2,016
Views
28
CrossRef citations to date
0
Altmetric
Review Articles

DNA barcoding: a modern age tool for detection of adulteration in food

, , &
Pages 767-791 | Received 14 Apr 2020, Accepted 07 Jan 2021, Published online: 02 Feb 2021

References

  • Stoeckle MY, Gamble CC, Kirpekar R, et al. Commercial teas highlight plant DNA barcode identification successes and obstacles. Sci Rep. 2011;1:42.
  • Baker DA, Stevenson DW, Little DP. DNA barcode identification of black cohosh herbal dietary supplements. J AOAC Int. 2012;95(4):1023–1034.
  • Wallace LJ, Boilard SM, Eagle SH, et al. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Int. 2012;49(1):446–452.
  • Mosa KA, Soliman S, El-Keblawy A, et al. Using dna barcoding to detect adulteration in different herbal plant- based products in the United Arab Emirates: proof of concept and validation. Recent Pat Food Nutr Agric. 2018;9(1):55–64.
  • Popping B. The application of biotechnological methods in authenticity testing. J Biotechnol. 2002;98(1):107–112.
  • El-Loly MM, Mansour AI, Ahmed RO. Evaluation of raw milk for common additives and heat treatments. Int J Food Saf. 2013;15:7–10.
  • Suhariyadi SR, Prastyo FA, et al. Survey on the use of borax, magenta and metanyl yellow in food samples procured from state elementary schools of Surabaya city. Res J Pharm, Biol Chem Sci. 2015;6(1):1587–1592.
  • Pascal G, Mahe S. Identity, traceability, acceptability and substantial equivalence of food. Cell Mol Biol. 2001;47(8):1329–1342.
  • Hellberg RS, Hernandez BC, Hernandez EL. Identification of meat and poultry species in food products using DNA barcoding. Food Control. 2017;80:23–28.
  • Galimberti A, Mattia FD, Losa A, et al. DNA barcoding as a new tool for food traceability. Food Res Int. 2013;50(1):55–63.
  • Wong EH, Hanner R. DNA barcoding detects market substitution in North American seafood. Food Res Int. 2008;41(8):828–837.
  • Behrens-Chapuis S, Malewski T, Suchecka E, et al. Discriminating European cyprinid specimens by barcode high-resolution melting analysis (BarHRM)—a cost efficient and faster way for specimen assignment? Fish Res. 2018;204:61–73.
  • Woolfe M, Primrose S. Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotechnol. 2004;22(5):222–226.
  • Asensio L, Gonzalez I, Garcia T, et al. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control. 2008;19(1):1–8.
  • Osborne BG. Near-infrared spectroscopy in food analysis. The encyclopedia of analytical chemistry. Hoboken (NJ): John Wiley & Sons, Ltd.; 2006. p. 1–14.
  • Wang L, Sun D-W, Pu H, et al. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: a review of recent research developments. Crit Rev Food Sci Nutr. 2017;57(7):1524–1538.
  • Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009;27(2):82–89.
  • Fugel R, Carle R, Schieber A. Quality and authenticity control of fruit purees, fruit preparations and jams: a review. Trends Food Sci Tech. 2005;16(10):433–441.
  • Kurz C, Leitenberger M, Carle R, et al. Evaluation of fruit authenticity and determination of the fruit content of fruit products using FT-NIR spectroscopy of cell wall components. Food Chem. 2010;119(2):806–812.
  • Lockley AK, Bardsley RG. DNA-based methods for food authentication. Trends Food Sci Tech. 2000;11(2):67–77.
  • Mafra I, Ferreira I, Oliveira M. Food authentication by PCR-based methods. Eur Food Res Technol. 2008;227(3):649–665.
  • Gao Z, Liu Y, Wang X, et al. DNA mini-barcoding: a derived barcoding method for herbal molecular identification. Front Plant Sci. 2019;10:987.
  • Ding Y, Jiang G, Huang L, et al. DNA barcoding coupled with high-resolution melting analysis for nut species and walnut milk beverage authentication. J Sci Food Agric. 2020;100(6):2372–2379.
  • Neigel J, Domingo A, Stake J. DNA barcoding as a tool for coral reef conservation. Coral Reefs. 2007;26(3):487–499.
