1,832
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants

, , , , , , , , & show all
Pages 715-730 | Received 19 Dec 2019, Accepted 07 Sep 2020, Published online: 18 Apr 2021

References

  • Kennedy IR. 1986. Acid soil and acid rain: the impact on the environment of nitrogen and sulphur cycling. Letchworth (UK): Research Studies Press.
  • Von Uexkull HR, Mutert E. Global extent, development and economic impact of acid soils. Plant Soil. 1995;171:1–15.
  • Hede AR, Skovmand B, Lopez-Cesati J. Acid soils and aluminum toxicity. In: Reynolds MP, Ortiz-Monosterio JI, McNab A, editors. Application of physiology in wheat breeding. Mexico (D.F.): CIMMYT; 2001. p. 172–182.
  • Ma JF, Ryan PR. Understanding how plants cope with acid soils. Functional Plant Biol. 2010;37(4):iii–ivi.
  • Kinraide TB. Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci. 2003;54(2):323–333.
  • Exley C, Schneider C, Doucet FJ. The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium? Coord Chem Rev. 2002;228(2):127–135.
  • Yokel RA. Aluminum chelation principles and recent advances. Coord Chem Rev. 2002;228(2):97–113.
  • Kochian LV, Hoekenga OA, Piñeros MA. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol. 2004;55:459–493.
  • Sade H, Meriga B, Surapu V, et al. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils. Biometals. 2016;29(2):187–210.
  • Horst WJ, Wang Y, Eticha D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot. 2010;106(1):185–197.
  • Guo JH, Liu XJ, Zhang Y, et al. Significant acidification in major. Chin Croplands Sci. 2010;327:1008–1010.
  • Slessarev EW, Lin Y, Bingham NL, et al. Water balance creates a threshold in soil pH at the global scale. Nature. 2016;540(7634):567–569.
  • Eswaran H, Reich P, Beinroth F. Global distribution of soils with acidity. In: Moniz AC, Furlani AMC, Shaffert RE, Fageria NK, Rosolem CA, Cantarella H, editors. Plant-soil interactions at low pH. Viçosa, Brazil: Brasilian Society of Soil Science; 1997. p. 159–164.
  • Zhang JE, Ouyang Y, Ling D-J. Impacts of simulated acid rain on cation leaching from the Latosol in South China. Chemosphere. 2007;67(11):2131–2137.
  • Zheng SJ. Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot. 2010;106(1):183–184.
  • Ščančar J, Milačič R. Aluminum speciation in environmental samples: a review. Anal Bioanal Chem. 2006;386(4):999–1012.
  • Mossor-Pietraszewska T. Effect of aluminium on plant growth and metabolism. Acta Biochem Pol. 2001;3:673–686.
  • Poschenrieder C, Llugany M, Barceló J. Short term effects of pH and aluminium on mineral nutrition in maize varieties differing in proton and aluminium tolerance. J Plant Nutr. 1995;18(7):1495–1507.
  • Ma FJ. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol. 2007;264:225–252.
  • Barceló J, Poschenrieder CH. Plant water relations as affected by heavy metal stress: a review. J. Plant Nutr. 1990;13(1):1–37.
  • Doncheva S, Amenós M, Poschenrieder C, et al. Root cell patterning: a primary target for aluminium toxicity in maize. J Exp Bot. 2005;56(414):1213–1220.
  • Čiamporová M. Morphological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels. Biol Plant. 2002;45:161–171.
  • Keltjens WG, Tan K. Interactions between aluminium, magnesium and calcium with different monocotyledonous and dicotyledonous plant species. In: Barrow NJ, editor. Plant nutrition—from genetic engineering to field practice. Developments in plant and soil sciences. vol. 54. Dordrecht: Springer; 1993. p. 719–722.
  • Lukaszewski KM, Blevins DG. Root growth inhibition in boron-deficient or aluminum-stressed squash may be a result of impaired ascorbate metabolism. Plant Physiol. 1996;112(3):1135–1140.
  • Taylor GJ, Blarney FPC, Edwards DG. Antagonistic and synergistic interactions between aluminum and manganese on growth of Vigna unguiculata at low ionic strength. Physiol Plant. 1998;104(2):183–194.
  • Lidon FC, Azinheira HG, Barreiro MG. Aluminium toxicity in maize: biomass production and nutrient uptake and translocation. J. Plant Nutr. 2000;23(2):151–160.
  • Guo T-R, Zhang G-P, Zhou M-X, et al. Influence of aluminum and cadmium stresses on mineral nutrition and root exudates in two barley cultivars. Pedosphere. 2007;17(4):505–512.
