6,889
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Molecular pharming to support human life on the moon, mars, and beyond

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 849-864 | Received 29 Sep 2020, Accepted 19 Dec 2020, Published online: 09 Mar 2021

References

  • Meyer CE, Schneider WF. NASA Advanced Exploration Systems: 2018 Advancements in Life Support Systems. 2018. [cited 2021 Feb 9]. Available from: https://ntrs.nasa.gov/search.jsp?R=20180006596.
  • Jackson S. Life support systems. 2016. [cited 2017 Oct 30]. Available from: https://www.nasa.gov/content/life-support-systems.
  • Hu S, Barzilla JE, Semones E. Acute radiation risk assessment and mitigation strategies in near future exploration spaceflights. Life Sci Space Res (Amst). 2020;24:25–33.
  • Chancellor JC, Blue RS, Cengel KA, et al. Limitations in predicting the space radiation health risk for exploration astronauts. Npj Microgravity. 2018;4:8–11.
  • Gambacurta A, Merlini G, Ruggiero C, et al. Human osteogenic differentiation in Space: Proteomic and epigenetic clues to better understand osteoporosis. Sci Rep. 2019;9(1):1–10.
  • Sibonga JD. Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep. 2013;11(2):92–98.
  • Kassemi M, Thompson D. Prediction of renal crystalline size distributions in space using a PBE analytic model. 1. Effect of microgravity-induced biochemical alterations. Am J Physiol Ren Physiol. 2016;311:520–530.
  • Ciftçioglu N, Haddad RS, Golden DC, et al. A potential cause for kidney stone formation during space flights: enhanced growth of nanobacteria in microgravity. Kidney Int. 2005;67(2):483–491.
  • Zhang LF, Hargens AR. Spaceflight-induced intracranial hypertension and visual impairment: pathophysiology and countermeasures. Physiol Rev. 2018;98(1):59–87.
  • Jandial R, Hoshide R, Waters JD, et al. Space-brain: the negative effects of space exposure on the central nervous system. Surg Neurol Int. 2018; 9. Article Number: 9.
  • Taylor PW. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist. 2015;8:249–262.
  • Trudel G, Shafer J, Laneuville O, et al. Characterizing the effect of exposure to microgravity on anemia: more space is worse. Am J Hematol. 2020;95(3):267–273.
  • Sobisch LY, Rogowski KM, Fuchs J, et al. Biofilm forming antibiotic resistant gram-positive pathogens isolated from surfaces on the international space station. Front Microbiol. 2019;10:543.
  • Garrett-Bakelman FE, Darshi M, Green SJ, et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364:eaau8650.
  • Menezes AA, Cumbers J, Hogan JA, et al. Towards synthetic biological approaches to resource utilization on space missions. J R Soc Interface. 2015;12(102):20140715.
  • Blue RS, Bayuse TM, Daniels VR, et al. Supplying a pharmacy for NASA exploration spaceflight: challenges and current understanding. Npj Microgravity. 2019;5:14.
  • Mazzeo A, Carpenter P. Stability studies for biologics. In: Kim Huynh-Ba, editor. Handbook of stability testing in pharmaceutical development. New York: Springer; 2009. p. 353–369.
  • Reynolds T, de Zafra C, Kim A, et al. Overview of biopharmaceuticals and comparison with small-molecule drug development. New York, NY: Elsevier Inc.; 2013. p. 3–33. (Nonclinical development of novel biologics, biosimilars, vaccines specialty biology).
  • Barratt MR, Pool SL. Principles of clinical medicine for space flight. New York: Springer; 2008. (Principles of clinical medicine for space flight).
  • Menezes AA, Montague MG, Cumbers J, et al. Grand challenges in space synthetic biology. J R Soc Interface. 2015;12(113):20150803.
  • Nangle SN, Wolfson MY, Hartsough L, et al. The case for biotech on Mars. Nat Biotechnol. 2020;38(4):401–407.
  • Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides: science and market. Drug Discov. 2010;15(1-2):40–56.
  • Uhlig T, Kyprianou T, Martinelli FG, et al. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics. 2014;4:58–69.
  • Hao M, Qiao J, Qi H. Current and emerging methods for the synthesis of single‐stranded DNA. Genes (Basel). 2020;11(2):116.