  • Waugh J. DNA barcoding in animal species: progress, potential and pitfalls. Bioessays. 2007;29(2):188–197.
  • Kumar P, Gupta VK, Misra AK, et al. Potential of molecular markers in plant biotechnology. Plant Omics J. 2009;2(4):141–162.
  • Ramadan HAI, Baeshen NA. Biological identification through DNA barcodes. Biodiversity conservation and utilization in a diverse world. London (UK): Intech Open; 2012.
  • Newmaster SG, Grguric M, Shanmughanandhan D, et al. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11(1):222.
  • Cordella C, Moussa I, Martel AC, et al. Recent developments in food characterization and adulteration detection: technique-oriented perspectives. J Agric Food Chem. 2002;50(7):1751–1764.
  • Ohe KVD. Scanning electron microscopic studies of pollen from apple varieties, 6th pollination symposium. Acta Hortic. 1991;288:405–409.
  • Dustmann JH, Ohe KV. Scanning electron microscopic studies on pollen from honey. IV. Surface pattern of pollen of Sapium sebiferum and Euphorbia spp. (Euphorbiaceae). Apidologie. 1993;24(1):59–66.
  • Naila A, Flint SH, Sulaiman AZ, et al. Classical and novel approaches to the analysis of honey and detection of adulterants. Food Control. 2018;90:152–165.
  • Robards K, Li X, Antolovich M, et al. Characterization of citrus by chromatographic analysis of flavonoids. J Sci Food Agric. 1997;75(1):87–101.
  • Kawaii S, Tomono Y, Katase E, et al. HL-60 differentiating activity and flavonoid content of the readily extractable fraction prepared from citrus juices. J Agric Food Chem. 1999;47(1):128–135.
  • Blanco D, Quintanilla ME, Mangas JJ, et al. Determination of organic acids in apple juice by capillary liquid chromatography. J Liq Chromatogr Relat Technol. 1996;19(16):2615–2621.
  • Guyot S, Marnet N, Laraba D, et al. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica Var. Kermerrien). J Agric Food Chem. 1998;46(5):1698–1705.
  • McDowell I, Taylor S, Gay C. The phenolic pigment composition of black tea liquors-part I: predicting quality. J Sci Food Agric. 1995;69(4):467–474.
  • McDowell I, Taylor S, Gay C. The phenolic pigment composition of black tea liquors-part II: discriminating origin. J Sci Food Agric. 1995;69(4):475–480.
  • Calabrese M, Stancher B, Riccobon P. High-performance liquid chromatography determination of proline isomers in Italian wines. J Sci Food Agric. 1995;69(3):361–366.
  • Moreno-Arribas V, Pueyo E, Polo MC, et al. Changes in the amino acid composition of the different nitrogenous fractions during the aging of wine with yeast. J Agric Food Chem. 1998;46(10):4042–4051.
  • Garcıia-Viguera C, Zafrilla P, Tomás-Barberán FA. Determination of authenticity of fruit jams by HPLC analysis of anthocyanins. J Sci Food Agric. 1997;73(2):207–213.
  • Esteki M, Shahsavari Z, Simal-Gandara J. Gas chromatographic fingerprinting coupled to chemometrics for food authentication. Food Rev Int. 2020;36(4):384–427.
  • Wilkinson MG, Guinee TP, O’Callaghan DM, et al. Effect of commercial enzymes on proteolysis and ripening in cheddar cheese. Lait. 1992;72(5):449–459.
  • Hernandez H. Detection of adulteration of honey: application of continuous-flow IRMS. VAM Bulletin. 1998;18:12–14.
  • Chevallier S, Colonna P. Thermal analysis of protein-starch interactions at low moisture contents. Sci Aliments. 1999;19(2):167–182.
  • Villwock VK, Eliasson AC, Silverio J, et al. Starch-lipid interactions in common, waxy, ae du, and ae su2 maize starches examined by differential scanning calorimetry. Cereal Chem. 1999;76(2):292–298.
  • Grinberg VY, Burova TV, Haertlé T, et al. Interpretation of DSC on protein denaturation complicated by kinetic and irreversible effects. J Biotechnol. 2000;79(3):269–280.
