1,206
Views
14
CrossRef citations to date
0
Altmetric
Review Articles

Pigments from Antarctic bacteria and their biotechnological applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 809-826 | Received 17 Apr 2020, Accepted 12 Dec 2020, Published online: 23 Feb 2021

References

  • Ruisi O, Barreca D, Selbmann L, et al. Fungi in Antarctica. Rev Environ Sci Biotechnol. 2007;6(1–3):127–141.
  • Rosa LH, Zani CL, Cantrell CL, et al. Fungi in Antarctica: Diversity, Ecology, Effects of Climate Change, and Bioprospection for Bioactive Compounds. In: Rosa LH, editor. Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications. Cham: Springer; 2019. p. 1–17
  • Dieser M, Greenwood M, Foreman CM. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct Antarct Alp Res. 2010;42(4):396–405.
  • Vila E, Hornero-Méndez D, Lareo C, et al. Biotechnological production of zeaxanthin by an Antarctic Flavobacterium: evaluation of culture conditions. J Biotechnol. 2020;319:54–60.
  • Reis-Mansur MCP, Cardoso-Rurr JS, Silva JVMA, et al. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci Rep. 2019;9(1):9554.
  • Atalah J, Blamey L, Muñoz-Ibacache S, et al. Isolation and characterization of violacein from an Antarctic Iodobacter: a non-pathogenic psychrotolerant microorganism. Extremophiles. 2020;24(1):43–52.
  • Chattopadhyay MK, Jagannadham MV, Vairamani M, et al. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun. 1997;239(1):85–90.
  • Chattopadhyay M, Jagannadham M. Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol. 2001;24(5):386–388.
  • Singh A, Krishnan KP, Prabaharan D, et al. Lipid membrane modulation and pigmentation: a cryoprotection mechanism in Arctic pigmented bacteria. J Basic Microbiol. 2017;57(9):770–780.
  • Correa-Llantén DN, Amenábar MJ, Blamey JM. Resistance to hypoosmotic shock of liposomes containing novel pigments from an Antarctic bacterium. Korean J Microbiol Biotechnol. 2012;3:215–219.
  • Nunez-Pons L, Avila C, Romano G, et al. UV-protective compounds in marine organisms from the Southern Ocean. Mar Drugs. 2018;16(9):336.
  • Ng C, Demaere MZ, Williams TJ, et al. Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME J. 2010;4(8):1002–1019.
  • Duarte AWF, De Menezes GCA, Silva TR, et al. Antarctic fungi as producers of pigments. In: Rosa LH, editor. Fungi of Antarctica: diversity, ecology and biotechnological applications. Cham: Springer; 2019. p. 305–318.
  • Hari RK, Patel TR, Martin AM. An overview of pigment production in biological systems: functions, biosynthesis, and applications in food industry. Food Rev Int. 1994;10(1):49–70.
  • Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40(3):173–289.
  • Bowman JP, McCammon S, Brown MV, et al. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol. 1997;63(8):3068–3078.
  • Vila E, Hornero-Méndez D, Azziz G, et al. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol Rep (Amst). 2019;21:e00306.
  • González-Toril E, Amils R, Delmas RJ, et al. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes). Biogeosci Discuss. 2008;5:1607–1630.
  • Leiva S, Alvarado P, Huang Y, et al. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiol Lett. 2015;362(24):fnv206.
  • Zhang XF, Yao TD, Tian LD, et al. Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol. 2008;55(3):476–488.
  • Antony R, Krishnan KP, Laluraj CM, et al. Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol Res. 2012;167(6):372–380.
  • Martín-Cerezo ML, García-López E, Cid C. Isolation and identification of a red pigment from the Antarctic bacterium Shewanella frigidimarina. Protein Pept Lett. 2015;22(12):1076–1082.
  • Kimura T, Fukuda W, Sanada T, et al. Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus. J Biosci Bioeng. 2015;120(1):58–61.
  • Silva TR, Tavares RSN, Canela-Garayoa R, et al. Chemical characterization and biotechnological applicability of pigments isolated from Antarctic bacteria. Mar Biotechnol. 2019a;21(3):416–429.
  • Wynn-Williams DD, Newton EM, Edwards HGM. The role of habitat structure for biomolecule integrity and microbial survival under extreme environmental stress in Antarctica (and Mars?): ecology and technology. Frascati: European Space Agency (Special Publication) ESA SP; 2001. p. 225–237.
