906
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Photoautotrophic production of eicosapentaenoic acid

, & ORCID Icon
Pages 731-748 | Received 19 May 2020, Accepted 12 Dec 2020, Published online: 30 Mar 2021

References

  • Hamilton HA, Newton R, Auchterlonie NA, et al. Systems approach to quantify the global omega-3 fatty acid cycle. Nat Food. 2020;1(1):59–62.
  • Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–2757.
  • Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr. 1991;54(3):438–463.
  • Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3(1):1–7.
  • Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6 Suppl):1505S–1519S.
  • Coates PM (editor, Dietary supplements). Encyclopedia of dietary supplements. New York: Marcel Dekker; 2004.
  • Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994;1213(3):277–288.
  • Pawlosky RJ, Hibbeln JR, Novotny JA, et al. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42(8):1257–1265.
  • EFSA Panel on Dietetic Products Nutrition, and Allergies. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010;8(3):1461.
  • Food and Agriculture Organisation of the United Nations. Fats and fatty acids in human nutrition – report of an expert consultation. Geneva; 2010.
  • Australian Government National Health and Medical Research Council. Nutrient reference values for Australia and New Zealand – fats: total fat & fatty acids 2014 [cited 2020 11/4/2020]. Available from: https://www.nrv.gov.au/nutrients/fats-total-fat-fatty-acids.
  • Tocher DR. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture. 2015;449:94–107.
  • Adarme-Vega TC, Lim DK, Timmins M, et al. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact. 2012;11:96.
  • US Department of Agriculture. Nutrient Search; 2020. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/methods-and-application-of-food-composition-laboratory/mafcl-site-pages/sr-legacy-nutrient-search/.
  • Stark KD, Van Elswyk ME, Higgins MR, et al. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res. 2016;63:132–152.
  • Micha R, Khatibzadeh S, Shi P, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ: British Medical Journal. 2014;348:g2272–g2272.
  • United Nations Department of Economic and Social Affairs. World population prospects 2019 highlights. New York: United Nations; 2019.
  • Food and Agriculture Organisation of the United Nations. The state of world fisheries and aquaculture. Rome; 2018.
  • Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol. 2014;26(0):14–18.
  • Tocher DR. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research. 2010;41(5):717–732.
  • Glencross BD. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult. 2009;1(2):71–124.
  • Ward OP, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 2005;40(12):3627–3652.
  • Food and Agriculture Organisation of the United Nations. The state of world fisheries and aquaculture. Rome; 2016.
  • Wynn J, Behrens P, Sundararajan A, et al. Production of single cell oils by dinoflagellates. In: Cohen Z, Ratledge C, editors. Single cell oils – microbial and algal oils. 2nd edn. Urbana (IL): AOCS Press; 2010. p. 115–129.
  • Barclay W, Weaver C, Metz J, et al. Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C, editors. Single cell oils – microbial and algal oils. 2nd edn. Urbana (IL): AOCS Press; 2010. p. 75–96.
  • Shimiziu S, Kawashima H, Shinmen Y, et al. Production of eicosapentaenoic acid by Mortierella fungi. J Am Oil Chem Soc. 1988;65(9):1455–1459.
  • Jareonkitmongkol S, Shimizu S, Yamada H. Production of an eicosapentaenoic acid-containing oil by a Δ12 desaturase-defective mutant of Mortierella alpina 1S-4. J Am Oil Chem Soc. 1993;70(2):119–123.
  • Bowman JP, McCammon SA, Nichols DS, et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Evol Microbiol. 1997;47(4):1040–1047.
  • Yazawa K. Production of eicosapentaenoic acid from marine bacteria. Lipids. 1996;31(1):S297–S300.
  • Xie D, Jackson EN, Zhu Q. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol. 2015;99(4):1599–1610.
  • Xue Z, Sharpe PL, Hong S-P, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol. 2013;31(8):734–740.
  • Hamilton ML, Powers S, Napier JA, et al. Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs. 2016;14(3):53.
  • Qi B, Fraser T, Mugford S, et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol. 2004;22(6):739–745.
  • Ruiz-Lopez N, Haslam RP, Napier JA, et al. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014;77(2):198–208.
  • Walsh TA, Bevan SA, Gachotte DJ, et al. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid. Nat Biotechnol. 2016;34(8):881–887.
  • Li-Beisson Y, Thelen JJ, Fedosejevs E, et al. The lipid biochemistry of eukaryotic algae. Prog Lipid Res. 2019;74:31–68.
  • Khozin-Goldberg I, Iskandarov U, Cohen Z. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol. 2011;91(4):905–915.
  • Metz JG, Roessler P, Facciotti D, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science. 2001;293(5528):290–293.