  • Paľove-Balang P, Mistrík I. Impact of low pH and aluminium on nitrogen uptake and metabolism in roots of Lotus japonicus. Biologia (Bratisl.). 2007;62:715–719.
  • Olivares E, Peña E, Marcano E, et al. Aluminum accumulation and its relationship with mineral plant nutrients in 12 pteridophytes from Venezuela. Environ Exp Bot. 2009;65(1):132–141.
  • Zhang W-H, Rengel Z. Aluminium induces an increase in cytoplasmic calcium in intact wheat root apical cells. Aust J Plant Physiol. 1999;26(5):401–409.
  • Shavrukov Y, Hirai Y. Good and bad protons: genetic aspects of acidity stress responses in plants. J Exp Bot. 2016;67(1):15–30.
  • Delisle G, Champoux M, Houde M. Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol. 2001;42(3):324–333.
  • Yamamoto Y, Kobayashi Y, Devi SR, et al. Oxidative stress triggered by aluminum in plant roots. In: Abe J, editor. Roots: the dynamic interface between plants and the earth. Developments in plant and soil sciences. Vol. 101. Dordrecht: Springer; 2003. p. 239–243.
  • Murali Achary VM, Panda BB. Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis. 2010;25(2):201–209.
  • Jones DL, Blancaflor EB, Kochian LV, et al. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ. 2006;29(7):1309–1318.
  • Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase catalase and peroxidase activities in root tips of G. max. Physiol Plant. 1991;83(3):463–468.
  • Yamamoto Y, Kobayashi Y, Matsumoto H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 2001;125(1):199–208.
  • Ikegawa H, Yamamoto Y, Matsumoto H. Responses to aluminium of suspension-cultured tobacco cells in a simple calcium solution. Soil Sci Plant Nutr. 2000;46(2):503–514.
  • Richards KD, Schott EJ, Sharma YK, Davis KR, et al. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 1998;116(1):409–418.
  • Ezaki B, TsugUa S, Matsumoto H. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol Plant. 1996;96(1):21–28.
  • Ezaki B, Yamamoto Y, Matsumoto H. Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in cultured tobacco cells. Physiol Plant. 1995;93(1):11–18.
  • Hamel F, Breton C, Houde M. Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta. 1998;205(4):531–538.
  • Kochian LV, Piñeros MA, Hoekenga OA. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil. 2005;274(1–2):175–195.
  • Poschenrieder C, Gunsé B, Corrales I, et al. A glance into aluminum toxicity and resistance in plants. Sci Total Environ. 2008;400(1–3):356–368.
  • Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 2001;6(6):273–278.
  • Brunner I, Sperisen C. Aluminum exclusion and aluminum tolerance in woody plants. Front Plant Sci. 2013;4:172.
  • Nunes-Nesi A, Brito DS, Inostroza-Blancheteau C, et al. The complex role of mitochondrial metabolism in plant aluminum resistance. Trends Plant Sci. 2014;19(6):399–407.
  • Degenhardt J, Larsen PB, Howell SH, et al. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiol. 1998;117(1):19–27.
  • Seguel A, Cumming JR, Klugh-Stewart K, et al. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza. 2013;23(3):167–183.
  • Grevenstuk T, Romano A. Aluminium speciation and internal detoxification mechanisms in plants: where do we stand? Metallomics. 2013;5(12):1584–1594.
  • Gupta N, Gaurav SS, Kumar A. Molecular basis of aluminium toxicity in plants: a review. AJPS. 2013;04(12):21–37.
  • Sasaki T, Yamamoto Y, Ezaki B, et al. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 2004;37(5):645–653.
  • Hoekenga OA, Maron LG, Piñeros MA, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103(25):9738–9743.
  • Ligaba A, Katsuhara M, Ryan PR, et al. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 2006;142(3):1294–1303.
  • Collins NC, Shirley NJ, Saeed M, et al. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L). Genetics. 2008;179(1):669–682.
  • Yang ZM, Sivaguru M, Horst WJ, et al. Aluminum tolerance in achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant. 2000;110(1):72–77.
  • Magalhaes JV, Liu J, Guimarães CT, et al. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet. 2007;39(9):1156–1161.
  • Furukawa J, Yamaji N, Wang H, et al. An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 2007;48(8):1081–1091.
  • Liu J, Magalhaes JV, Shaff J, et al. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 2009;57(3):389–399.
  • Huang CF, Yamaji N, Mitani N, et al. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell. 2009;21(2):655–667.
  • Ryan PR, Raman H, Gupta S, et al. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol. 2009;149(1):340–351.
