1,068
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Engineering of xylose metabolism in Escherichia coli for the production of valuable compounds

, ORCID Icon, , & ORCID Icon
Pages 649-668 | Received 05 Jan 2021, Accepted 05 Jan 2021, Published online: 09 Feb 2021

References

  • Paula RG, Antoniêto ACC, Ribeiro LFC, et al. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv. 2019;37:107347.
  • Gírio FM, Fonseca C, Carvalheiro F, et al. Hemicelluloses for fuel ethanol: a review. Bioresour Technol. 2010;101:4775–4800.
  • Valdehuesa KNG, Ramos KRM, Nisola GM, et al. Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms. Appl Microbiol Biotechnol. 2018;102:7703–7716.
  • Bailey JE. Toward a science of metabolic engineering. Science. 1991;252:1668–1675.
  • Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science. 1991;252:1675–1681.
  • Theisen M, Liao JC. Industrial biotechnology: Escherichia coli as a host. In: Wittmann C, Liao JC, editors. Industrial biotechnology: microorganisms. 1st ed. New York (NY): Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p. 151–181.
  • Blattner FR, Plunkett G, 3rd, Bloch CA, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–1462.
  • Keseler IM, Collado-Vides J, Gama-Castro S, et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res. 2005;33:D334–D337.
  • Abdelaal AS, Jawed K, Yazdani SS. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. J Ind Microbiol Biotechnol. 2019;46:965–975.
  • Zheng J, Tashiro Y, Yoshida T, et al. Continuous butanol fermentation from xylose with high cell density by cell recycling system. Bioresour Technol. 2013;129:360–365.
  • Yu C, Cao Y, Zou H, et al. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol. 2011;89:573–583.
  • Liang L, Liu R, Freed EF, et al. Synthetic Biology and metabolic engineering employing Escherichia coli for C2-C6 bioalcohol production. Front Bioeng Biotechnol. 2020;8:1–8.
  • Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27:946–950.
  • Shen CR, Lan EI, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol. 2011;77:2905–2915.
  • Ohtake T, Pontrelli S, Laviña WA, et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab Eng. 2017;41:135–143.
  • Meyer H, Schmidhalter DR. Microbial expression systems and manufacturing from a market and economic perspective. In: Agbo EC, editor. Innovations in biotechnology. IntechOpen; 2012. p. 211–250.
  • Gusyatiner MM, Rostova YG, Kiryukhin MY, et al., inventors; Ajinomoto Co., INC., assignee. Method for producing an l-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway. United States patent US-9840725-B2. 2017 Dec 12.
  • Kojima H, Ogawa Y, Kawamura K, et al., inventors; Ajinomoto Co., INC., assignee. Method of producing l-lysine by fermentation. United States patent US-6040160A. 2017 Dec 12.
  • Pontrelli S, Chiu TY, Lan EI, et al. Escherichia coli as a host for metabolic engineering. Metab Eng. 2018;50:16–46.
  • Mundhada H, Seoane JM, Schneider K, et al. Increased production of l-serine in Escherichia coli through adaptive laboratory evolution. Metab Eng. 2017; 39:141–150.
  • Baritugo KA, Kim HT, David Y, et al. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol. 2018;102:3915–3937.
  • Sabra W, Groeger C, Zeng AP. Microbial cell factories for diol production. Adv Biochem Eng Biotechnol. 2016;155:165–197.
  • Burgard A, Burk MJ, Osterhout R, et al. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol. 2016; 42:118–125.
  • Sanford K, Chotani G, Danielson N, et al. Scaling up of renewable chemicals. Curr Opin Biotechnol. 2016; 38:112–122.
  • Furubayashi M, Ikezumi M, Takaichi S, et al. A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Nat Commun. 2015; 6:7534
  • Patiño MA, Ortiz JP, Velásquez M, et al. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: a review. Yeast. 2019; 36:541–556.
  • Cunha JT, Soares PO, Romaní A, et al. Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol Biofuels. 2019;12:20.
  • Jeffries TW. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol. 2006;17:320–326.
  • Wu G, Yan Q, Jones JA, et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 2016;34:652–664.
  • Yamanaka K. Inhibition of d-xylose isomerase by pentitols and d-lyxose. Arch Biochem Biophys. 1969;131:502–506.
  • Tanino T, Hotta A, Ito T, et al. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol. 2010;88:1215–1221.
  • Hasona A, Kim Y, Healy FG, et al. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol. 2004; 186:7593–7600.
  • Khlebnikov A, Datsenko KA, Skaug T, et al. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology (Reading). 2001;147:3241–3247.
