787
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil

& ORCID Icon
Pages 749-766 | Received 29 May 2020, Accepted 03 Jan 2021, Published online: 24 Feb 2021

References

  • Jain PK, Gupta VK, Gaur RK, et al. Bioremediation of petroleum oil contaminated soil and water. Res J Env Toxicol. 2011;5(1):1–26.
  • Xu X, Liu W, Tian S, et al. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 2018;9:2885.
  • Varjani SJ, Rana DP, Jain AK, et al. Synergistic exsitu biodegradation of crude oil halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad. 2015;103:116–124.
  • Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation. 2018;29(4):359–407.
  • Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Ezypt J Pet. 2016;25(1):107–123.
  • Schnatter AR, Rosamilia K, Wojcik ND. Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact. 2005;153–154:9–21.
  • Cao W, Yin L, Zhang D, et al. Contamination, sources, and health risks associated with soil PAHs in rebuilt land from a coking plant, Beijing, China. Int J Environ Res Public Health. 2019;16(4):670.
  • Bourdel G, Roy-Bolduc A, St-Arnaud M, et al. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots. Front Microbiol. 2016;7:685.
  • Sarma H, Islam NF, Borgohain P, et al. Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia’s oldest oil and gas drilling site in Assam, northeast India: implications for the bio-economy. Emerg Contam. 2016;2(3):119–127.
  • Yadav IC, Ningombam LD, Li J, et al. Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: implication on source apportionment and toxicological effect. Sci Tot Environ. 2018;616–617:223–235.
  • Riaz R, Ali U, Li J, et al. Assessing the level and sources of polycyclic aromatic hydrocarbons (PAHs) in soil and sediments along Jhelum riverine system of lesser Himalayan region of Pakistan. Chemosphere. 2019;216:640–652.
  • Zavgorodnyaya YA, Chikidova AL, Biryukov MV, et al. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow. J Soils Sediments. 2019;19(8):3155–3165.
  • Yang D, Huang H, Zhang Y, et al. Polycyclic aromatic hydrocarbons in agricultural soils from Northwest Fujian, Southeast China: spatial distribution, source apportionment, and toxicity evaluation. J Geochem Explorat. 2018;195:121–129.
  • Lasota J, Błońska E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water Air Soil Pollut. 2018;229(6):204.
  • Liu Y, Gao P, Su J, et al. PAHs in urban soils of two Florida cities: background concentrations, distribution, and sources. Chemosphere. 2019;214:220–227.
  • Chen F, Lin Y, Cai M, et al. Occurrence and risk assessment of PAHs in surface sediments from western Arctic and Subarctic oceans. Int J Environ Res Public Health. 2018;15(4):734.
  • Armstrong BG, Hutchinson E, Unwin J, et al. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect. 2004;112(9):970–978.
  • Singha LP, Pandey P. Glutathione and glutathione-S-transferase activity in Jatropha curcas in association with pyrene degrader Pseudomonas aeruginosa PDB1 in rhizosphere, for alleviation of stress induced by polyaromatic hydrocarbon for effective rhizoremediation. Ecolog Engin. 2017;102:422–432.
  • Singha LP, Sinha N, Pandey P. Rhizoremediation prospects of Polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotoxicol Environ Saf. 2018;164:579–588.
  • Gerhardt KE, Huang X-D, Glick BR, et al. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 2009;176(1):20–30.
  • Guarino C, Spada V, Sciarrillo R. Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation – Assistited Landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere. 2017;170:10–16.
  • Dzionek A, Wojcieszyńska D, Guzik U. Natural carriers in bioremediation: a review. Electron J Biotech. 2016;23:28–36.
  • Tomei MC, Daugulis AJ. Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit Reviews Environ Sci Technol. 2013;43(20):2107–2139.
  • Yuniati M. Biorremediation of petroleum-contaminated soil. Earth Environ Sci. 2017;118:1–7.
  • Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169(1–3):1–15.
  • Abd-Elsalam HE, Hafez EE, Hussain AA, et al. Isolation and identification of three-rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. Am Eurasian J Agric Environ Sci. 2009;5:31–38.
  • Timmis KN, McGenity T, Van Der Meer J, et al. Handbook of hydrocarbon and lipid microbiology. Berlin (Germany): Springer; 2010.
  • Zeinali M, Vossoughi M, Ardestani S. Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons. Lett Appl Microbiol. 2007;45(6):622–628.
