD4a-5) drives petal-specific transcription of a conjugated gene in the developing flower. J Plant Physiol. 2013;170(14):1295–1299.
  • Zheng X, Zhu K, Sun Q, et al. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel. Mol Plant. 2019;12(9):1294–1307.
  • Li Q, Sapkota M, van der Knaap E. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Hortic Res. 2020;7(1):36.
  • Han Y, Wu M, Cao L, et al. Characterization of OfWRKY3, a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans. Plant Mol Biol. 2016;91(4–5):485–496.
  • Han Y, Wang H, Wang X, et al. Mechanism of floral scent production in Osmanthus fragrans and the production and regulation of its key floral constituents, β-ionone and linalool. Hortic Res. 2019;6(1):1–12.
  • Meng N, Wei Y, Gao Y, et al. Characterization of transcriptional expression and regulation of carotenoid cleavage dioxygenase 4b in grapes. Front Plant Sci. 2020;11:483
  • Lu S, Zhang Y, Zhu K, et al. The citrus transcription factor csmads6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol. 2018;176(4):2657–2676.
  • Yue Z, Liu H, Ma F. The Malus carotenoid cleavage dioxygenase 7 is involved in stress response and regulated by basic pentacysteine 1. Sci Hortic. 2015;192:264–270.
  • Ashraf N, Jain D, Vishwakarma RA. Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. BMC Plant Biol. 2015;15(1):25.
  • Jensen MK, Lindemose S, Masi F, et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio. 2013;3:321–327.
  • Mao C, Lu S, Lv B, et al. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol. 2017;174(3):1747–1763.
  • Xu P, Chen H, Cai W. Transcription factor CDF4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in Arabidopsis. EMBO Rep. 2020;21(7):e48967.
  • Zhu F, Luo T, Liu C, et al. An R2R3-MYB transcription factor represses the transformation of α- and β-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate . New Phytol. 2017;216(1):178–192.
  • Zhu F, Luo T, Liu C, et al. A NAC transcription factor and its interaction protein hinder abscisic acid biosynthesis by synergistically repressing NCED5 in Citrus reticulata. J Exp Bot. 2020;71(12):3613–3625.
  • Wang X, Zeng W, Ding Y, et al. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Hortic Res. 2019;6(1):19.
  • Liu F, Zhang H, Ding L, et al. REVERSAL OF RDO5 1, a homolog of rice seed Dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in arabidopsis. Plant Cell. 2020;32(6):1933–1948.
  • Jian W, Cao H, Yuan S, et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic Res. 2019;6(1):22.
  • Zhou X, Welsch R, Yang Y, et al. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci USA. 2015;112(11):3558–3563.
  • Feder A, Chayut N, Gur A, et al. The role of carotenogenic metabolic flux in carotenoid accumulation and chromoplast differentiation: lessons from the melon fruit. Front Plant Sci. 2019;10:1250.
  • Kim HS, Yoon JC, Lee CJ, et al. Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. J Exp Bot. 2018;69(14):3393–3400.
  • Bhuiyan NH, Friso G, Rowland E, et al. The plastoglobule-localized metallopeptidase PGM48 is a positive regulator of senescence in Arabidopsis thaliana. Plant Cell. 2016;28(12):3020–3037.
  • Bhuiyan NH, van Wijk KJ. Functions and substrates of plastoglobule-localized metallopeptidase PGM48. Plant Signal Behav. 2017;12(6):3020–3037.
  • Kalladan R, Lasky JR, Sharma S, et al. Natural variation in 9-Cis-epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiol. 2019;179(4):1620–1631.
  • Xu J, Wang X, Cao H, et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus. DNA Res. 2017;24(5):509–522.
  • Yao M, Chen WW, Kong J, et al. METHYLTRANSFERASE1 and ripening modulate vivipary during tomato fruit development. Plant Physiol. 2020;183(4):1883–1897.
  • Carmona M, Zalacain A, Salinas MR, et al. Generation of saffron volatiles by thermal carotenoid degradation. J Agric Food Chem. 2006;54(18):6825–6834.
  • Zhang C. Biosynthesis of carotenoids and apocarotenoids by microorganisms and their industrial potential. United Kingdom: IntechOpen; 2018. p. 85.
  • Chai F, Wang Y, Mei X, et al. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microb Cell Fact. 2017;16(1):54.
  • Wang W, He P, Zhao D, et al. Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Fact. 2019;18(1):120.
  • Ding F, Liu F, Shao W, et al. Efficient synthesis of crocins from crocetin by a microbial glycosyltransferase from Bacillus subtilis 168. J Agric Food Chem. 2018;66(44):11701–11708.
  • Pu X, He C, Yang Y, et al. In Vivo production of five crocins in the engineered Escherichia coli. ACS Synth Biol. 2020;9(5):1160–1168.
  • Lou S, Wang L, He L, et al. Production of crocetin in transgenic Chlorella vulgaris expressing genes crtRB and ZCD1. J Appl Phycol. 2016;28(3):1657–1665.
  • Marti M, Diretto G, Aragones V, et al. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Metab Eng. 2019;62:238–250.
  • Kim Y-S, Kim N-H, Kim H-J, et al. Effective production of retinal from beta-carotene using recombinant mouse beta-carotene 15,15'-monooxygenase . Appl Microbiol Biotechnol. 2007;76(6):1339–1345.
  • Jang HJ, Yoon SH, Ryu HK, et al. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb Cell Fact. 2011;10(1):59.
  • Jang HJ, Ha B-K, Zhou J, et al. Selective retinol production by modulating the composition of retinoids from metabolically engineered E. coli. Biotechnol Bioeng. 2015;112(8):1604–1612.
  • Zhang C, Chen X, Lindley ND, et al. A “plug-n-play” modular metabolic system for the production of apocarotenoids. Biotechnol Bioeng. 2018;115(1):174–183.
  • Sun L, Kwak S, Jin Y-S. Vitamin A production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS Synth Biol. 2019;8(9):2131–2140.
  • Kim NH, Kim YS, Kim HJ, et al. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase . Biotechnol Prog. 2008;24(1):227–231.
  • Chen X, Shukal S, Zhang C. Integrating enzyme and metabolic engineering tools for enhanced α-ionone production. J Agric Food Chem. 2019;67(49):13451–13459.
  • Ye L, Zhu X, Wu T, et al. Optimizing the localization of astaxanthin enzymes for improved productivity. Biotechnol Biofuels. 2018;11(1):278.
  • Jiang R, Chen X, Lian J, et al. Efficient production of Pseudoionone with multipathway engineering in Escherichia coli. J Appl Microbiol. 2019;126(6):1751–1760.
  • Beekwilder J, van Rossum HM, Koopman F, et al. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production. J Biotechnol. 2014;192:383–392.
  • López J, Essus K, Kim I-k, et al. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14(1):84
  • Werner N, Ramirez-Sarmiento CA, Agosin E. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories. Food Chem. 2019;299:125089.
  • Czajka JJ, Nathenson JA, Benites VT, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Microb Cell Fact. 2018;17(1):136.
  • Lu Y, Yang Q, Lin Z, et al. A modular pathway engineering strategy for the high-level production of beta-ionone in Yarrowia lipolytica. Microb Cell Fact. 2020;19(1):49.
  • Czajka JJ, Kambhampati S, Tang YJ, et al. Application of stable isotope tracing to elucidate metabolic dynamics during Yarrowia lipolytica α-ionone fermentation. iScience. 2020;23(2):100854.
  • Liang M-H, Jiang J-G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52(4):395–408.
  • Sugio A, Takagi S. Lipoxygenase. US patent US 7264954B2. 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.