  • Wynn-Williams DD, Edwards HGM. Environmental UV radiation: biological strategies for protection and avoidance. In: Horneck G, Baumstark-Khan C, editors. Astrobiology. Berlin: Springer; 2002. p. 245–260.
  • Jagannadham MV, Chattopadhyay MK, Subbalakshmi C, et al. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol. 2000;173(5–6):418–424.
  • Scherer S, Chen TW, Böger P. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol. 1988;88(4):1055–1057.
  • Ehling-Schulz M, Bilger W, Scherer S. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol. 1997;179(6):1940–1945.
  • Taylor P, Ehling-Schulz M, Scherer S, et al. UV protection in cyanobacteria. Eur J Phycol. 1999;34:329–338.
  • Mojib N, Nasti TH, Andersen DT, et al. The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int J Dermatol. 2011;50(10):1223–1233.
  • Alem D, Marizcurrena JJ, Saravia V, et al. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J Microb Biot. 2020;36:120.
  • Huang JP, Mojib N, Goli RR, et al. Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus. Nat Prod Bioprospect. 2012;2(3):104–110.
  • Baricz A, Teban A, Chiriac CM, et al. Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Sci Rep. 2018;8(1):15272.
  • Asencio G, Lavin P, Alegría K, et al. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant gram-negative bacteria. Electron J Biotechnol. 2014;17(1):1–5.
  • Mojib N, Philpott R, Huang JP, et al. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie Van Leeuwenhoek. 2010;98(4):531–540.
  • Mojib N, Farhoomand A, Andersen DT, et al. UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2. Extremophiles. 2013;17(3):367–378.
  • Órdenes-Aenishanslins N, Anziani-Ostuni G, Vargas-Reyes M, et al. Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. J Photochem Photobiol B. 2016;162:707–714.
  • Silva C, Santos A, Salazar R, et al. Evaluation of dye sensitized solar cells based on a pigment obtained from Antarctic Streptomyces fildesensis. Sol Energy. 2019b;181:379–385.
  • Correa-Llantén DN, Amenábar MJ, Blamey JM. Antioxidant capacity of novel pigments from an Antarctic bacterium. J Microbiol. 2012;50(3):374–379.
  • Reddy GSN, Prakash JSS, Prabahar V, et al. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol. 2003a;53(Pt 1):183–187.
  • Lee K, Lee HK, Choi TH, et al. Sejongia marina sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol. 2007;57(Pt 12):2917–2921.
  • Sedláček I, Králová S, Kýrová K, et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol. 2017;67(6):1975–1983.
  • Fong NJC, Burgess ML, Barrow KD, et al. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol. 2001;56(5–6):750–756.
  • Jung DO, Achenbach LA, Karr EA, et al. A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol. 2004;182(2–3):236–243.
  • Vollmers J, Voget S, Dietrich S, et al. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One. 2013;8(5):e63422.
  • Silva TR, Canela-Garayoa R, Eras J, et al. Pigments in an iridescent bacterium, Cellulophaga fucicola, isolated from Antarctica. Antonie Van Leeuwenhoek. 2019c;112(3):479–490.
  • Humphry DR, George A, Black GW, et al. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int J Syst Evol Microbiol. 2001;51(Pt 4):1235–1243.
  • Choi TH, Lee HK, Lee K, et al. Ulvibacter antarcticus sp. nov., isolated from Antarctic coastal seawater. Int J Syst Evol Microbiol. 2007;57(Pt 12):2922–2925.
  • Jayatilake GS, Thornton MP, Leonard AC, et al. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod. 1996;59(3):293–296.
  • Shivaji S, Reddy GS, Aduri RP, et al. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol Biol (Noisy-le-Grand). 2004;50(5):525–536.
  • McMeekin TA. Preliminary observations on psychrotrophic and psychrophilic, heterotrophic bacteria from Antarctic water samples. Hydrobiologia. 1988;165(1):35–40.
  • Hirsch P, Ludwig W, Hethke C, et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the cytophaga/flavobacterium/bacteroides line of phylogenetic descent. Syst Appl Microbiol. 1998;21(3):374–383.
  • Sedláček I, Pantůček R, Králová S, et al. Hymenobacter amundsenii sp. nov. resistant to ultraviolet radiation, isolated from regoliths in Antarctica. Syst Appl Microbiol. 2019;42(3):284–290.
  • Reddy GSN, Prakash JSS, Srinivas R, et al. Leifsonia rubra sp. nov. and Leifsonia aurea sp. nov., psychrophiles from a pond in Antarctica. Int J Syst Evol Microbiol. 2003;53(Pt 4):977–984.