  • Ben OS, Goñi ‐Urriza M, El BM, et al. Characterization of aerobic polycyclic aromatic hydrocarbon‐degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microb. 2008;104:987–997.
  • Uraizee FA, Venosa AD, Suidan MT. A model for diffusion controlled bioavailability of crude oil components. Biodegradation. 1997;8(5):287–296.
  • Das P, Mukherjee S, Sen R. Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev. 2008;25:165–185.
  • Uribe‐Alvarez C, Ayala M, Perezgasga L, et al. First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechn. 2011;4(5):663–672.
  • Gao H, Zhang J, Lai H, et al. Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil. Intern Biodeter Biodegrad. 2017;122:12–22.
  • Aislabie J, Foght J, Saul D. Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol. 2000;23(3):183–188.
  • Aoshima H, Hirase T, Tada T, et al. Improvement of heavy oil degradation by Rhodococcus erythropolis C2. J Environ Biotechnol. 2006;5(2):107–109.
  • Da CC, Rosado AS, Sebastián GV, et al. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl Microb Biotechnol. 2006;73(4):949–959.
  • Baniasadi F, Shahidi G, Nik A. In vitro petroleum decomposition by actinomycetes isolated from petroleum contaminated soils. Am-Eurasian J Agri Environ Sci. 2009;6(3):268–270.
  • Schippers A, Bosecker K, Spröer C, et al. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Intern J Syst Evol Microb. 2005;55(2):655–660.
  • Jain PK, Gupta VK, Pathak H, et al. Characterization of 2T engine oil degrading indigenous bacteria, isolated from high altitude (Mussoorie). World J Microbiol Biotechnol. 2010;26(8):1419–1426.
  • Teufel R, Gantert C, Voss M, et al. Studies on the mechanism of ring hydrolysis in phenylacetate degradation: a metabolic branching point. J Biol Chem. 2011;286(13):11021–11034.
  • Sathyanarayanan N, Cannone G, Gakhar L, et al. Molecular basis for metabolite channeling in a ring opening enzyme of the phenylacetate degradation pathway. Nat Commun. 2019;10(1):4127. |
  • Huang XD, El-Alawi YS, Penrose D, et al. A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut. 2004;130(3):465–476.
  • Weishaar JA, Tsao D, Burken JG. Phytoremediation of BTEX hydrocarbons: potential impacts of diurnal groundwater fluctuation on microbial degradation. Intern J Phytoremed. 2009;11(5):509–523.
  • Singha LP, Pandey P. Rhizobacterial community of Jatropha curcas associated with pyrene biodegradation by consortium of PAH-degrading bacteria. Applied Soil Ecology. 2020;155:103685.
  • Lal R. Soil carbon sequestration to mitigate climate change. Geoderma. 2004;123(1–2):1–22.
  • Sun TR, Cang L, Wang QY, et al. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. J Haz Mater. 2010;176(1–3):919–925.
  • Hultgren J, Pizzul L, del Pilar Castillo M, et al. Degradation of PAH in a creosotecontaminated soil. A comparison between the effects of willows (Salix viminalis), wheat straw and a nonionic surfactant. Int J Phytorem. 2009;12(1):54–66.
  • Singer AC, Crowley DE, Thompson IP. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol. 2003;21(3):123–130.
  • Gilbert ES, Crowley DE. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol. 1997;63(5):1933–1938.
  • Parke D, D’Argenio DA, Ornston LN. Bacteria are not what they eat: that is why they are so diverse. J Bacteriol. 2000;182(2):257–263.
  • Pillai B, Swarup S. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol. 2002;68(1):143–151.
  • Shaw LJ, Morris P, Hooker JE. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol. 2006;8(11):1867–1880.
  • Yi H, Crowley DE. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol. 2007;41(12):4382–4388.
  • Fang C, Radosevich M, Fuhrmann JJ. Atrazine and phenanthrene degradation in grass rhizosphere soil. Soil Biol Biochem. 2001;33(4–5):671–678.
  • Jamil S, Abhilash PC, Singh N, et al. Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater. 2009;172(1):269–275.
  • Techer D, Martinez-Chois C, Laval-Gilly P, et al. Assessment of Miscanthus ×giganteus for rhizoremediation of long term PAH contaminated soils. Appl Soil Ecol. 2012;62:42–49.
  • Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol. 2004;22(5):583–588.
