1,762
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Stability testing in monoclonal antibodies

Pages 692-714 | Received 07 Jan 2021, Accepted 07 Jan 2021, Published online: 17 Feb 2021

References

  • Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–497.
  • Kohler G, Milstein C. Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976;6(7):511–519.
  • Davies DR, Chacko S. Antibody structure. Acc Chem Res. 1993;26(8):421–427.
  • ICH Topic Q5C, Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products, 1996.
  • Liu D, Ren D, Huang H, et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation. Biochemistry. 2008;47(18):5088–5100.
  • Banks DD, Hambly DM, Scavezze JL, et al. The effect of sucrose hydrolysis on the stability of protein therapeutics during accelerated formulation studies. J Pharm Sci. 2009;98(12):4501–4510.
  • Vermeer AW, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J. 2000;78(1):394–404.
  • Klibanov AM. Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol. 1983;29:1–28.
  • Pérez LM, Taño ACR, Márquez LRM, et al. Conformational Characterization of a Novel anti-HER2 Candidate Antibody. PLoS One. 2019;14(5):e0215442.
  • Perez JM, Renisio JG, Prompers JJ, et al. Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry. 2001; 40(1):74–83.
  • Pabari RM, Ryan B, Ahmad W, et al. Physical and structural stability of the monoclonal antibody, trastuzumab (Herceptin®), intravenous solutions. Curr Pharm Biotechnol. 2013;14(2):220–225.
  • McConnell AD, Zhang X, Macomber JL, et al. A general approach to antibody thermostabilization. MAbs. 2014; 6(5):1274–1282.
  • Akazawa-Ogawa Y, Takashima M, Lee YH, et al. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications. J Biol Chem. 2014;289(22):15666–15679.
  • Kumar S, Singh SK, Wang X, et al. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions. Pharm Res. 2011; May28(5):949–961.
  • Rosenberg AS. Effects of protein aggregates: an immunologic perspective. Aaps J. 2006;8(3):E501–7.
  • Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354–387.
  • USP 〈788〉 Particulate Matter In Injections.
  • Carpenter JF, Randolph TW, Jiskoot W, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–1205.
  • Felsovalyi F, Janvier S, Jouffray S, et al. Silicone-oil-based subvisible particles: their detection, interactions, and regulation in prefilled container closure systems for biopharmaceuticals. J Pharm Sci. 2012;101(12):4569–4583.
  • Krayukhina E, Tsumoto K, Uchiyama S, et al. Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins. J Pharm Sci. 2015;104(2):527–535.
  • Cromwell ME, Hilario E, Jacobson F. Protein aggregation and bioprocessing. Aaps J. 2006;8(3):E572–9.
  • Uchiyama S. Liquid formulation for antibody drugs. Biochim Biophys Acta. 2014;1844(11):2041–2052.
  • Roberts CJ. Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 2014;32(7):372–380.
  • Moore JM, Patapoff TW, Cromwell ME. Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor. Biochemistry. 1999;38(42):13960–13967.
  • Andya JD1, Hsu CC, Shire SJ. Mechanisms of aggregate formation and carbohydrate excipient stabilization of lyophilized humanized monoclonal antibody formulations. AAPS Pharmsci. 2003;5(2):E10.
  • Costantino HR, Langer R, Klibanov AM. Solid-phase aggregation of proteins under pharmaceutically relevant conditions. J Pharm Sci. 1994;83(12):1662–1669.
  • Frand AR, Cuozzo JW, Kaiser CA. Pathways for protein disulphide bond formation. Trends Cell Biol. 2000;10(5):203–210.
  • Zhang W, Czupryn MJ. Free sulfhydryl in recombinant monoclonal antibodies. Biotechnol Prog. 2002;18(3):509–513.
  • Chaderjian WB, Chin ET, Harris RJ, et al. Effect of copper sulfate on performance of a serum-free CHO cell culture process and the level of free thiol in the recombinant antibody expressed. Biotechnol Prog. 2005;21(2):550–553.
  • Gomez N, Subramanian J, Ouyang J, et al. Culture temperature modulates aggregation of recombinant antibody in cho cells. Biotechnol Bioeng. 2012;109(1):125–136.
  • Jing Y, Borys M, Nayak S, et al. Identification of cell culture conditions to control protein aggregation of IgG fusion proteins expressed in Chinese hamster ovary cells. Process Biochem. 2012;47(1):69–75.
  • Franco R, Daniela G, Fabrizio M, et al. Influence of osmolarity and pH increase to achieve a reduction of monoclonal antibodies aggregates in a production process. Cytotechnology. 1999;29(1):11–25.
  • Phillips J, Drumm A, Harrison P, et al. Manufacture and quality control of CAMPATH-1 antibodies for clinical trials. Cytotherapy. 2001;3(3):233–242.
  • Arakawa T, Philo JS, Tsumoto K, et al. Elution of antibodies from a Protein-A column by aqueous arginine solutions. Protein Expr Purif. 2004;36(2):244–248.