  • Nováková D, Švec P, Zeman M, et al. Pseudomonas leptonychotis sp. nov., isolated from Weddell seals in Antarctica. Int J Syst Evol Microbiol. 2020;70(1):302–308.
  • Busse HJ, Denner EBM, Buczolits S, et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol. 2003;53(Pt 5):1253–1260.
  • Bozal N, Montes MJ, Tudela E, et al. Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol. 2002;52(Pt 1):195–205.
  • Reddy G, Aggarwal RK, Matsumoto GI, et al. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol. 2000;50(4):1553–1561.
  • Reddy GS, Prakash JSS, Matsumoto GI, et al. Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol. 2002;52:1017–1021.
  • Schwender J, Seemann M, Lichtenthaler HK, et al. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996;316(1):73–80.
  • Britton G, Liaaen-Jensen S, Pfander H. Carotenoids. Boston: Springer Basel AG/Birkhäuser Basel; 2004. p. 647.
  • Britton G. Structure and properties of carotenoids in relation to function. FASEB J. 1995;9(15):1551–1558.
  • Yasushi K. New trends in photobiology. Structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B Biol. 1991;9(3–4):265–280.
  • Goodwin TW, Britton G. Distribution and analysis of carotenoids. In: Goodwin TW, editor. Plant pigments. London: Academic Press; 1998. p. 61–132.
  • Subczynski WK, Markowska E, Gruszecki WI, et al. Effects of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim Biophys Acta. 1992;1105(1):97–108.
  • De Maayer P, Anderson D, Cary C, et al. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15(5):508–517.
  • Mercadante AZ. Carotenoids in foods: sources and stability during processing and storage. In: Socaciu C, editor. Food colorants: chemical and functional properties. 1st ed. Boca Raton: USACRC Press; 2008. p. 213.
  • Ambati RR, Phang SM, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs. 2014;12(1):128–152.
  • Fu HF, Xie BJ, Fan G, et al. Effect of esterification with fatty acid of b-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem. 2010;122(3):602–609.
  • El-Akabawy G, El-Sherif NM. Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed Pharmacother. 2019;111:841–851.
  • Takatani N, Sawabe T, Maoka T, et al. Structure of a novel monocyclic carotenoid, 3′-hydroxy-2′-isopentenylsaproxanthin ((3R,2′S)-2′-(3-hydroxy-3-methylbutyl)-3′, 4′-didehydro-1′, 2′-dihydro-β, ψ-carotene-3, 1′-diol). Biocatal Agric Biotechnol. 2015;4(2):174–179.
  • Pasquet V, Morisset P, Ihammouine S, et al. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs. 2011;9(5):819–831.
  • Soontornchaiboon W, Joo SS, Kim SM. Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol Pharm Bull. 2012;35(7):1137–1144.
  • Maeda H, Hosokawa M, Sashima T, et al. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Rep. 2009;2(6):897–902.
  • Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules. 2012;17(3):3202–3242.
  • Zhang L, Wang H, Fan Y, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:46763.
  • Yang YP, Tong QY, Zheng SH, et al. Anti-inflammatory effect of fucoxanthin on dextran sulfate sodium-induced colitis in mice. Nat Prod Res. 2018;29:1–5.
  • Wang J, Ma J, Yang J, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J Cell Mol Med. 2019;23(3):2219–2229.
  • Jiang X, Wang G, Lin Q, et al. Fucoxanthin prevents lipopolysaccharide-induced depressive-like behavior in mice via AMPK-NF-κB pathway. Metab Brain Dis. 2019;34(2):431–442.
  • Terasaki M, Iida T, Kikuchi F, et al. Fucoxanthin potentiates anoikis in colon mucosa and prevents carcinogenesis in AOM/DSS model mice. J Nutr Biochem. 2019;64:198–205.
  • Klassen JL, Foght JM. Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol. 2008;74(7):2016–2022.
  • Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles. 2011;15(1):45–57.
  • Shindo K, Kikuta K, Suzuki A, et al. Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl Microbiol Biotechnol. 2007;74(6):1350–1357.
  • Esatbeyoglu T, Rimbach G. Canthaxanthin: from molecule to function. Mol Nutr Food Res. 2017;61(6):1600469.
  • Cockell CS, Knowland J. Ultraviolet radiation screening compounds. Biol Rev Camb Philos Soc. 1999;74(3):311–345.