  • Barreto PL, Beirao LH, Soldi MS, et al. Studies on differential scanning calorimetry and thermogravimetry of tilapia (Oreochromis nilotica) surimi, surimi/starch and surimi/starch/carrageenan systems. J Food Sci Tech. 2000;37(3):265–271.
  • Barcaccia G, Lucchin M, Cassandro M. DNA barcoding as a molecular tool to track down mislabeling and food piracy. Divers. 2015;8(4):2.
  • Galimberti A, Casiraghi M, Bruni I, et al. From DNA barcoding to personalized nutrition: the evolution of food traceability. Curr Opin Food Sci. 2019;28:41–48.
  • Kress WJ, García-Robledo C, Uriarte M, et al. DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol. 2015;30(1):25–35.
  • Rubinoff D, Cameron S, Will K. A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. J Hered. 2006;97(6):581–594.
  • Rubinoff D. Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol. 2006;20(4):1026–1033.
  • Krishnamurthy PK, Francis RA. A critical review on the utility of DNA barcoding in biodiversity conservation. Biodivers Conserv. 2012;21(8):1901–1919.
  • Savolainen V, Cowan RS, Vogler AP, et al. Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B Biol Sci. 2005;360(1462):1805–1811.
  • Kress WJ, Erickson DL. DNA barcodes: genes, genomics, and bioinformatics. Proc Natl Acad Sci USA. 2008;105(8):2761–2762.
  • Fernandes TJR, Amaral JS, Mafra I. DNA barcode markers applied to seafood authentication: an updated review. Crit Rev Food Sci Nutr. 2020; 25:1–32. DOI:10.1080/10408398.2020.1811200
  • Taberlet P, Coissac E, Pompanon F, et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007;35(3):e14.
  • Hebert PD, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci. 2003;270(1):S96–S99.
  • Deguilloux MF, Pemonge MH, Petit RJ. Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc Biol Sci. 2002;269(1495):1039–1046.
  • Yao H, Song JY, Ma XY, et al. Identification of dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region. Planta Med. 2009;75(6):667–669.
  • Dentinger BT, Margaritescu S, Moncalvo JM. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematic of mushrooms. Mol Ecol Resour. 2010;10(4):628–633.
  • Li R, Dao Z. Identification of Meconopsis species by a DNA barcode sequence: the nuclear internal transcribed spacer (ITS) region of ribosomal deoxyribonucleic acid (DNA). Afr J Biotechnol. 2011;10(70):15805–15807.
  • Grazina L, Amaral JS, Mafra I. Botanical origin authentication of dietary supplements by DNA-based approaches. Compr Rev Food Sci Food Saf. 2020;19(3):1080–1109.
  • Swartz ER, Mwale M, Hanner R. A role for barcoding in the study of African fish diversity and conservation. S Afr J Sci. 2008;104(7):293–298.
  • Bingpeng X, Heshan L, Zhilan Z, et al. DNA barcoding for identification of fish species in the taiwan strait. PLoS One. 2018;13(6):e0198109.
  • Stoeckle MY, Hebert PDN. Bar code of life: DNA tags help classify animals. Sci Am. 2008;298:39–43.
  • Hebert PD, Stoeckle MY, Zemlak TS, et al. Identification of birds through DNA barcodes. PLoS Biol. 2004;2(10):e312.
  • Ward RD, Zemlak TS, Innes BH, et al. DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci. 2005;360(1462):1847–1857.
  • Hajibabaei M, Janzen DH, Burns JM, et al. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA. 2006;103(4):968–971.
  • Hsieh HM, Chiang HL, Tsai LC, et al. Cytochrome b gene for species identification of the conservation animals. Forensic Sci Int. 2001;122(1):7–18.
  • Megarani DV, Nugroho HA, Andarini ZP, et al. Genetic characterization and phylogenetic study of Indonesian indigenous catfish based on mitochondrial cytochrome B gene. Vet World. 2020;13(1):96–103.
  • Van den Burg MP, Herrando-Pérez S, Vieites DR. ACDC, a global database of amphibian cytochrome-b sequences using reproducible curation for GenBank records. Sci Data. 2020;7(1):268.