  • Taghavi S, Barac T, Greenberg B, et al. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol. 2005;71(12):8500–8505.
  • Germaine KJ, Keogh E, Ryan D, et al. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett. 2009;296(2):226–234.
  • Chekol T, Vough LR, Chaney RL. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int. 2004;30(6):799–804.
  • Liste HH, Prutz I. Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere. 2006;62(9):1411–1420.
  • Muratova AY, Turkovskaya OV, Antonyuk LP, et al. Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Microbiol. 2005;74(2):210–215.
  • Johnson DL, Maguire KL, Anderson DR. Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem. 2004;36(1):33–34.
  • Hong Y, Liao D, Chen J, et al. A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res. 2015;22(9):7071–7081.
  • Teng Y, Shen Y, Luo Y, et al. Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater. 2011;186(2–3):1271–1276.
  • Guo M, Gong Z, Miao R, et al. Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biol Biochem. 2017;113:130–142.
  • Wojtera-Kwiczor J, Żukowska W, Graj W, et al. Rhizoremediation of diesel-contaminated soil with two rapeseed varieties and petroleum degraders reveals different responses of the plant defense mechanisms. Int J Phytoremed. 2014;16(7–12):770–789.
  • Fatima K, Imran A, Amin I, et al. Successful phytoremediation of crude-oil contaminated soil at an oil exploration and production company by plants-bacterial synergism. Int J Phytoremed. 2018;20(7):675–681.
  • Nwaichi EO, Frac M, Nwoha PA, et al. Enhanced phytoremediation of crude oil-polluted soil by four plant species: effect of inorganic and organic bioaugumentation. Int J Phytoremed. 2015;17(12):1253–1261.
  • Sun K, Liu J, Gao Y, et al. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp. Sci Rep. 2014;4:5462.
  • Nedunuri KV, Govindaraju RS, Banks MK, et al. Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng. 2000;126(6):483–490.
  • Wang XY, Feng J, Wang J. Petroleum hydrocarbon contamination and impact on soil characteristics from oilfield Momoge wetland. Huan Jing Ke Xue. 2009;30(8):2394–2401.
  • Alexander M. Biodegradation and bioremediation. 2nd ed. New York (NY): Academic Press; 1999.
  • Hamamura N, Olson SH, Ward DM, et al. Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microbiol. 2006;72(9):6316–6324.
  • Chaineau CH, Rougeux G, Yepremian C, et al. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem. 2005;37(8):1490–1497.
  • Pawar RM. The effect of soil pH on bioremediation of polycyclic aromatic hydrocarbons (PAHS). J Bioremed Biodeg. 2015;06(03):291.
  • Wu Y, Zeng J, Zhu Q, et al. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep. 2017;7:40093.
  • Delaune RD, Patrick WH, Casselman ME. Effect of sediment pH and redox conditions on degradation of benzo(a)pyrene. Marine Pol Bull. 1981;12(7):251–253.
  • Fuentes S, Méndez V, Aguila P, et al. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol. 2014;98(11):4781–4794.
  • Atlas RM, Hazen TC. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol. 2011;45(16):6709–6715.
  • Zhang S, Guo H, Zhang S, Fan H, Shi J. Are oil spills an important source of heavy metal contamination in the Bohai Sea, China?. Environ Sci Pollut Res. 2020; 27:3449–3461.
  • Efsun DF, Olcay, Hüseyin S. Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. Int Biodeter Biodegrad. 2015;105:268–275.
  • Duan L, Naidu R, Thavamani P, et al. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: a risk-based approach. Environ Sci Pollut Res Int. 2015;22(12):8927–8941.
  • Trellu C, Mousset E, Pechaud Y, et al. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater. 2016;306:149–174.
  • Zhang Y, Dong X, Jiang Z, et al. Assessment of the ecological security of immobilized enzyme remediation process with biological indicators of soil health. Environ Sci Pollut Res Int. 2013;20(8):5773–5780.
  • Ron EZ, Rosenberg E. Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol. 2014;27:191–194.
  • Ventorino V, Pascale A, Adamo P, et al. Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the Terra dei Fuochi. Sci Rep. 2018;8(1):14281.
  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, et al. Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum. 2018;4(3):241–249.
  • Vijayakuma S, Saravanan V. Biosurfactants-types, sources and applications. Res J Microbiol. 2015;10(5):181–192.