  • Saito T, Miyabe Y, Ide H, et al. Hydroxyl radical scavenging ability of bacterioruberin. Radiat Phys Chem. 1997;50(3):267–269.
  • Shahmohammadi HR, Asgarani E, Terato H, et al. Effects of 60Co gamma-rays, ultraviolet light, and mitomycin C on Halobacterium salinarium and Thiobacillus intermedius. J Radiat Res. 1997;38(1):37–43.
  • Shahmohammadi HR, Asgarani E, Terato H, et al. Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res. 1998;39(4):251–262.
  • Kottemann M, Kish A, Iloanusi C, et al. Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles. 2005;9(3):219–227.
  • Hou AJ, Cui HL. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Curr Microbiol. 2018;75(3):266–271.
  • Balashov SP, Lanyi JK. Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci. 2007;64(18):2323–2328.
  • Imasheva ES, Balashov SP, Choi AR, et al. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry. 2009;48(46):10948–10955.
  • Bowman JP, Nichols DS. Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol. 2002;52(Pt 5):1533–1541.
  • Yang S, Oh HM, Chung S, et al. Antarcticimonas flava gen. nov., sp. nov., isolated from Antarctic coastal seawater. J Microbiol. 2009;47(5):517–523.
  • Zhou MY, Zhang XY, Yang XD, et al. Flavobacterium ardleyense sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol. 2017;67(10):3996–4001.
  • Králová S, Busse HJ, Švec P, et al. Flavobacterium circumlabens sp. nov. and Flavobacterium cupreum sp. nov., two psychrotrophic species isolated from Antarctic environmental samples. Syst Appl Microbiol. 2019;42(3):291–301.
  • Labrenz M, Collins MD, Lawson P, et al. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol. 1999;49(1):137–147.
  • Labrenz M, Lawson PA, Tindall BJ, et al. Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing alpha-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol. 2005;55(Pt 1):41–47.
  • Mandal MK, Chanu NK, Chaurasia N. Cyanobacterial pigments and their fluorescence characteristics: applications in research and industry. In: Singh PK, Kumar A, Singh VK, et al. editors. Advances in cyanobacterial biology. London: Academic Press; 2020. p. 55–72.
  • Volkman JK, Burton HR, Everitt DA, et al. Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antarctica. Hydrobiologia. 1988;165(1):41–57.
  • Cowan DA, Tow LA. Endangered Antarctic environments. Annu Rev Microbiol. 2004;58:649–690.
  • Karr EA, Sattley WM, Jung DO, et al. Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol. 2003;69(8):4910–4914.
  • Bennett JW, Bentley R. Seeing red: the story of prodigiosin. Adv Appl Microbiol. 2000;47:1–32.
  • Montaner B, Pérez-Tomás R. The prodigiosins: a new family of anticancer drugs. Curr Cancer Drug Targets. 2003;3(1):57–65.
  • Suryawanshi RK, Patil CD, Borase HP, et al. Towards an understanding of bacterial metabolites prodigiosin and violacein and their potential for use in commercial sunscreens. Int J Cosmet Sci. 2015;37(1):98–107.
  • Sajjad W, Ahmad S, Aziz I, et al. Antiproliferative, antioxidant and binding mechanism analysis of prodigiosin from newly isolated radio-resistant Streptomyces sp. strain WMA-LM31. Mol Biol Rep. 2018;45(6):1787–1798.
  • Nicolaus RA, Piattelli M, Fattorusso E. The structure of melanins and melanogenesis. IV. On some natural melanins. Tetrahedron. 1964;20(5):1163–1172.
  • Banerjee A, Supakar S, Banerjee R. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS One. 2014;9(1):e84574.
  • Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol. 2020;104(4):1357–1370.
  • Abyzov SS, Philipova SN, Kuznetsov VD. Nocardiopsis antarcticus, a new species of actinomycetes, isolated from the ice sheet of the central Antarctic glacier. Izv Akad Nauk SSSR Biol. 1983;4:559–568.
  • Wynn-Williams DD. Distribution and characteristics of Chromobacterium in the maritime and sub-Antarctic. Polar Biol. 1983;2(2):101–108.
  • Matz C, Deines P, Boenigk J, et al. Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol. 2004;70(3):1593–1599.
  • Duran N, Justo GZ, Ferreira CV, et al. Violacein: properties and biological activities. Biotechnol Appl Biochem. 2007;48(Pt 3):127–133.