  • Maron LG, Piñeros MA, Guimarães CT, et al. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 2010;61(5):728–740.
  • Yokosho K, Yamaji N, Ma JF. Isolation and characterization of two MATE genes in rye. Functional Plant Biol. 2010;37(4):296–303.
  • Arenhart RA, Bai Y, de Oliveira LF, et al. New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant. 2014;7(4):709–721.
  • Ma JF, Chen ZC, Shen RF. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil. 2014;381(1–2):1–12.
  • Aniol A, Gustafson JP. Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol. 1984;26(6):701–705.
  • Gallego FJ, Benito C. Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet. 1997;95:393–399.
  • Bianchi-Hall CM, Carter TE, Rufty TW, et al. Heritability and resource allocation of aluminum tolerance derived from soybean PI 416937. Crop Sci. 1998;38:513–522.
  • Delhaize E, Hebb DM, Richards KD, et al. Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA. Overexpression in plants alters the composition of phospholipids. J Biol Chem. 1999;274(11):7082–7088.
  • Nguyen VT, Burow MD, Nguyen HT, et al. Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.). Theor Appl Genet. 2001;102:1002–1010.
  • Fujii M, Yokosho K, Yamaji N, et al. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun. 2012;3:713.
  • Delhaize E, Ma JF, Ryan PR. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci. 2012;17(6):341–348.
  • Ezaki B, Gardner RC, Ezaki Y, et al. Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol. 2000;122(3):657–665.
  • Aniol A. Physiological aspects of aluminum tolerance associated with long arm of chromosome 2D of the wheat (Triticum aestivum L.) genome. Theor Appl Genet. 1995;91:510–516.
  • Miftahudin Scoles GJ, Gustafson JP. AFLP markers tightly linked to the aluminum tolerance gene Alt3 in rye (Secalecereale L.). Theor Appl Genet. 2002;104:626–631.
  • Ma JF, Taketa S, Yang ZM. Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol. 2000;122(3):687–694.
  • Wu P, Liao CY, Hu B, et al. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet. 2000;100:1295–1303.
  • Magalhaes JV, Garvin DF, Wang Y, et al. Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics. 2004;167(4):1905–1914.
  • Raman H, Moroni JS, Sato K, et al. Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet. 2002;105(2–3):458–464.
  • Nava IC, Delatorre CA, de Lima Duarte IT, et al. Inheritance of aluminum tolerance and its effects on grain yield and grain quality in oats (Avena sativa L.). Euphytica. 2006;148:353–358.
  • Rodriguez-Milla MA, Gustafson JP. Genetic and physical characterization of chromosome 4DL in wheat. Genome. 2001;44(5):883–892.
  • Raman H, Zhang K, Cakir M, et al. Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome. 2005;48(5):781–791.
  • Delhaize E, Ryan PR. Aluminum toxicity and tolerance in plants. Plant Physiol. 1995;107(2):315–321.
  • Berzonsky WA. The genomic inheritance of aluminum tolerance in “Atlas 66” wheat. Genome. 1992;35(4):689–693.
  • Zhang W-H, Ryan PR, Sasaki T, et al. Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotianatabacum L.) cells. Plant Cell Physiol. 2008;49(9):1316–1330.
  • Pereira JF, Zhou G, Delhaize E, et al. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot. 2010;106(1):205–214.
  • Delhaize E, Ryan PR, Hebb DM, et al. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A. 2004;101(42):15249–15254.
  • Delhaize E, Gruber BD, Ryan PR. The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett. 2007;581(12):2255–2262.
  • Sasaki T, Mori IC, Furuichi T, et al. Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol. 2010;51(3):354–365.
  • Meyer S, Scholz-Starke J, De Angeli A, et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J. 2011;67(2):247–257.
  • Ligaba A, Dreyer I, Margaryan A, et al. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminium-activated malate/anion transporter, TaALMT1. Plant J. 2013;76(5):766–780.
  • Tang Y, Sorrells ME, Kochian LV, et al. Identification of RFLP markers linked to the barley aluminum tolerance gene Alp. Crop Sci. 2000;40(3):778–782.
  • Wang J, Raman H, Zhou M, et al. High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet. 2007;115(2):265–276.
  • Sivaguru M, Liu J, Kochian LV. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance. Plant J. 2013;76(2):297–307.
  • Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2004;64(2):159–204.
  • Magalhaes JV. How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann Bot. 2010;106(1):199–203.
  • Yang XY, Yang JL, Zhou Y, et al. A denovo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ. 2011;34(12):2138–2148.
  • Eticha D, Zahn M, Bremer M, et al. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot. 2010;105(7):1119–1128.