  • Rodriguez MA, Garcia T, Gonzalez I, et al. Identification of goose, mule, duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction. J Agric Food Chem. 2003;51(6):1524–1529.
  • Rodriguez MA, Garcia T, Gonzalez I, et al. PCR identification of beef, sheep, goat, and pork in raw and heat-treated meat mixtures. J Food Prot. 2004;67(1):172–177.
  • Balitzki KB, Anslinger K, Bartsch C, et al. Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Legal Med. 2005;119(5):291–294.
  • Murray BW, McClymont RA, Strobeck C. Forensic identification of ungulate species using restriction digests of PCR amplified mitochondrial DNA. J Forensic Sci. 1995;40(6):943–951.
  • Montiel-Sosa JF, Ruiz-Pesini E, Montoya J, et al. Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA. J Agric Food Chem. 2000;48(7):2829–2832.
  • Ramadan HA, El Hefnawi M. Phylogenetic analysis and comparison between cow and buffalo (including Egyptian buffaloes) mitochondrial displacement-loop regions. Mitochondrial DNA. 2008;19(4):401–410.
  • Kress WJ, Wurdack KJ, Zimmer EA, et al. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA. 2005;102(23):8369–8374.
  • Heinze B. A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods. 2007;3:4.
  • Trösch R, Barahimipour R, Gao Y, et al. Commonalities and differences of chloroplast translation in a green alga and land plants. Nat Plants. 2018;4(8):564–575.
  • Hollingsworth PM, Forrest LL, Spouge JL, et al. A DNA barcode for land plants. Proc Natl Acad Sci USA. 2009;106(31):12794–12797.
  • Li DZ, Gao LM, Li HT, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA. 2011;108(49):19641–19646.
  • Chen S, Yao H, Han J, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5(1):e8613.
  • Toluei A, Toluei Z. Application of gene sequences in plant phylogenetic inferences. Iran J Genet Plant Breed. 2018;7(2):13–23.
  • Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic interference. Mol Phylogenet Evol. 2003;29(3):417–434.
  • Saddhe AA, Kumar K. DNA barcoding of plants: selection of core markers for taxonomic groups. Plant Sci Today. 2017;5(1):9–13.
  • Cullings KW, Vogler DR. A 5.8S nuclear ribosomal RNA gene sequence database: applications to ecology and evolution. Mol Ecol. 1998;7(7):919–923.
  • Chase MW, Cowan RS, Hollingsworth PM, et al. A proposal for a standardized protocol to barcode all land plants. Taxon. 2007;56(2):295–299.
  • Kucharska-Ambrożej K, Karpinska J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem J. 2020;153:104278.
  • Osman AG, Raman V, Haider S, et al. Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. J AOAC Int. 2019;102(2):376–385.
  • Messina MJ. Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr. 1999;70(3):439–450.
  • Venn BJ, Mann JI. Cereal grains, legumes and diabetes. Eur J Clin Nutr. 2004;58(11):1443–1461.
  • Duranti M. Grain legume proteins and nutraceutical properties. Fitoterapia. 2006;77(2):67–82.
  • Hou X, Liu JE, Zhao YZ. Molecular phylogeny of Caragana (Fabaceae) in China. J Syst Evol. 2008;46(4):600–607.
  • Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50(10):1748–1754.
  • Amane D, Ananthanarayan L. Detection of adulteration in black gram-based food products using DNA barcoding. Food Control. 2019;104:193–200.
  • Hewson K, Noormohammadi AH, Devlin JM, et al. Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol. 2009;154(4):649–660.
  • Madesis P, Ganopoulos I, Anagnostis A, et al. The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control. 2012;25(2):576–582.
  • Bosmali I, Ganopoulos I, Madesis P, et al. Microsatellite and DNA-barcode regions typing combined with high resolution melting (HRM) analysis for food forensic uses: a case study on lentils (Lens culinaris). Food Res Int. 2012;46(1):141–147.
  • Ganopoulos I, Madesis P, Darzentas N, et al. Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem. 2012;133(2):505–512.
  • Loera-Sánchez M, Studer B, Kölliker R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res Notes. 2020;13(1):35.