  • Cortesão M, Schütze T, Marx R, et al. Fungal biotechnology in space: why and how? In: Nevalainen H, editor. Grand challenges in fungal biotechnology. Cham, Switzerland: Springer; 2020. p. 501–535.
  • Llorente B, Williams TC, Goold HD. The multiplanetary future of plant synthetic biology. Genes (Basel). 2018;9(7):348.
  • Wheeler RM. Agriculture for space: people and places paving the way. Open Agric. 2017;2:14–32.
  • Khodadad CLM, Hummerick ME, Spencer LE, et al. Microbiological and nutritional analysis of lettuce crops grown on the international space station. Front Plant Sci. 2020;11:199.
  • Wolff S, Coelho L, Karoliussen I, et al. Effects of the extraterrestrial environment on plants: recommendations for future space experiments for the MELiSSA higher plant compartment. Life (Basel). 2014;4(2):189–204.
  • Nelson M, Pechurkin NS, Allen JP, et al. Closed ecological systems, space life support and biospherics. New York, NY: Humana Press; 2010. p. 517–565. (Environment biotechnology).
  • Odeh R, Guy CL. Gardening for therapeutic people-plant interactions during long-duration space missions. Open Agric. 2017;2(1):1–13.
  • Lomonossoff GP, DAoust M-A. Plant-produced biopharmaceuticals: a case of technical developments driving clinical deployment. Science. 2016;353(6305):1237–1240.
  • Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Tech Res. 2012;3(4):200–201.
  • Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109:69–75.
  • Desborough MJR, Keeling DM. The aspirin story – from willow to wonder drug. Br J Haematol. 2017;177(5):674–683.
  • Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24(1):Article number: 40.
  • Su XZ, Miller LH. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci China Life Sci. 2015;58(11):1175–1179.
  • Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature. 1989;342(6245):76–78.
  • Haq TA, Mason HS, Clements JD, et al. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science. 1995;268(5211):714–716.
  • Pogue GP, Lindbo JA, Garger SJ, et al. Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol. 2002;40:45–74.
  • Marillonnet S, Thoeringer C, Kandzia R, et al. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol. 2005;23(6):718–723.
  • Werner S, Breus O, Symonenko Y, et al. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci U S A. 2011;108(34):14061–14066.
  • Ma JKC, Drossard J, Lewis D, et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J. 2015;13(8):1106–1120.
  • Mor TS. Molecular pharming's foot in the FDA's door: Protalix's trailblazing story. Biotechnol Lett. 2015;37(11):2147–2150.
  • Tekoah Y, Shulman A, Kizhner T, et al. Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J. 2015;13(8):1199–1208.
  • Hood EE, Witcher DR, Maddock S, et al. Commercial production of avidin from transgenic maizecharacterization of transformant, production, processing, extraction and purification. Mol Breed. 1997;3(4):291–306.
  • Sack M, Hofbauer A, Fischer R, et al. The increasing value of plant-made proteins. Curr Opin Biotechnol. 2015;32:163–170.
  • Aldag C, Teixeira DN, Leventhal PS. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature. Clin Cosmet Investig Dermatol. 2016;9:411–419.
  • Zhang D, Nandi S, Bryan P, et al. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr Purif. 2010;74(1):69–79.
  • Meyers B, Zaltsman A, Lacroix B, et al. Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol Adv. 2010;28(6):747–756.
  • Borghi L. Inducible gene expression systems for plants. Methods Mol Biol. 2010;655:65–75.
  • Thomas DR, Penney CA, Majumder A, et al. Evolution of plant-made pharmaceuticals. Int J Mol Sci. 2011;12(5):3220–3236.
  • Cooper M, Douglas G, Perchonok M. Developing the NASA food system for long-duration missions. J Food Sci. 2011;76(2):R40–R48.
  • Zwart SR, Kloeris VL, Perchonok MH, et al. Assessment of nutrient stability in foods from the space food system after long-duration spaceflight on the ISS. J Food Sci. 2009;74(7):H209–H217.
  • Goulette TR, Zhou J, Dixon WR, et al. Kinetic parameters of thiamine degradation in NASA spaceflight foods determined by the endpoints method for long-term storage. Food Chem. 2020;302:125365.