  • Ejima D, Yumioka R, Tsumoto K, et al. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal Biochem. 2005;345(2):250–257.
  • Shukla AA, Hubbard B, Tressel T, et al. Downstream processing of monoclonal antibodies-application of platform approaches. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848(1):28–39.
  • Ansaldi D, Lester P, inventors. Genentech, Inc., assignee. Separation of polypeptide monomers. US patent 6 620 918. 2003.
  • Wan Y, Vasan S, Ghosh R, et al. Separation of monoclonal antibody alemtuzumab monomer and dimers using ultrafiltration. Biotechnol Bioeng. 2005;90(4):422–432.
  • Mahler HC, Huber F, Kishore RS, et al. Adsorption behavior of a surfactant and a monoclonal antibody to sterilizing-grade filters. J Pharm Sci. 2010;99(6):2620–2627.
  • Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–514.
  • Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–1402.
  • Harn N, Allan C, Oliver C, et al. Highly concentrated monoclonal antibody solutions: direct analysis of physical structure and thermal stability. J Pharm Sci. 2007;96(3):532–546. Mar
  • Liu J, Nguyen MD, Andya JD, et al. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94(9):1928–1940.
  • Yadav S, Shire SJ, Kalonia DS. Viscosity behavior of high-concentration monoclonal antibody solutions: correlation with interaction parameter and electroviscous effects. J Pharm Sci. 2012;101(3):998–1011.
  • Perchiacca JM, Ladiwala AR, Bhattacharya M, et al. Aggregation-resistant domain antibodies engineered with charged mutations near the edges of the complementarity-determining regions. Protein Eng Des Sel. 2012;25(10):591–601.
  • Dudgeon K, Rouet R, Kokmeijer I, et al. General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc Natl Acad Sci U S A. 2012;109(27):10879–10884.
  • )Iacob RE, Bou-Assaf GM, Makowski L, et al. Investigating Monoclonal Antibody Aggregation Using a Combination of H/DX-MS and Other Biophysical Measurements. J Pharm Sci. 2013;102(12):4315–4329.
  • Dall'Acqua WF, Cook KE, Damschroder MM, et al. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. J Immunol. 2006;177(2):1129–1138.
  • Wang W, Singh S, Zeng DL, et al. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26.
  • Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharm Dev Technol. 2007;12(5):505–523.
  • Strambini GB, Gabellieri E. Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J. 1996;70(2):971–976.
  • Cao E, Chen Y, Cui Z, et al. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol Bioeng. 2003;82(6):684–690.
  • Kueltzo LA, Wang W, Randolph TW, et al. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing. J Pharm Sci. 2008 May;97(5):1801–1812.
  • Gómez G, Pikal MJ, Rodríguez-Hornedo N. Effect of initial buffer composition on pH changes during far-from-equilibrium freezing of sodium phosphate buffer solutions. Pharm Res. 2001;18(1):90–97.
  • Hawe A, Kasper JC, Friess W, et al. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress. Eur J Pharm Sci. 2009;38(2):79–87.
  • Kiese S, Papppenberger A, Friess W, et al. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97(10):4347–4366.
  • Shukla AA, Gupta P, Han X. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein. J Chromatogr A. 2007;1171(1-2):22–28.
  • Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharm Res. 2013;30(3):641–654.
  • Hari SB, Lau H, Razinkov VI, et al. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition. Biochemistry. 2010;49(43):9328–9338.
  • Zheng JY, Janis LJ. Influence of pH, buffer species, and storage temperature on physicochemical stability of a humanized monoclonal antibody LA298. Int J Pharm. 2006;308(1-2):46–51.
  • ICH Topic Q1B Photostability Testing of New Active Substances and Medicinal Products, 1998.
  • Kerwin BA, Remmele RL. Jr. Protect from light: photodegradation and protein biologics. J Pharm Sci. 2007;96(6):1468–1479.
  • Amano M, Kobayashi N, Yabuta M, et al. Detection of histidine oxidation in a monoclonal immunoglobulin gamma (IgG) 1 antibody. Anal Chem. 2014;86(15):7536–7543.
  • Bane J, Mozziconacci O, Yi L, et al. Photo-oxidation of IgG1 and model peptides: detection and analysis of triply oxidized his and Trp side chain cleavage products. Pharm Res. 2017;34(1):229–242.
  • Mason BD, Schöneich C, Kerwin BA. Effect of pH and light on aggregation and conformation of an IgG1 mAb. Mol Pharm. 2012;9(4):774–790.
  • Roy S, Mason BD, Schöneich CS, et al. Light-induced aggregation of type I soluble tumor necrosis factor receptor. J Pharm Sci. 2009;98(9):3182–3199.
  • Maity H, O'Dell C, Srivastava A, et al. Effects of arginine on photostability and thermal stability of IgG1 monoclonal antibodies. Curr Pharm Biotechnol. 2009;10(8):761–766.