  • Wu Y, Chen Y, Ge Y, et al. Detection of olive oil using the evergreen real-time PCR method. Eur Food Res Technol. 2008;227(4):1117–1124.
  • Kumar S, Kahlon T, Chaudhary S. A rapid screening for adulterants in olive oil using DNA barcodes. Food Chem. 2011;127(3):1335–1341.
  • Uncu AT, Uncu AO, Frary A, et al. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil. Food Chem. 2017;221:1026–1033.
  • Pereira L, Gomes S, Barrias S, et al. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Res Int. 2018;103:170–181.
  • Techen N, Crockett SL, Khan IA, et al. Authentication of medicinal plants using molecular biology techniques to compliment conventional methods. Curr Med Chem. 2004;11(11):1391–1401.
  • Song J, Yao H, Li Y, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique. J Ethnopharmacol. 2009;124(3):434–439.
  • Bruni I, De Mattia F, Galimberti A, et al. Identification of poisonous plants by DNA barcoding approach. Int J Legal Med. 2010;124(6):595–603.
  • Jaakola L, Suokas M, Haggman H. Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem. 2010;123(2):494–500.
  • Srirama R, Senthilkumar U, Sreejayan N, et al. Assessing species admixtures in raw drug trade of Phyllanthus, a hepato-protective plant using molecular tools. J Ethnopharmacol. 2010;130(2):208–215.
  • Ichim MC. The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Front Pharmacol. 2019;10:1227.
  • Santhosh JU, Mani R, Saroja G, et al. DNA barcoding of Momordica species and assessment of adulteration in Momordica herbal products, an anti-diabetic drug. Plant Gene. 2020;22:100227.
  • Radad K, Gille G, Liu L, et al. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci. 2006;100(3):175–186.
  • Cui Y, Shu XO, Gao YT, et al. Association of ginseng use with survival and quality of life among breast cancer patients. Am J Epidemiol. 2006;163(7):645–653.
  • Koren OG, Potenko VV, Zhuravlev YN. Inheritance and variation of allozymes in Panax ginseng C.A. Meyer (Araliaceae). Int J Plant Sci. 2003;164(1):189–195.
  • Cruse-Sanders JM, Hamrick JL. Genetic diversity in harvested and protected populations of wild American ginseng, Panax quinquefolius L. (Araliaceae). Am J Bot. 2004;91(4):540–548.
  • Manzanilla V, Kool A, Nguyen Nhat L, et al. Phylogenomics and barcoding of Panax: toward the identification of ginseng species. BMC Evol Biol. 2018;18(1):44.
  • Zuo Y, Chen Z, Kondo K, et al. DNA barcoding of Panax species. Planta Med. 2011;77(2):182–187.
  • Nguyen VB, Linh Giang VN, Waminal NE, et al. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J Ginseng Res. 2020;44(1):135–144.
  • Yan GH, WeiWei W, Ning Y, et al. DNA barcoding provides distinction between Radix astragali and its adulterants. Sci China Life Sci. 2010;53:992–999.
  • Zhang C, Yang X, Wei J, et al. Ethnopharmacology, phytochemistry, pharmacology, toxicology and clinical applications of Radix astragali. Chin J Integr Med. 2019;1–12. DOI:10.1007/s11655-019-3032-8
  • Wu Z. XinHuaBenCaoGangYao. Shanghai (Chian): Shanghai Technology Publishing Company; 1991. p. 94–149.
  • Gang J, Guo PJ. An investigation on the resources of Astragalus herbal products in Qinghai. J Chinese Med Mater. 1993;16:15–19.
  • Zhao YZ. Investigation the source and distribution of Radix astragali. Chinese Trad and Herbal Drugs. 2004;35:1189–1190.
  • Huang J, Wong KH, Tay SV, et al. Cysteine-rich peptide fingerprinting as a general method for herbal analysis to differentiate Radix astragali and Radix hedysarum. Front Plant Sci. 2019;10:973.
  • Fazekas AJ, Kuzmina ML, Newmaster SG, et al. DNA Barcoding methods for land plants. Methods Mol Biol. 2012;858:223–252.
  • Dhanya K, Sasikumar B. Molecular marker based adulteration detection in traded food and agricultural commodities of plant origin with special reference to spices. Curr Trends Biotechnol Pharm. 2010;4(1):454–489.