  • Cooper M, Perchonok M, Douglas GL. Initial assessment of the nutritional quality of the space food system over three years of ambient storage. Npj Microgravity. 2017;3:17.
  • Smith SM, Rice BL, Dlouhy H, et al. Assessment of nutritional intake during space flight and space flight analogs. Procedia Food Sci. 2013;2:27–34.
  • Anderson MS, Ewert MK, Keener JF. Life support baseline values and assumptions document. 2018. Report number: NASA/TP-2015–218570/REV1. Hanover, MD: National Aeronautics and Space Administration
  • Edeen MA, Dominick JS, Barta DJ, et al. Control of air revitalization using plants: results of the early human testing initiative phase I test. In 26th International Conference on Environmental Systems, Conference, Monterey, CA, United States. SAE Tech Pap. Report number: 961522. Warrendale, PA: SAE International; 1996.
  • Ramessar K, Capell T, Christou P. Molecular pharming in cereal crops. Phytochem Rev. 2008;7(3):579–592.
  • Chen Q, Dent M, Hurtado J, et al. Transient protein expression by agroinfiltration in lettuce. Methods Mol Biol. 2016;1385:55–67.
  • Joh LD, Wroblewski T, Ewing NN, et al. High-level transient expression of recombinant protein in lettuce. Biotechnol Bioeng. 2005;91(7):861–871.
  • Castañón S, Marín MS, Martín-Alonso JM, et al. Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J Virol. 1999;73(5):4452–4455.
  • Zhang Y, Chen M, Siemiatkowska B, et al. A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species. Plant Commun. 2020;1(5):100028.
  • Fujiuchi N, Matsuda R, Matoba N, et al. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng. 2016;113(4):901–906.
  • Plesha MA, Huang T-K, Dandekar AM, et al. High-level transient production of a heterologous protein in plants by optimizing induction of a chemically inducible viral amplicon expression system. Biotechnol Prog. 2007;23(6):1277–1285.
  • Lamson NG, Fein KC, Gleeson JP, et al. From farm to pharmacy: strawberry-enabled oral delivery of protein drugs. bioRxiv. 2020. DOI: 2020.03.11.987461.
  • Kapusta J, Modelska A, Figlerowicz M, et al. A plant-derived edible vaccine against hepatitis B virus. Faseb J. 1999;13(13):1796–1799.
  • Thanavala Y, Mahoney M, Pal S, et al. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci USA. 2005;102(9):3378–3382.
  • Cohen SN, Chang ACY, Boyer HW, et al. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70(11):3240–3244.
  • Isabella VM, Ha BN, Castillo MJ, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–867.
  • Anguela XM, High KA. Entering the modern era of gene therapy. Annu Rev Med. 2019;70:273–288.
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–1162.
  • Feng M, Peng J, Song C, et al. Mammalian cell cultivation in space. Microgravity Sci Technol. 1994;7(2):207–210.
  • Sani RL, Koster JN, editors. Low-gravity fluid dynamics and transport phenomena. Washington DC: American Institute of Aeronautics and Astronautics; 1990.
  • Adam JA, Gulati S, Hirsa AH, et al. Growth of microorganisms in an interfacially driven space bioreactor analog. Npj Microgravity. 2020;6(1):1–7.
  • Walther I. Space bioreactors and their applications. Adv Space Biol Med. 2002;8:197–213.
  • Gòdia F, Albiol J, Montesinos JL, et al. MELISSA: a loop of interconnected bioreactors to develop life support in Space. J Biotechnol. 2002;99(3):319–330.
  • Lydersen BK, D’Elia N, Nelson KL. Bioprocess engineering: systems, equipment and facilities. New York, USA: Wiley; 1994.
  • Lotfipour F, Hallaj-Nezhadi S. Microbial quality concerns for biopharmaceuticals. London, UK: IntechOpen; 2012. (Latest research into quality control).
  • Merten OW. Virus contaminations of cell cultures – a biotechnological view. Cytotechnology. 2002;39:91–116.
  • Aggarwal S. What's fueling the biotech engine-2008. Nat Biotechnol. 2009;27(11):987–993.
  • Jacquemart R, Vandersluis M, Zhao M, et al. A single-use strategy to enable manufacturing of affordable biologics. Comput Struct Biotechnol J. 2016;14:309–318.