  • Nakamura Y, Sawada T, Morita Y, et al. Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem Eng J. 2002;12(1):79–86.
  • Antonisamy P, Ignacimuthu S. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum. Phytomedicine. 2010;17(3–4):300–304.
  • Verinaud L, Lopes SC, Prado IC, et al. Violacein treatment modulates acute and chronic inflammation through the suppression of cytokine production and induction of regulatory T cells. PLoS One. 2015;10(5):e0125409.
  • Justo GZ, Durán N. Action and function of Chromobacterium violaceum in health and disease: violacein as a promising metabolite to counteract gastroenterological diseases. Best Pract Res Clin Gastroenterol. 2017;31(6):649–656.
  • Dakhama A, de la Noüe J, Lavoie MC. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J Appl Phycol. 1993;5(3):297–306.
  • Schneemann I, Wiese J, Kunz AL, et al. Genetic approach for the fast discovery of phenazine producing bacteria. Mar Drugs. 2011;9(5):772–789.
  • Malpartida F, Hopwood DA. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature. 1984;309(5967):462–464.
  • Baron SS, Terranova G, Rowe JJ. Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol. 1989;18(4):223–230.
  • El-Zawawy NA, Ali SS. Pyocyanin as anti-tyrosinase and anti tinea corporis: a novel treatment study. Microb Pathog. 2016;100:213–220.
  • Kandeler E. Physiological and biochemical methods for studying soil biota and their function. In: Paul E, editor. Soil microbiology, ecology, and biochemistry. New York: Academic Press; 2007. p. 53–83.
  • Fouillaud M, Venkatachalam M, Girard-Valenciennes E, et al. Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs. 2016;14(4):64.
  • Brunati M, Rojas JL, Sponga F, et al. Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics. 2009;2(1):43–50.
  • Nair S, Abraham J. Natural products from actinobacteria for drug discovery. In: Patra JK, Shukla AC, Das G, editors. Advances in pharmaceutical biotechnology recent progress and future applications. Singapore: Springer; 2020. p. 333–364.
  • Kawamukai M. Biosynthesis and applications of prenylquinones. Biosci Biotechnol Biochem. 2018;82(6):963–977.
  • Schoepp-Cothenet B, Lieutaud C, Baymann F, et al. Menaquinone as pool quinone in a purple bacterium. Proc Natl Acad Sci U S A. 2009;106(21):8549–8554.
  • Halder M, Petsophonsakul P, Akbulut AC, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. 2019;20(4):896.
  • Garcia-Pichel F, Castenholz RW. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol. 1991;27(3):395–409.
  • Wynn-Williams DD, Edwards HGM, Garcia-Pichel F. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur J Phycol. 1999;34(4):381–391.
  • Rastogi RP, Sonani RR, Madamwar D. Cyanobacterial sunscreen scytonemin: role in photoprotection and biomedical research. Appl Biochem Biotechnol. 2015;176(6):1551–1563.
  • Demay J, Bernard C, Reinhardt A, et al. Natural products from cyanobacteria: focus on beneficial activities. Mar Drugs. 2019;17(6):320.
  • Schöner TA, Gassel S, Osawa A, et al. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. Chembiochem. 2016;17(3):247–253.
  • Jehlička J, Osterrothová K, Oren A, et al. Raman spectrometric discrimination of flexirubin pigments from two genera of bacteroidetes. FEMS Microbiol Lett. 2013;348(2):97–102.
  • Jehlička J, Edwards HGM, Oren A. Raman spectroscopy of microbial pigments. Appl Environ Microbiol. 2014;80(11):3286–3295.
  • Shim JS, Liu JO. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci. 2014;10(7):654–663.
  • Meyer JM. Proverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol. 2000;174(3):135–142.
  • King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med. 1954;44(2):301–307.
  • Winkelmann G. Microbial siderophore-mediated transport. Biochem Soc Trans. 2002;30(4):691–696.
  • Sass G, Nazik H, Penner J, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2017;200(1):e00345-17.
  • Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Front Nutr. 2019;6:7.