  • Osathanunkul M, Ounjai S, Osathanunkul R, et al. Evaluation of a DNA-based method for spice/herb authentication, so you do not have to worry about what is in your curry, buon appetito!. PLoS One. 2017;12(10):e0186283.
  • Parveen I, Techen N, Khan IA. Identification of species in the aromatic spice family Apiaceae using DNA mini-barcodes. Planta Med. 2019;85(2):139–144.
  • Kaavya R, Pandiselvam R, Mohammed M, et al. Application of infrared spectroscopy techniques for the assessment of quality and safety in spices: a review. Appl Spectrosc Rev. 2020;55(7):593–611.
  • Maish JM. On the adulteration of saffron. The Analyst. 1885;10:200–203.
  • Singhal R, Kulkarni PK, Reg DV. Handbook of indices of food quality and authenticity. Sawston (UK): Woodhead Publishing; 1997.
  • Carmona M, Alonso GL. Advances in the control of saffron quality. Paper presented at the 1st International Symposium on Saffron Biology and Biotechnology; 2003 October 22–25; Albacete, Spain.
  • Li S, Xing B, Lin D, et al. Rapid detection of saffron (Crocus sativus L.) adulterated with lotus stamens and corn stigmas by near-infrared spectroscopy and chemometrics. Ind Crops Prod. 2020;152:112539.
  • Petrakis EA, Cagliani LR, Tarantilis PA, et al. Sudan dyes in adulterated saffron (Crocus sativus L.): identification and quantification by 1H NMR. Food Chem. 2017;217:418–424.
  • Caballero-Ortega H, Pereda-Miranda R, Abdullaev FI. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007;100(3):1126–1131.
  • Sabatino L, Scordino M, Gargano M, et al. HPLC/PDA/ESI-MS evaluation of saffron (Crocus sativus L.) adulteration. Nat Prod Commun. 2011;6(12):1873–1876.
  • Archer AW. The adulteration of white pepper with rice starch. J Assoc Publ Anal. 1987;25:43–46.
  • Madan MM, Singhal RS, Kulkarni PR. An approach into the detection of authenticity of black pepper (Piper nigrum L.) oleoresin. JOSAC. 1996;5:64–67.
  • Gismondi A, Fanali F, Labarga JM, et al. Crocus sativus L. genomics and different DNA barcode applications. Plant Syst Evol. 2013;299(10):1859–1863.
  • Wilde AS, Haughey SA, Galvin-King P, et al. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control. 2019;100:1–7.
  • De Lima ABS, Batista AS, de Jesus JC, et al. Fast quantitative detection of black pepper and cumin adulterations by near-infrared spectroscopy and multivariate modeling. Food Control. 2020;107:106802.
  • Dhanya K, Syamkumar SP, Sasikumar B. Development and application of SCAR marker for the detection of papaya seed adulteration in traded black pepper powder. Food Biotechnol. 2009;23(2):97–106.
  • Parvathy VA, Swetha VP, Sheeja TE, et al. DNA barcoding to detect chilli adulteration in traded black pepper powder. Food Biotechnol. 2014;28(1):25–40.
  • Labra M, Miele M, Ledda B, et al. Morphological characterization, essential oil composition and DNA genotyping of Ocimum basilicum L. cultivars. Plant Sci. 2004;167(4):725–731.
  • Trindade H. Molecular biology of aromatic plants and spices. Flavour Fragr J. 2010;25(5):272–281.
  • Novak J, Lukas B, Bolzer K, et al. Identification and characterization of simple sequence repeat markers from a glandular Origanum vulgare expressed sequence tag. Mol Ecol Resour. 2008;8(3):599–601.
  • Mattia FD, Bruni I, Galimberti A, et al. A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Res Int. 2011;44(3):693–702.
  • Yilmaz R. DNA barcoding for MPR fruits and vegetables. In: Yildiz F, Wiley R. editors. Minimally processed refrigerated fruits and vegetables. Boston (MA): Springer; 2017.
  • Seethapathy GS, Tadesse M, Urumarudappa SKJ, et al. Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci Rep. 2018;8(1):10561.