  • Khozin-Goldberg I. Lipid metabolism in microalgae. In: Borowitzka MA, Beardall J, Raven JA, editors. The physiology of microalgae. Cham: Springer International Publishing; 2016. p. 413–484.
  • Domergue F, Lerchl J, Zähringer U, et al. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem. 2002;269(16):4105–4113.
  • Arao T, Yamada M. Biosynthesis of polyunsaturated fatty acids in the marine diatom, Phaeodactylum tricornutum. Phytochemistry. 1994;35(5):1177–1181.
  • Schneider JC, Roessler P. Radiolabelling studies of lipids and fatty acids in Nannochloropsis (Eustigmatophyceae), an oleaginous marine alga. J Phycol. 1994;30(4):594–598.
  • Zhou X-R, Robert SS, Petrie JR, et al. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry. 2007;68(6):785–796.
  • Qi B, Beaudoin F, Fraser T, et al. Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett. 2002;510(3):159–165.
  • Wallis JG, Browse J. The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys. 1999;365(2):307–316.
  • Sayanova O, Haslam RP, Calerón MV, et al. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry. 2011;72(7):594–600.
  • Cohen Z, Ratledge C. Searching for polyunsaturated fatty acid-rich photosynthetic microalgae. Single cell oils – microbial and algal oils. 2nd edn. Urbana (IL): AOCS Press; 2010.
  • Valentine RC, Valentine DL. Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res. 2004;43(5):383–402.
  • Heldt H-WH, Fiona H. Glycerolipids are membrane constituents and function as carbon stores. Plant biochemistry. Amsterdam; Sydney: Elsevier Academic Press; 2005. p. 363–402.
  • Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell. 1995;7(7):957–970.
  • Brown APS, Antoni R. Fatty acid biosynthesis in plants – metabolic pathways, structure and organization. In: Wada HMN, editor. Lipids in photosynthesis: essential and regulatory functions. Dordrecht (The Netherlands): Springer Netherlands; 2009. p. 11–34.
  • Hamilton ML, Haslam RP, Napier JA, et al. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng. 2014;22:3–9.
  • Guedes AC, Amaro HM, Barbosa CR, et al. Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int. 2011;44(9):2721–2729.
  • Lang I, Hodac L, Friedl T, et al. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11(1):124
  • Tanaka T, Yabuuchi T, Maeda Y, et al. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Bioresour Technol. 2017;245(Pt A):567–572.
  • Qiao H, Cong C, Sun C, et al. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture. 2016;452:311–317.
  • Jiang H, Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol. 2004;40(4):651–654.
  • Svenning JB, Dalheim L, Eilertsen HC, et al. Temperature dependent growth rate, lipid content and fatty acid composition of the marine cold-water diatom Porosira glacialis. Algal Res. 2019;37:11–16.
  • Oostlander PC, van Houcke J, Wijffels RH, et al. Optimization of Rhodomonas sp. under continuous cultivation for industrial applications in aquaculture. Algal Res. 2020;47:101889.
  • Pasquet V, Ulmann L, Mimouni V, et al. Fatty acids profile and temperature in the cultured marine diatom Odontella aurita. J Appl Phycol. 2014;26(6):2265–2271.
  • Braden C, Tyler WM, Paul H, et al. Effects of light and temperature on fatty acid production in nannochloropsis salina. Energies. 2012;5(3):731–740.
  • Yongmanitchai W, Ward OP. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol. 1991;57(2):419–425.
  • Liang Y, Sun M, Tian C, et al. Effects of salinity stress on the growth and chlorophyll fluorescence of Phaeodactylum tricornutum and Chaetoceros gracilis (Bacillariophyceae). Botanica Marina. 2014;57(6):469–476.
  • Gu N, Lin Q, Li G, et al. Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng Life Sci. 2012;12(6):631–637.
  • Tonon T, Harvey D, Larson TR, et al. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry. 2002;61(1):15–24.
  • Dunstan GA, Volkman JK, Barrett SM, et al. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry. 1993;35(1):155–161.
  • Courtois de Viçose G, Porta A, Viera MP, et al. Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with growth phase. J Appl Phycol. 2012;24(6):1427–1437.
  • Renaud SM, Thinh L-V, Parry DL. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture. 1999;170(2):147–159.
  • Steinrücken P, Erga SR, Mjøs SA, et al. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Res. 2017;26:392–401.
  • Boelen P, van Dijk R, Damsté JSS, et al. On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express. 2013;3(1):26
  • Kaspar HF, Keys EF, King N, et al. Continuous production of Chaetoceros calcitrans in a system suitable for commercial hatcheries. Aquaculture. 2014;420–421:1–9.