  • Khankal R, Chin JW, Cirino PC. Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol. 2008;134:246–252.
  • Desai TA, Rao CV. Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microbiol. 2010;76:1524–1532.
  • Song S, Park C. Organization and regulation of the d-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol. 1997;179:7025–7032.
  • Hendrickson W, Flaherty C, Molz L. Sequence elements in the Escherichia coli araFGH promoter. J Bacteriol. 1992;174:6862–6871.
  • Lam VMS, Daruwalla KR, Henderson PJF, et al. Proton-linked d-xylose transport in Escherichia coli. J Bacteriol. 1980;143:396–402.
  • Hamacher T, Becker J, Gárdonyi M, et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology (Reading). 2002;148:2783–2788.
  • Farwick A, Bruder S, Schadeweg V, et al. Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc Natl Acad Sci U S A. 2014;111:5159–5164.
  • Utrilla J, Licona-Cassani C, Marcellin E, et al. Engineering and adaptive evolution of Escherichia coli for d-lactate fermentation reveals GatC as a xylose transporter. Metab Eng. 2012;14:469–476.
  • Magasanik B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256.
  • Monod J. The growth of bacterial cultures. Annu Rev Microbiol. 1949;3:371–394.
  • Vinuselvi P, Kim MK, Lee SK, et al. Rewiring carbon catabolite repression for microbial cell factory. BMB Rep. 2012;45:59–70.
  • Luo Y, Zhang T, Wu H. The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv. 2014;32:905–919.
  • Gonzalez R, Tao H, Shanmugam KT, et al. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog. 2002;18:6–20.
  • Aidelberg G, Towbin BD, Rothschild D, et al. Hierarchy of non-glucose sugars in Escherichia coli. BMC Syst Biol. 2014;8:112–133.
  • Groff D, Benke PI, Batth TS, et al. Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Appl Environ Microbiol. 2012;78:2221–2229.
  • Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6:613–624.
  • Beisel CL, Afroz T. Rethinking the hierarchy of sugar utilization in bacteria. J Bacteriol. 2016;198:374–376.
  • Koirala S, Wang X, Rao CV. Reciprocal regulation of l-arabinose and d-xylose metabolism in Escherichia coli. J Bacteriol. 2016;198:386–393.
  • Kurgan G, Sievert C, Flores A, et al. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Biotechnol Bioeng. 2019;116:2074–2086.
  • Choudhury D, Saini S. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli. Lett Appl Microbiol. 2018;66:132–137.
  • David JD, Wiesmeyer H. Control of xylose metabolism in Escherichia coli. Biochim Biophys Acta. 1970;201:497–499.
  • Briggs KA, Lancashire WE, Hartley BS. Molecular cloning, DNA structure and expression of the Escherichia coli d-xylose isomerase. Embo J. 1984;3:611–616.
  • Schellenberg GD, Sarthy A, Larson AE, et al. Xylose isomerase from Escherichia coli. Characterization of the protein and the structural gene. J Biol Chem. 1984;259:6826–6832.
  • Rosenfeld SA, Stevis PE, Ho NW. Cloning and characterization of the xyl genes from Escherichia coli. Mol Gen Genet. 1984;194:410–415.
  • Stincone A, Prigione A, Cramer T, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 2015;90:927–963.
  • Averesch NJH, Krömer JO. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front Bioeng Biotechnol. 2018;6:32.
  • Ingram LO, Conway T, Clark DP, et al. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 1987;53:2420–2425.
  • Gonzalez R, Tao H, Purvis JE, et al. Gene array based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog. 2003;19:612–623.
  • Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol. 2008;74:3634–3643.
  • Wang J, Shen X, Lin Y, et al. Investigation of the synergetic effect of xylose metabolic pathways on the production of glutaric acid. ACS Synth Biol. 2018;7:24–29.
  • Liu M, Ding Y, Xian M, et al. Metabolic engineering of a xylose pathway for biotechnological production of glycolate in Escherichia coli. Microb Cell Fact. 2018;17:1–11.
  • Bai W, Tai YS, Wang J, et al. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metab Eng. 2016;38:285–292.
  • Chiang C, Knight SG. d-Xylose metabolism by cell-free extracts of Penicillium chrysogenum. Biochim Biophys Acta. 1959;35:454–463.
  • Winkelhausen E, Kuzmanova S. Microbial conversion of d-xylose to xylitol. J Ferment Bioeng. 1998;86:1–14.
  • Kötter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38:776–783.
  • Khankal R, Luziatelli F, Chin JW, et al. Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production. Biotechnol Lett. 2008;30:1645–1653.