  • Li X, Wu Y, Lin X, et al. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil microcosms amended with mushroom cultivation substrate. Soil Biol Biochem. 2012;47:191–197.
  • Lau KL, Tsang YY, Chiu SW. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere. 2003;52(9):1539–1546.
  • Lee K, Park JW, Ahn IS. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. J Hazard Mater. 2003;105(1–3):157–167.
  • Kauppi S, Sinkkonen A, Romantschuk M. Enhancing bioremediation of diesel-fuelcontaminated soil in a boreal climate: comparison of biostimulation and bioaugmentation. Int Biodeter Biodegr. 2011;65(2):359–368.
  • Maila MP, Randima P, Cloete TE. Multispecies and monoculture rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) from the soil. Int J Phytoremed. 2005;7(2):87–98.
  • Wenzel WW. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil. 2009;321(1–2):385–408.
  • Rachel LC, Hesterberg D. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremed. 2013;15(9):844–860.
  • Anyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. Int J Phytoremed. 2018;20(4):352–361.
  • Kukla M, Płociniczak T, Piotrowska-Seget Z. Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere. 2014;117:40–46.
  • Hussain I, Puschenreiter M, Gerhard S, et al. Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environ Sci Pollut Res Int. 2019;26(18):18451–18464.
  • Siciliano SD, Germida JJ, Banks K, et al. Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol. 2003;69(1):483–489.
  • Lu H, Sun J, Zhu L. The role of artificial root exudates components in facilitating the degradation of pyrene in the soil. Sci Rep. 2017;7(1):7130.
  • Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. J Environ Manage. 2018;217:858–870.
  • Kuiper I, Lagendijk EL, Bloemberg GV, et al. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact. 2004;17(1):6–15.
  • Silby MW, Levy SB. Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of expressed sequences with novel genetic organization. J Bacteriol. 2004;186(21):7411–7419.
  • Rahman KSM, Rahman TJ, Kourkoutas Y, et al. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Biores Technol. 2003;90(2):159–168.
  • Fernandez M, Niqui-Arroyo JL, Conde S, et al. The NAH7 catabolic plasmid confers Pseudomonas putida KT2440 enhanced tolerance to naphthalene and enhanced rhizoremediation performance. Appl Environ Microbiol. 2012;78:5104–5110.
  • Shim H, Chauhan S, Ryoo D, et al. Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria . Appl Environ Microbiol. 2000;66(11):4673–4678.
  • Molina MC, González N, Bautista LF, et al. Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation. 2009;20(6):789–800.
  • Liu T, Wang F, Guo L, et al. Biodegradation of n-hexadecane by bacterial strains B1 and B2 isolated from petroleum- contaminated soil. Sci China Chem. 2012;55(9):1968–1975.
  • Zhang X, Xu D, Zhu C, et al. Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chem Eng J. 2012;209:138–146.
  • Ji Y, Mao G, Wang Y, et al. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol. 2013;4:58
  • Zhao D, Liu C, Liu L, et al. Selection of functional consortium for crude oil-contaminated soil remediation. Intern Biodeterior Biodegrad. 2011;65(8):1244–1248.
  • Zafra G, Absalón ÁE, Anducho-Reyes MÁ, et al. Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere. 2017;172:120–126.
  • Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv. 2003;21(5):383–393.
  • Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 2010;28(3):367–374.
  • Reed MLE, Glick BR. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol. 2005;51(12):1061–1069.
  • Gurska J, Wang W, Gerhardt KE, et al. Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste . Environ Sci Technol. 2009;43(12):4472–4479.
  • Kuiper I, Kravchenko L, Bloemberg GV, et al. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant Microbe Interact. 2002;15(7):734–741.
  • de Weert S, Vermeiren H, Mulders IHM, et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact. 2002;15(11):1173–1180.
  • Bloemberg GV, Wijfjes AHM, Lamers GEM, et al. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact. 2000;13(11):1170–1176.
  • Baboshin MA, Golovleva LA. Aerobic bacterial degradation of polycyclic aromatic hydrocarbons (PAHs) and its kinetic aspects. Microbiology. 2012;81(6):639–650.
  • Atlas R, Philp J. Bioremediation: applied microbial solutions for real-world environmental cleanup. Washington (DC): ASM; 2005.
  • Cui Z, Lai Q, Dong C, et al. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol. 2008;10(8):2138–2149.