  • Zhang J, Müller BSF, Tyre KN, et al. Competitive growth assay of mutagenized Chlamydomonas reinhardtii compatible with the international space station veggie plant growth chamber. Front Plant Sci. 2020;11:631
  • Matula EE, Nabity JA. Failure modes, causes, and effects of algal photobioreactors used to control a spacecraft environment. Life Sci Sp Res. 2019;20:35–52.
  • Olsson-Francis K, Cockell CS. Use of cyanobacteria for in-situ resource use in space applications. Planet Space Sci. 2010;58(10):1279–1285.
  • Billi D, Baqué M, Verseux C, et al. Desert cyanobacteria: potential for space and earth applications. Adaption of microbial life to environmental extremes: novel research results and application. 2nd ed. Cham, Switzerland: Springer International Publishing; 2017. p. 133–146. (Novel research results applied).
  • Sorkhoh N, Al-Hasan R, Radwan S, et al. Self-cleaning of the Gulf. Nature. 1992;359(6391):109–109.
  • Singh JS, Kumar A, Rai AN, et al. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol. 2016;7 Article number: 529.
  • Stewart JJ, Adams WW, Escobar CM, et al. Growth and essential carotenoid micronutrients in Lemna gibba as a function of growth light intensity. Front Plant Sci. 2020;11:480
  • Furmaniak MA, Misztak AE, Franczuk MD, et al. Edible cyanobacterial genus Arthrospira: actual state of the art in cultivation methods, genetics, and application in medicine. Front Microbiol. 2017; 8:2541.
  • Torres-Tiji Y, Fields FJ, Mayfield SP. Microalgae as a future food source. Biotechnol Adv. 2020;41:107536.
  • Carroll AL, Case AE, Zhang A, et al. Metabolic engineering tools in model cyanobacteria. Metab Eng. 2018;50:47–56.
  • Gordon GC, Pfleger BF. Regulatory tools for controlling gene expression in cyanobacteria. Adv Exp Med Biol. 2018;1080:281–315.
  • Takeuchi R, Roberts J. Targeted mutagenesis in Spirulina. USA; 2017. US Patent Number: US 2017/0298319 A1, Issuing By: U.S. Patent and Trademark Office.
  • Budzinski K, Blewis M, Dahlin P, et al. Introduction of a process mass intensity metric for biologics. N Biotechnol. 2019;49:37–42.
  • Levri JA, Fisher JW, Jones HW, et al. Advanced life support equivalent system mass guidelines document. Report number: NASA/TM-2003-212278. Moffett Field, CA: National Aeronautics and Space Administration.
  • Amador JR, Thompson WK, Mindock JA. Enabling space exploration medical system development using a tool ecosystem. 2020 IEEE Aerospace Conference, Big Sky, MT, USA; 2020. p. 1–16.
  • Kwon K-C, Daniell H. Oral delivery of protein drugs bioencapsulated in plant cells. Mol Ther. 2016;24(8):1342–1350.
  • Gomez‐Marquez J, Hamad‐Schifferli K. Distributed biological foundries for global health. Adv Healthcare Mater. 2019;8(18):1900184.
  • Morrow T, Felcone LH. Defining the difference: what Makes Biologics Unique. Biotechnol Healthc. 2004;1(4):24–29.
  • Knowles L, Luth W, Bubela T. Paving the road to personalized medicine: recommendations on regulatory, intellectual property and reimbursement challenges. J Law Biosci. 2017;4(3):453–506.
  • Gergerich RC, Dolja VV. Introduction to plant viruses, the invisible foe. Plant Heal Instr. 2006;. DOI:10.1094/PHI-I-2006-0414-01
  • Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev. 2003;67(1):16–37, table of contents.
  • Lakshmanan M, Kodama Y, Yoshizumi T, et al. Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules. 2013;14(1):10–16.
  • Bao W, Wang J, Wang Q, et al. Layered double hydroxide nanotransporter for molecule delivery to intact plant cells. Sci Rep. 2016;6:26738.
  • Gunadi A, Dean EA, Finer JJ. Transient transformation using particle bombardment for gene expression analysis. New York, NY: Humana Press Inc.; 2019. p. 67–79. (Methods of molecular biology).