  • Cirino PC, Chin JW, Ingram LO. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng. 2006;95:1167–1176.
  • Chin JW, Khankal R, Monroe CA, et al. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng. 2009;102:209–220.
  • Chin JW, Cirino PC. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog. 2011;27:333–341.
  • Hibi M, Yukitomo H, Ito M, et al. Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding. Appl Environ Microbiol. 2007;73:7657–7663.
  • Di Luccio E, Petschacher B, Voegtli J, et al. Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. J Mol Biol. 2007;365:783–798.
  • Akinterinwa O, Cirino PC. Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng. 2009;11:48–55.
  • Palchaudhuri S, Rehse SJ, Hamasha K, et al. Raman spectroscopy of xylitol uptake and metabolism in Gram-positive and Gram-negative bacteria. Appl Environ Microbiol. 2011;77:131–137.
  • Granström TB, Izumori K, Leisola M. A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotechnol. 2007;74:277–281.
  • Nair NU, Zhao H. Evolution in reverse: engineering a d-xylose-specific xylose reductase. Chembiochem. 2008;9:1213–1215.
  • Woodyer R, Simurdiak M, van der Donk WA, et al. Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol. 2005;71:1642–1647.
  • Su B, Wu M, Lin J, et al. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnol Lett. 2013;35:1781–1789.
  • Nair NU, Zhao H. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab Eng. 2010;12:462–468.
  • Su B, Wu M, Zhang Z, et al. Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng. 2015;31:112–122.
  • Su B, Zhang Z, Wu M, et al. Construction of plasmid-free Escherichia coli for the production of arabitol-free xylitol from corncob hemicellulosic hydrolysate. Sci Rep. 2016;6:26511–26567.
  • Kim SM, Choi BY, Ryu YS, et al. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab Eng. 2015;30:141–148.
  • Jin LQ, Xu W, Yang B, et al. Efficient biosynthesis of xylitol from xylose by coexpression of xylose reductase and glucose dehydrogenase in Escherichia coli. Appl Biochem Biotechnol. 2019;187:1143–1157.
  • Abd Rahman NH, Md Jahim J, Abdul Munaim MS, et al. Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb Technol. 2020;135:109495.
  • Dahms AS. 3-Deoxy-d-pentulosonic acid aldolase and its role in a new pathway of d-xylose degradation. Biochem Biophys Res Commun. 1974;60:1433–1439.
  • Stephens C, Christen B, Fuchs T, et al. Genetic analysis of a novel pathway for d-xylose metabolism in Caulobacter crescentus. J Bacteriol. 2007;189:2181–2185.
  • Weimberg R. Pentose oxidation by Pseudomonas fragi. J Biol Chem. 1961;236:629–635.
  • Stephens C, Christen B, Watanabe K, et al. Regulation of d-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. J Bacteriol. 2007;189:8828–8834.
  • Rossoni L, Carr R, Baxter S, et al. Engineering Escherichia coli to grow constitutively on d-xylose using the carbon-efficient Weimberg pathway. Microbiology (Reading). 2018;164:287–298.
  • Liu H, Valdehuesa KNG, Nisola GM, et al. High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli. Bioresour Technol. 2012;115:244–248.
  • Cao Y, Xian M, Zou H, et al. Metabolic engineering of Escherichia coli for the production of xylonate. PLoS One. 2013;8:e67305.
  • Zhang Y, Guo S, Wang Y, et al. Production of d-xylonate from corn cob hydrolysate by a metabolically engineered Escherichia coli strain. ACS Sustainable Chem Eng. 2019;7:2160–2168.
  • Niu W, Molefe MN, Frost JW. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc. 2003;125:12998–12999.
  • Valdehuesa KN, Liu H, Ramos KR, et al. Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochem. 2014;49:25–32.
  • Valdehuesa KN, Lee WK, Ramos KR, et al. Identification of aldehyde reductase catalyzing the terminal step for conversion of xylose to butanetriol in engineered Escherichia coli. Bioprocess Biosyst Eng. 2015;38:1761–1772.
  • Cao Y, Niu W, Guo J, et al. Biotechnological production of 1,2,4-butanetriol: an efficient process to synthesize energetic material precursor from renewable biomass. Sci Rep. 2015;5:1–9.
  • Zhang N, Wang J, Zhang Y, et al. Metabolic pathway optimization for biosynthesis of 1,2,4-butanetriol from xylose by engineered Escherichia coli. Enzyme Microb Technol. 2016;93-94:51–58.