  • Cheng F, Tang C, Yang HF, et al. Characterization of a blend-biosurfactant of glycolipid and lipopeptide produced by Bacillus subtilis TU2 isolated from underground oil-extraction wastewater. J Microb Biotechnol. 2018;3:390–396.
  • Ebadi A, Sima NAK, Olamaee M, et al. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J Adv Res. 2017;8(6):627–633.
  • Palecek E, Tkac J, Bartosík M, et al. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115(5):2045–2108.
  • Abbasnezhad H, Gray M, Foght JM. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl Microbiol Biotechnol. 2011;92(4):653–675.
  • Rosenberg M, Bayer EA, Delarea J, et al. Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. Appl Environ Microbiol. 1982;44(4):929–937.
  • Hearn EM, Patel DR, Lepore BW, et al. Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature. 2009;458(7236):367–370.
  • Crampon M, Bodilis J, Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J Haz Mat. 2018;359:500–509.
  • Mao J, Luo Y, Teng Y, et al. Bioremediation of polycyclic aromatic hydrocarbon- contaminated soil by a bacterial consortium and associated microbial community changes. Intern Biodeter Biodegrad. 2012;70:141–147.
  • Kostka JE, Prakash O, Overholt WA, et al. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Appl Environ Microbiol. 2011;77(22):7962–7974.
  • Kuang S, Su Y, Wang H, et al. Soil microbial community structure and diversity around the aging oil sludge in Yellow River Delta as determined by high-throughput sequencing. Archaea. 2018;2018:7861805–7861810.
  • Martin F, Torelli S, Le Paslier D, et al. Betaproteobacteria dominance and diversity shifts in the bacterial community of a PAH-contaminated soil exposed to phenanthrene. Environ Pollut. 2012;162:345–353.
  • Ren HY, Zhang XJ, Song Z, et al. Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. Plos One. 2011;6(8):e23258.
  • Xu Y, Sun GD, Jin JH, et al. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. J Haz Mater. 2014;264:430–438.
  • Villacieros M, Whelan C, Mackova M, et al. Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol. 2005;71(5):2687–2694.
  • Das D, Baruah R, Sarma AR, et al. Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation. Genomics. 2015;105(3):182–190.
  • Dong W, He C, Li Y, et al. Complete genome sequence of a versatile hydrocarbon degrader, Pseudomonas aeruginosa DN1 isolated from petroleum-contaminated soil. Gene Reports. 2017;7:123–126.
  • Pal S, Kundu A, Das TB, et al. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics. 2017;109(5–6):374–382.
  • Singha LP, Kotoky R, Pandey P. Draft genome sequence of Pseudomonas fragi strain DBC, which has the ability to degrade high-molecular-weight polyaromatic hydrocarbons. Genome Announc. 2017;5(49):e01347.
  • Morales LT, González-García LN, Orozco MC, et al. The genomic study of an environmental isolate of Scedosporium apiospermum shows its metabolic potential to degrade hydrocarbons. Stand Genomic Sci. 2017;12(1):71.
  • Van Beilen JB, Funhoff EG, van Loon A, et al. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol. 2006;72(1):59–65.
  • Mesarch MB, Nakatsu CH, Nies L. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol. 2000;66(2):678–683.
  • Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology recent advances in petroleum microbiology, Microbiol. Microbiol Mol Biol Rev. 2003;67(4):503–549.
  • Nie Y, Tang YQ, Li Y, et al. The genome sequence of Polymorphum gilvum SL003B-26A1T reveals its genetic basis for crude oil degradation and adaptation to the saline soil. PLoS One. 2012;7(2):e31261.
  • Kotoky R, Pandey P. The genomic attributes of Cd-resistant, hydrocarbonoclastic Bacillus subtilis SR1 for rhizodegradation of benzo(a)pyrene under co-contaminated conditions. Genomics. 2021;113(1):613–623.. (in press)
  • Suenaga H, Watanabe T, Sato M, et al. Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering. J Bacteriol. 2002;184(13):3682–3688.
  • Chebrou H, Hurtubise Y, Barriault D, et al. Heterologous expression and characterization of the purified oxygenase component of Rhodococcus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. J Bacteriol. 1999;181(16):4805–4811.
  • Hurtubise Y, Barriault D, Sylvestre M. Involvement of the terminal oxygenase beta subunit in the biphenyl dioxygenase reactivity pattern toward chlorobiphenyls. J Bacteriol. 1998;180(22):5828–5835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.