  • Ligaba A, Maron L, Shaff J, et al. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux. Plant Cell Environ. 2012;35(7):1185–1200.
  • Piñeros MA, Cançado GM, Maron LG, et al. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: The case of ZmALMT1-An anion-selective transporter. Plant J. 2007;53(2):352–367.
  • Larsen PB, Geisler MJB, Jones CA, et al. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J. 2005;41(3):353–363.
  • Larsen PB, Cancel J, Rounds M, et al. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta. 2007;225(6):1447–1458.
  • Huang C-F, Yamaji N, Chen Z, et al. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J. 2012;69(5):857–867.
  • Xia J, Yamaji N, Che J, et al. Differential expression of Nrat1 is responsible for Al-tolerance QTL on chromosome 2 in rice. J Exp Bot. 2014;65(15):4297–4304.
  • Xia J, Yamaji N, Kasai T, et al. Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci U S A. 2010;107(43):18381–18385.
  • Negishi T, Oshima K, Hattori M, et al. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue Hydrangea sepals of aluminum hyperaccumulating plant. Plos One. 2012;7(8):e43189.
  • Kochian LV, Piñeros MA, Liu J, et al. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol. 2015;66(1):571–598.
  • Li J-Y, Liu J, Dong D, et al. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance. Proc Natl Acad Sci U S A. 2014;111(17):6503–6508.
  • Courville P, Chaloupka R, Cellier MF. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol. 2006;84(6):960–978.
  • Wang Y, Li R, Li D, et al. NIP1; 2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc Natl Acad Sci U S A. 2017;9(114):5047–5052.
  • Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front Plant Sci. 2016;7:1896.
  • Sonah H, Deshmukh RK, Labbé C, et al. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep. 2017;7(1):1–7.
  • Iuchi S, Koyama H, Iuchi A, et al. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A. 2007;104(23):9900–9905.
  • Sawaki Y, Iuchi S, Kobayashi Y, et al. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol. 2009;150(1):281–294.
  • Yamaji N, Huang CF, Nagao S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell. 2009;21(10):3339–3349.
  • Chen ZC, Yokosho K, Kashino M, et al. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus. Plant J. 2013;76(1):10–23.
  • Raman H, Ryan PR, Raman R, et al. Analysis of TaALMT1 traces the transmission of aluminum resistance in cultivated common wheat (Triticum aestivum L.). Theor Appl Genet. 2008;116(3):343–354.
  • Sasaki T, Ryan PR, Delhaize E, et al. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol. 2006;47(10):1343–1354.
  • Ryan PR, Raman H, Gupta S, et al. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J. 2010;64(3):446–455.
  • Tsutsui T, Yamaji N, Ma JF. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol. 2011;156(2):925–931.
  • de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, et al. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science. 1997;276(5318):1566–1568.
  • Barone P, Rosellini D, LaFayette P, et al. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa. Plant Cell Rep. 2008;27(5):893–901.
  • Delhaize E, Hebb DM, Ryan PR. Expression of a Pseudomonas aeruginosa citrate synthase gene in tobacco is not associated with either enhanced citrate accumulation or efflux. Plant Physiol. 2001;125(4):2059–2067.
  • Koyama H, Takita E, Kawamura A, et al. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium. Plant Cell Physiol. 1999;40(5):482–488.
  • Anoop VM, Basu U, McCammon MT, et al. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol. 2003;132(4):2205–2217.
  • Deng W, Luo K, Li Z, et al. Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta. 2009;230(2):355–365.
  • Han Y, Zhang W, Zhang B, et al. One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco. Mol Biotechnol. 2009;42(3):299–305.
  • Koyama H, Kawamura A, Kihara T, et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol. 2000;41(9):1030–1037.
  • Tesfaye M, Temple SJ, Allan DL, et al. Over expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol. 2001;127(4):1836–1844.
  • Begum HH, Osaki M, Watanabe T, et al. Mechanisms of aluminum tolerance in phosphoenolpyruvate carboxylase transgenic rice. J Plant. Nutr. 2009;32(1):84–96.
  • Trejo-Téllez LI, Stenzel R, Gómez-Merino FC, et al. Transgenic tobacco plants overexpressing pyruvate phosphate dikinase increase exudation of organic acids and decrease accumulation of aluminum in the roots. Plant Soil. 2010;326(1-2):187–198.
  • Gruber BD, Delhaize E, Richardson AE, et al. Characterisation of HvALMT1 function in transgenic barley plants. Funct Plant Biol. 2011;38(2):163–175.
  • Durrett TP, Gassmann W, Rogers EE. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 2007;144(1):197–205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.