  • Wang X, Xu N, Hu S, et al. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. Bioresour Technol. 2018;250:406–412.
  • Sun L, Yang F, Sun H, et al. Synthetic pathway optimization for improved 1,2,4-butanetriol production. J Ind Microbiol Biotechnol. 2016;43:67–78.
  • Lu X, He S, Zong H, et al. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins. World J Microbiol Biotechnol. 2016;32:149.
  • Jing P, Cao X, Lu X, et al. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production. J Biosci Bioeng. 2018;126:547–552.
  • Hu S, Gao Q, Wang X, et al. Efficient production of d-1,2,4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts. Front Chem Sci Eng. 2018;12:772–779.
  • Wang J, Shen X, Jain R, et al. Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli. Metab Eng. 2017;41:39–45.
  • Gao H, Gao Y, Dong R. Enhanced biosynthesis of 3,4-dihydroxybutyric acid by engineered Escherichia coli in a dual-substrate system. Bioresour Technol. 2017;245:794–800.
  • Liu H, Lu T. Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng. 2015;29:135–141.
  • Tai YS, Xiong M, Jambunathan P, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol. 2016;12:247–253.
  • Wang J, Jain R, Shen X, et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose. Metab Eng. 2017;40:148–156.
  • Zhao A, Hu X, Wang X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol. 2017;101:3587–3603.
  • Liu H, Ramos KRM, Valdehuesa KNG, et al. Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol. 2013;97:3409–3417.
  • Bañares AB, Valdehuesa KNG, Ramos KRM, et al. Discovering a novel d-xylonate-responsive promoter: the PyjhI-driven genetic switch towards better 1,2,4-butanetriol production. Appl Microbiol Biotechnol. 2019;103:8063–8074.
  • Cabulong RB, Valdehuesa KNG, Ramos KRM, et al. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Enzyme Microb Technol. 2017;97:11–20.
  • Wang Y, Xian M, Feng X, et al. Biosynthesis of ethylene glycol from d-xylose in recombinant Escherichia coli. Bioengineered. 2018;9:233–241.
  • Chae TU, Choi SY, Ryu JY, et al. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli. AIChE J. 2018; 64:4193–4200.
  • Cabulong RB, Lee WK, Bañares AB, et al. Engineering Escherichia coli for glycolic acid production from d-xylose through the Dahms pathway and glyoxylate bypass. Appl Microbiol Biotechnol. 2018;102:2179–2189.
  • Choi SY, Park SJ, Kim WJ, et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol. 2016;34:435–440.
  • Choi SY, Kim WJ, Yu SJ, et al. Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli. Microb Biotechnol. 2017;10:1353–1364.
  • Cabulong RB, Valdehuesa KNG, Bañares AB, et al. Improved cell growth and biosynthesis of glycolic acid by overexpression of membrane-bound pyridine nucleotide transhydrogenase. J Ind Microbiol Biotechnol. 2019;46:159–169.
  • Bañares AB, Valdehuesa KNG, Ramos KRM, et al. A pH-responsive genetic sensor for the dynamic regulation of d-xylonic acid accumulation in Escherichia coli. Appl Microbiol Biotechnol. 2020;104:2097–2108.
  • Tetsch L, Koller C, Haneburger I, et al. The membrane-integrated transcriptional activator CadC of Escherichia coli senses lysine indirectly via the interaction with the lysine permease LysP. Mol Microbiol. 2008;67:570–583.
  • Cam Y, Alkim C, Trichez D, et al. Engineering of a synthetic metabolic pathway for the Assimilation of (d)-xylose into value-added chemicals. ACS Synth Biol. 2016;5:607–618.
  • Alkim C, Trichez D, Cam Y, et al. The synthetic xylulose-1 phosphate pathway increases production of glycolic acid from xylose-rich sugar mixtures. Biotechnol Biofuels. 2016;9:201–211.
  • Alkim C, Cam Y, Trichez D, et al. Optimization of ethylene glycol production from (D)-xylose via a synthetic pathway implemented in Escherichia coli. Microb Cell Fact. 2015;14:127.
  • Pereira B, Li ZJ, De Mey M, et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab Eng. 2016;34:80–87.
  • Lachaux C, Frazao CJR, Krauβer F, et al. A new synthetic pathway for the bioproduction of glycolic acid from lignocellulosic sugars aimed at maximal carbon conservation. Front Bioeng Biotechnol. 2019;7:359.
  • Nordberg H, Cantor M, Dusheyko S, et al. The Genome Portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 2014;42:D26–D31. Available from: https://genome.jgi.doe.gov/portal/pages/citeUs.jsf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.