  • Wu Y, Li M, Yang Y, et al. Authentication of small berry fruit in fruit products by DNA barcoding method. J Food Sci. 2018;83(6):1494–1504.
  • Bligh HF. Detection of adulteration of basmati rice with non-premium long-grain rice. Int J Food Sci Tech. 2000;35(3):257–265.
  • Lopez S. TaqMan based real time PCR method for quantitative detection of basmati rice adulteration with non-basmati rice. Eur Food Res Technol. 2008;227(2):619–622.
  • Bucher TB, Köppel R. Duplex digital droplet PCR for the determination of non-Basmati rice in Basmati rice (Oryza sativa) on the base of a deletion in the fragrant gene. Eur Food Res Technol. 2016;242(6):927–934.
  • Ahmad R, Gurmani ZA, Khan SU, Quality characteristics integration and relationship in basmati rice is useful for checking adulteration and admixture. J Agric Crop Res. 2019;7(9):148–169.
  • Ganopoulos I, Argiriou A, Tsaftaris A. Adulterations in basmati rice detected quantitatively by combined use of microsatellite and fragrance typing with high resolution melting (HRM) analysis. Food Chem. 2011;129(2):652–659.
  • Kumana CR, Ng M, Lin HJ, et al. Herbal tea induced hepatic veno-occlusive disease: quantification of toxic alkaloid exposure in adults. Gut. 1985;26(1):101–104.
  • Centers for Disease Control and Prevention. Anticholinergic poisoning associated with an herbal tea-New York City, 1994. Morb Mortal Wkly Rep. 1995;44(11):193–195.
  • Cupp MJ. Toxicology and clinical pharmacology of herbal products. Totowa (NJ): Humana Press; 2000. p. 433.
  • Lagiotis G, Stavridou E, Bosmali I, et al. Detection and quantification of cashew in commercial tea products using High Resolution Melting (HRM) analysis. J Food Sci. 2020;85(6):1629–1634.
  • Aboulwafa MM, Youssef FS, Gad HA, et al. A comprehensive insight on the health benefits and phytoconstituents of Camellia sinensis and recent approaches for its quality control. Antioxidants. 2019;8(10):455.
  • Wang M, Zhang Y. Adulteration detection of tea samples based on plant rbcL gene sequencing. Chin J Biotechnol. 2018;34(2):275–281.
  • Mabood F, Hussain J, Jabeen F, et al. Applications of FT-NIRS combined with PLS multivariate methods for the detection & quantification of saccharin adulteration in commercial fruit juices. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018;35(6):1052–1060.
  • Kundu M, Prasad S, Krishnan P, et al. A novel electrochemical biosensor based on hematite (α-Fe2o3) flowerlike nanostructures for sensitive determination of formaldehyde adulteration in fruit juices. Food Bioprocess Technol. 2019;12(10):1659–1671.
  • Dasenaki ME, Thomaidis NS. Quality and authenticity control of fruit juices-A review. Molecules. 2019;24(6):1014.
  • Ogrinc N, Kosir IJ, Spangenberg JE, et al. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Anal Bioanal Chem. 2003;376(4):424–430.
  • Faria MA, Magalhaes A, Nunes ME, et al. High resolution melting of trnL amplicons in fruit juices authentication. Food Control. 2013;33(1):136–141.
  • Mosa KA, Gairola S, Jamdade R, et al. The promise of molecular and genomic techniques for biodiversity research and DNA barcoding of the Arabian Peninsula Flora. Front Plant Sci. 2018;9:1929.
  • Jacquet JL, Pauly D. Trade secrets: renaming and mislabeling of seafood. Mar Policy. 2008;32(3):309–318.
  • Ogden R. Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish Fish. 2008;9(4):462–472.
  • Calvo JH, Zaragoza P, Osta R. Technical note: a quick and more sensitive method to identify pork in processed and unprocessed food by PCR amplification of a new specific DNA fragment. J Anim Sci. 2001;79(8):2108–2112.
  • Wal JM. Biotechnology and allergic risk. Revue Française D’Allergologie et D’Immunologie Clinique. 2001;41(1):36–41.