  • Bent DV, Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. tryptophan. J Am Chem Soc. 1975;97(10):2612–2619.
  • Hawe A, Wiggenhorn M, van de Weert M, et al. Forced degradation of therapeutic proteins. J Pharm Sci. 2012;101(3):895–913.
  • Telikepalli SN, Kumru OS, Kalonia C, et al. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103(3):796–809.
  • Gabrielson JP, Brader ML, Pekar AH, et al. Quantitation of Aggregate Levels in a Recombinant Humanized Monoclonal Antibody Formulation by Size-Exclusion Chromatography, Asymmetrical Flow Field Flow Fractionation, and Sedimentation Velocity. J Pharm Sci. 2007;96(2):268–279.
  • Krayukhina E, Uchiyama S, Nojima K, et al. Aggregation analysis of pharmaceutical human immunoglobulin preparations using size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity. J Biosci Bioeng. 2013;115(1):104–110.
  • Gandhi AV, Pothecary MR, Bain DL, et al. Some lessons learned from a comparison between sedimentation velocity analytical ultracentrifugation and size exclusion chromatography to characterize and quantify protein aggregates. J Pharm Sci. 2017;106(8):2178–2186.
  • Jones LS, Bam NB, Randolph TW. Surfactant-stabilized protein formulations: a review of protein- surfactant interactions and novel analytical methodologies. ACS Symp Ser. 1997;676:206–222.
  • Randolph TW, Jones LS. Surfactant-protein interactions. Rational design of stable protein formulations. In: Carpenter JF, Manning MC, editors. Pharm Biotechnol. vol. 13. New York: Kluwer Academic/Plenum Publishers; 2002. p. 159–175.
  • Bam NB, Cleland JL, Yang J, et al. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci. 1998;87(12):1554–1559.
  • Kishore RS, Pappenberger A, Dauphin IB, et al. Degradation of polysorbates 20 and 80: studies on thermal autoxidation and hydrolysis. J Pharm Sci. 2011;100(2):721–731.
  • Agarkhed M, O'Dell C, Hsieh MC, et al. Effect of polysorbate 80 concentration on thermal and photostability of a monoclonal antibody. AAPS PharmSciTech. 2013;14(1):1–9.
  • Singh SR, Zhang J, O'Dell C, et al. Effect of polysorbate 80 quality on photostability of a monoclonal antibody. AAPS PharmSciTech. 2012;13(2):422–430.
  • Chiu J, Valente KN, Levy NE, et al. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol Bioeng. 2017;114(5):1006–1015.
  • Baek Y, Singh N, Arunkumar A, et al. Effects of histidine and sucrose on the biophysical properties of a monoclonal antibody. Pharm Res. 2017;34(3):629–639.
  • Chen B, Bautista R, Yu K, et al. Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res. 2003;20(12):1952–1960.
  • Manning MC, Chou DK, Murphy BM, et al. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–575.
  • Chelius D, Rehder DS, Bondarenko PV. Identification and characterization of deamidation sites in the conserved regions of human immunoglobulin gamma antibodies. Anal Chem. 2005;77(18):6004–6011.
  • Vlasak J, Bussat MC, Wang S, et al. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009;392(2):145–154.
  • Dick LW, Jr, Qiu D, Wong RB, et al. Isomerization in the CDR2 of a monoclonal antibody: Binding analysis and factors that influence the isomerization rate. Biotechnol Bioeng. 2010;105(3):515–523.
  • Gao X, Ji JA, Veeravalli K, et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation. J Pharm Sci. 2015;104(2):368–377.
  • Alam ME, Slaney TR, Wu L, et al. Unique Impacts of Methionine Oxidation, Tryptophan Oxidation, and Asparagine Deamidation on Antibody Stability and Aggregation. J Pharm Sci. 2020;109(1):656–669.
  • Moritz B, Stracke JO. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis. 2017;38(6):769–785.
  • Liu H, May K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs. 2012; Jan-Feb4(1):17–23.
  • Lacy ER, Baker M, Brigham-Burke M. Free sulfhydryl measurement as an indicator of antibody stability. Anal Biochem. 2008;382(1):66–68.
  • Yuk IH, Zhang B, Yang Y, et al. Controlling glycation of recombinant antibody in fed-batch cell cultures. Biotechnol Bioeng. 2011;108(11):2600–2610.
  • Fischer S, Hoernschemeyer J, Mahler HC. Glycation during storage and administration of monoclonal antibody formulations. Eur J Pharm Biopharm. 2008;70(1):42–50.
  • Amano M, Hasegawa J, Kobayashi N, et al. Specific racemization of heavy-chain cysteine-220 in the hinge region of immunoglobulin gamma 1 as a possible cause of degradation during storage. Anal Chem. 2011;83(10):3857–3864.
  • ICH Harmonised Tripartite Guideline Pharmaceutical Development Q8(R2), 2009.
  • Kaur, H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Crit Rev Biotechnol. 2021;1–23. doi:10.1080/07388551.2020.1869684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.