  • Volkman JK, Jeffrey SW, Nichols PD, et al. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol. 1989;128(3):219–240.
  • Vazhappilly R, Chen F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Amer Oil Chem Soc. 1998;75(3):393–397.
  • Hatate H, Ohgai M, Murase N, et al. Accumulation of fatty acids in Chaetoceros gracilis (Bacillariophyceae) during stationary growth phase. Fish Sci. 1998;64(4):578–581.
  • Liang Y, Beardall J, Heraud P. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J Photochem Photobiol B. 2006;82(3):161–172.
  • Mansour MP, Frampton DMF, Nichols PD, et al. Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24–C28 polyunsaturated fatty acids. J Appl Phycol. 2005;17(4):287–300.
  • Guihéneuf F, Fouqueray M, Mimouni V, et al. Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae). J Appl Phycol. 2010;22(5):629–638.
  • Xia S, Gao B, Fu J, et al. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J Biosci Bioeng. 2018;126(6):723–729.
  • Ryckebosch E, Bruneel C, Termote-Verhalle R, et al. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 2014;160:393–400.
  • Yongmanitchai W, Ward OP. Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry. 1991;30(9):2963–2967.
  • Patil V, Källqvist T, Olsen E, et al. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int. 2007;15(1):1–9.
  • Yodsuwan N, Sawayama S, Sirisansaneeyakul S. Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agri Nat Resour. 2017;51(3):190–197.
  • Steinrücken P, Prestegard SK, de Vree JH, et al. Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions. Algal Res. 2018;30:11–22.
  • Griffiths MJ, van Hille RP, Harrison STL. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol. 2012;24(5):989–1001.
  • Qiang H, Zheungu H, Cohen Z, et al. Enhancement of eicosapentaenoic acid (EPA) and γ‐linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur J Phycol. 1997;32(1):81–86.
  • Xu J, Li T, Li C-L, et al. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01 (Eustigmatophyceae). Algal Res. 2020;48:101910.
  • Zou N, Zhang C, Cohen Z, et al. Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol. 2000;35(2):127–133.
  • Mitra M, Mishra S. A comparative analysis of different extraction solvent systems on the extractability of eicosapentaenoic acid from the marine eustigmatophyte Nannochloropsis oceanica. Algal Res. 2019;38:101387.
  • Chen C-Y, Nagarajan D, Cheah WY. Eicosapentaenoic acid production from Nannochloropsis oceanica CY2 using deep sea water in outdoor plastic-bag type photobioreactors. Bioresour Technol. 2018;253:1–7.
  • Ma X, Zhang L, Zhu B, et al. Low-temperature affected LC-PUFA conversion and associated gene transcript level in Nannochloropsis oculata CS-179. J Ocean Univ China. 2011;10(3):270–274.
  • Shene C, Chisti Y, Vergara D, et al. Production of eicosapentaenoic acid by Nannochloropsis oculata: effects of carbon dioxide and glycerol. J Biotechnol. 2016;239:47–56.
  • Rezanka T, Petránková M, Cepák V, et al. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol. 2010;55(3):265–269.
  • Tatsuzawa H, Takizawa E. Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry. 1995;40(2):397–400.
  • Guihéneuf F, Stengel DB. Interactive effects of light and temperature on pigments and n-3 LC-PUFA-enriched oil accumulation in batch-cultivated Pavlova lutheri using high-bicarbonate supply. Algal Res. 2017;23:113–125.
  • Shiran D, Khozin I, Heimer YM, et al. Biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. I: The use of externally supplied fatty acids. Lipids. 1996;31(12):1277–1282.
  • Hamilton ML, Warwick J, Terry A, et al. Towards the industrial production of omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLOS One. 2015;10(12):e0144054.
  • Peng K-T, Zheng C-N, Xue J, et al. Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem. 2014;62(35):8773–8776.
  • Zhu B-H, Tu C-C, Shi H-P, et al. Overexpression of endogenous delta-6 fatty acid desaturase gene enhances eicosapentaenoic acid accumulation in Phaeodactylum tricornutum. Process Biochem. 2017;57:43–49.
  • Pruvost J, Le Borgne F, Artu A, et al. Chapter five – industrial photobioreactors and scale-up concepts. In: Jack L, editor. Advances in chemical engineering. Volume 48. Cambridge (MA): Academic Press; 2016. p. 257–310.
  • Morweiser M, Kruse O, Hankamer B, et al. Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol. 2010;87(4):1291–1301.
  • Bosma R, de Vree JH, Slegers PM, et al. Design and construction of the microalgal pilot facility AlgaePARC. Algal Res. 2014;6:160–169.
  • Zou N, Richmond A. Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. J Biotechnol. 1999;70(1–3):351–356.