  • Yan P, Wu XB, Shi Y, et al. Identification of Chinese alligators (Alligator sinenses) meat by diagnostic PCR of the mitochondrial cytochrome b gene. Biol Conserv. 2005;121(1):45–51.
  • Hsieh CH, Hwang KL, Lee MM, et al. Species identification of ciguatoxin-carrying grouper implicated in food poisoning. J Food Prot. 2009;72(11):2375–2379.
  • Hsieh CH, Chang WT, Chang HC, et al. Puffer fish-based commercial fraud identification in a segment of cytochrome b region by PCR-RFLP analysis. Food Chem. 2010;121(4):1305–1311.
  • Marko PB, Lee SC, Rice AM, et al. Fisheries: mislabelling of a depleted reef fish. Nature. 2004;430(6997):309–310.
  • Farrell ED, Clarke MW, Mariani S. A simple genetic identification method for Northeast Atlantic smoothhound sharks (Mustelus spp.). ICES J Mar Sci. 2009;66(3):561–565.
  • Haye PA, Segovia NI, Vera R, et al. Authentication of commercialized crab-meat in Chile using DNA barcoding. Food Control. 2012;25(1):239–244.
  • Hwang DF, Cheng CA, Tsai YH, et al. Tetrodotoxin-associated food poisoning due to unknown fish in Taiwan between 1988 and 1994. J Nat Toxins. 1995;4(2):165–171.
  • Barbuto M, Galimberti A, Ferri E, et al. DNA barcoding reveals fraudulent substitutions in shark seafood products, The Italian case of “palombo” (Mustelus spp.). Food Res Int. 2010;43(1):376–381.
  • Yang YC, Huang YW, Hsieh CH, et al. A unique specification method for processed unicorn filefish products using a DNA barcode marker. Food Control. 2012;25(1):292–302.
  • Staffen CF, Staffen MD, Becker ML, et al. DNA barcoding reveals the mislabeling of fish in a popular tourist destination in Brazil. Peer J. 2017;5:e4006.
  • Fernandes T, Costa J, Oliveira M, et al. COI barcode-HRM as a novel approach for the discrimination of hake species. Fish Res. 2017;197:50–59.
  • Pardo MA, Jimenez E, Viðarsson JR, et al. DNA barcoding revealing mislabelling of seafood in European mass caterings. Food Control. 2018;92:7–16.
  • Pappalardo AM, Federico C, Saccone S, et al. Differential flatfish species detection by COIBar-RFLP in processed seafood products. Eur Food Res Technol. 2018;244(12):2191–2201.
  • Ferrito V, Raffa A, Rossitto L, et al. Swordfish or shark slice? A rapid response by COIBar–RFLP. Foods. 2019;8(11):537.
  • Shi R, Xiong X, Huang M, et al. High resolution melting (HRM) analysis of a 12S rRNA mini barcode as a novel approach for codfish species authentication in processed fish products. Eur Food Res Technol. 2020;246(5):891–899.
  • Vartak VR, Narasimmalu R, Annam PK, et al. DNA barcoding detected improper labelling and supersession of crab food served by restaurants in India. J Sci Food Agric. 2015;95(2):359–366.
  • Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294–299.
  • Fajardo V, Gonzalez I, Rojas M, et al. A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends Food Sci Tech. 2010;21(8):408–421.
  • Wang Q, Zhang X, Zhang HY, et al. Identification of 12 animal species meat by T-RFLP on the 12S rRNA gene. Meat Sci. 2010;85(2):265–269.
  • Quinto CA, Tinoco R, Hellberg RS. DNA barcoding reveals mislabeling of game meat species on the US commercial Market. Food Control. 2016;59:386–392.
  • Haunshi S, Basumatary R, Girish PS, et al. Identification of chicken, duck, pigeon and pig meat by species-specific markers of mitochondrial origin. Meat Sci. 2009;83(3):454–459.
  • Jaikumar IM, Periyakali SB, Rajendran US, et al. Authentication of commercially available frozen shrimp meats using DNA barcoding. J Appl Biol Biotechnol. 2019;7(06):79–87.
  • Xing R, Hu R, Han J, et al. DNA barcoding and mini-barcoding in authenticating processed animal-derived food: a case study involving the Chinese market. Food Chem. 2020;309:125653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.