  • Natural colorant (natural pigment) market 2019 global industry analysis, future growth, business prospects and forecast to 2023: 360 research report; 2019; [cited 2020 Apr 15]. Available from: https://www.marketwatch.com/press-release/natural-colorant-natural-pigment-market-2019-global-industry-analysis-future-growth-business-prospects-and-forecast-to-2023-360-research-report-2019-07-11
  • Food colorants market worth $2.46 billion by 2020: Grand View Research, Inc.; 2018; [cited 2020 Apr 10]. Available from: https://steemit.com/food/@rajeshvarma/food-colorants-market-worth-usd2-46-billion-by-2020-grand-view-research-inc
  • Global natural food colors market size and forecast, by product (carotenoids, curcumin, anthocyanins, carmine, copper chlorophyllin), by application and trend analysis, 2014–2025; 2018; [cited 2020 Apr 15]. Available from: https://www.hexaresearch.com/research-report/natural-food-colors-market-analysis?utm_source=Quora&utm_medium=Referral&utm_campaign=Uday
  • Carotenoids market size to cross USD 1.74 billion by 2025: Grand View Research, Inc.; 2020; [cited 2020 Apr 10]. Available from: https://sites.google.com/site/foodbeveragesindustry/carotenoids-market
  • Dufossé L. Microbial pigments from bacteria, yeasts, fungi, and microalgae for the food and feed industries. In: Grumezescu AM, Holban AM, editors. Natural and artificial flavoring agents and food dyes. Handbook of food bioengineering. Vol. 7. Amsterdam: Elsevier; 2018. p. 113–132.
  • Beta carotene market size and forecast by source (algae, fruits & vegetable synthetic), by application (food & beverages, dietary supplements, cosmetics, and animal feed) and trend analysis, 2014–2024; 2020; [cited 2020 Apr 10]. Available from: https://www.hexaresearch.com/research-report/beta-carotene-market
  • Astaxanthin market by source (plant, yeast & microbes, marine, petroleum), form (dry, liquid), method of production (biological process, chemical process), application (feed, supplements, food, cosmetics), and region – global forecast to 2022; 2020; [cited 2020 Jul 13]. Available from: https://www.marketsandmarkets.com/Market-Reports/astaxanthin-market-162119410.html#:∼:text=%5B163%20Pages%5D%20The%20astaxanthin%20market,USD%20814.1%20million%20by%202022
  • Astaxanthin market size, share & trends analysis report by source, by product (dried algae meal, oil, softgel), by application (nutraceutical, cosmetics, aquaculture and animal feed), and segment forecasts, 2020–2027; 2020; [cited 2020 Apr 10]. Available from: https://www.grandviewresearch.com/industry-analysis/global-astaxanthin-market
  • Lee YK, Chen DC, Chauvatcharin S, et al. Production of Monascus pigments by a solid-liquid state culture method. J Ferment Bioeng. 1995;79(5):516–518.
  • Global Monascus pigment market research report 2020; 2020; [cited 2020 Jul 13]. Available from: https://www.24chemicalresearch.com/reports/42232/global-monascus-pigment-2020-443
  • At 3.7% CAGR, riboflavin market size set to register 10200 million USD by 2025; 2020; [cited 2020 Jul 13]. Available from: https://www.marketwatch.com/press-release/at-37-cagr-riboflavin-market-size-set-to-register-10200-million-usd-by-2025-2020-06-05
  • Phycocyanin market to reach a valuation of ∼ US$230 MN by 2029: transparency market research; 2020; [cited 2020 Jul 13]. Available from: https://www.transparencymarketresearch.com/pressrelease/phycocyanin-market.htm
  • Phycocyanin market size by product; 2020; [cited 2020 Jul 13]. Available from: https://www.gminsights.com/industry-analysis/phycocyanin-market
  • Phycocyanin market to grow at a CAGR of 7.6% by 2028 – future market insights; 2020; [cited 2020 Jul 13]. Available from: https://www.globenewswire.com/news-release/2019/08/29/1908366/0/en/Phycocyanin-Market-to-Grow-at-a-CAGR-of-7-6-by-2028-Future-Market-Insights.html
  • Phycocyanin blue spirulina; 2020; [cited 2020 Jul 13]. Available from: https://www.pondtech.com/phycocyanin/
  • Global phycocyanin market by manufacturers, regions, type and application, forecast to 2025; 2020; [cited 2020 Jul 13]. Available from: https://www.alexareports.com/report/phycocyanin-market/240264
  • Phycocyanin market will turn over CAGR of 14.7% to success revenue to cross USD 78 million in 2020 to 2025 top companies report covers, and consumption by regional data; [cited 2020 Jul 13]. Available from: https://www.marketwatch.com/press-release/phycocyanin-market-will-turn-over-cagr-of-147-to-success-revenue-to-cross-usd-78-million-in-2020-to-2025-top-companies-report-covers-and-consumption-by-regional-data-2020-06-18

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.