  • Sánchez Mirón A, Contreras Gómez A, Garcı́a Camacho F, et al. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol. 1999;70(1–3):249–270.
  • Pfaffinger CE, Severin TS, Apel AC, et al. Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors. J Biotechnol. 2019;297:41–48.
  • Sevilla JMF, Cerón García MC, Sánchez Mirón A, et al. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnol Progr. 2004;20(3):728–736.
  • Grima EM, Pérez JS, Camacho FG, et al. Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Appl Microbiol Biotechnol. 1994;41(1):23–27.
  • Yongmanltchal W, Ward OP. Growth and eicosapentaenoic acid production by Phaeodactylum tricornutum in batch and continuous culture systems. J Am Oil Chem Soc. 1992;69(6):584–590.
  • De Vree JH, Bosma R, Janssen M, et al. Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels. 2015;8(1):215
  • Veloso V, Reis A, Gouveia L, et al. Lipid production by Phaeodactylum tricornutum. Bioresour Technol. 1991;38(2–3):115–119.
  • Benavides AMS, Torzillo G, Kopecký J, et al. Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy. 2013;54:115–122.
  • Grima EM, Pérez JS, Camacho FG, et al. Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol. 1994;37(2):159–166.
  • San Pedro A, González-López C, Acién F, et al. Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol. 2013;134:353–361.
  • Grima EM, Pérez JS, Camacho FG, et al. Biomass and icosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. Appl Microbiol Biotechnol. 1995;42(5):658–663.
  • Fernández FA, Camacho FG, Pérez JS, et al. Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance. Biotechnol Bioeng. 1998;58(6):605–616.
  • Fernández FA, Hall DO, Guerrero EC, et al. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol. 2003;103(2):137–152.
  • Oostlander PC, Latsos C, van Houcke J, et al. Production of Rhodomonas sp. at pilot scale under sunlight conditions. Algal Res. 2020;48:101934.
  • Satoh A, Ichii K, Matsumoto M, et al. A process design and productivity evaluation for oil production by indoor mass cultivation of a marine diatom, Fistulifera sp. JPCC DA0580. Bioresour Technol. 2013;137:132–138.
  • Camacho-Rodríguez J, González-Céspedes A, Cerón-García M, et al. A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol. 2014;98(6):2429–2440.
  • Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng. 2009;102(1):100–112.
  • Richmond A, Cheng-Wu Z. Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp. outdoors. J Biotechnol. 2001;85(3):259–269.
  • Rodolfi L, Biondi N, Guccione A, et al. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnol Bioeng. 2017;114(10):2204–2210.
  • Nogueira N, Nascimento FJA, Cunha C, et al. Nannochloropsis gaditana grown outdoors in annular photobioreactors: operation strategies. Algal Res. 2020;48:101913.
  • Camacho FG, Gómez AC, Fernández FA, et al. Use of concentric-tube airlift photobioreactors for microalgal outdoor mass cultures. Enzyme Microb Technol. 1999;24(3–4):164–172.
  • Contreras A, García F, Molina E, et al. Interaction between CO2‐mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng. 1998;60(3):317–325.
  • Chauton MS, Reitan KI, Norsker NH, et al. A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture. 2015;436:95–103.
  • Borowitzka M. High-value products from microalgae—their development and commercialisation. J Appl Phycol. 2013;25(3):743–756.
  • Tredici MR, Rodolfi L, Biondi N, et al. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Res. 2016;19:253–263.
  • Oostlander PC, van Houcke J, Barbosa MJ, et al. Microalgae production cost in aquaculture hatcheries. Aquaculture. 2020; 525:735310.
  • Nie X, Mubashar M, Zhang S, et al. Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: a comprehensive review. J Cleaner Prod. 2020; 277:124209.
  • McClure DD, Luiz A, Gerber B, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 2018;29:41–48.
  • Xia S, Wang K, Wan L, et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs. 2013;11(7):2667–2681.
  • Leu S, Boussiba S. Advances in the production of high-value products by microalgae. Ind Biotechnol. 2014;10(3):169–183.
  • Derwenskus F, Weickert S, Lewandowski I, et al. Economic evaluation of up- and downstream scenarios for the co-production of fucoxanthin and eicosapentaenoic acid with P. tricornutum using flat-panel airlift photobioreactors with artificial light. Algal Res. 2020;51:102078.
  • van der Voort MP, Spruijt J, Potters J, et al. Socio-economic assessment of algae-based PUFA production: the value chain from microalgae to PUFA ('PUFACHAIN'). PUFAChain; 2017.
  • Pérez-López P, González-García S, Allewaert C, et al. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum. Sci Total Environ. 2014;466–467:991–1002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.