611
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Reviewing research on the synthesis of CALB-catalyzed sugar esters incorporating systematic mapping principles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 865-878 | Received 31 Oct 2020, Accepted 03 Jan 2021, Published online: 28 Feb 2021

References

  • Tranfield D, Denyer D, Smart P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br J Management. 2003;14(3):207–222.
  • Leary BCO, Kvist K, Bayliss HR, et al. Environmental science & policy the reliability of evidence review methodology in environmental science and conservation. Environ Sci Policy. 2016;64:75–82.
  • Simons A, Reimer K. Reconstructing the giant: on the importance of rigour in documenting the literature. 17th European Conference on Information Systems (ECIS). Verona, Italy; 2009.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. 2009;6(7):e1000097.
  • Woodcock P, Pullin AS, Kaiser MJ. Evaluating and improving the reliability of evidence syntheses in conservation and environmental science: a methodology. Biol Conserv. 2014;176:54–62.
  • Romanelli JP, Meli P, Naves RP, et al. Reliability of evidence review methods in restoration ecology. Conserv Biol. 2020. doi: 10.1111/cobi.13661
  • Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997;126(5):376–380.
  • Pullin AS, Stewart GB. Guidelines for systematic review in conservation and environmental management. Conserv Biol. 2006;20(6):1647–1656.
  • Shea BJ, Bouter LM, Peterson J, et al. External validation of a measurement tool to assess systematic reviews (AMSTAR). PLoS One. 2007;12:e1350.
  • Burda BU, Norris SL, Holmer HK, et al. Quality varies across clinical practice guidelines for mammography screening in women aged 40–49 years as assessed by AGREE and AMSTAR instruments. J Clin Epidemiol. 2011;64(9):968–976.
  • Higgins JPT, Thomas J, Chandler J, et al. editors. Cochrane handbook for systematic reviews of interventions. 2nd ed. Chichester (UK): John Wiley & Sons; 2019.
  • Popovich I, Windsor B, Jordan V, et al. Methodological quality of systematic reviews in subfertility: a comparison of two different approaches. Plos One. 2012;7(12):e50403.
  • Zumsteg JM, Cooper JS, Noon MS. Systematic review checklist: a standardized technique for assessing and reporting reviews of life cycle assessment data. J Ind Ecol. 2012;16:S12–S21.
  • Collaboration for Environmental Evidence. Guidelines for systematic review and evidence synthesis in environmental management. Version 4.2. Bangor (UK): The Environmental Evidence Library; 2013. www.environmentalevidence.org/Documents/Guidelines/Guidelines4.2.pdf.
  • Dwan K, Gamble C, Williamson PR, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias — an updated review. Plos One. 2013;8(7):e66844.
  • Petersen K, Vakkalanka S, Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: an update. Inf Softw Technol. 2015;64:1–18.
  • James KL, Randall NP, Haddaway NR. A methodology for systematic mapping in environmental sciences. Environ Evid. 2016;5(7):1–13.
  • Haddaway NR, Feierman A, Grainger MJ, et al. EviAtlas: a tool for visualising evidence synthesis databases. Environ. Evid. 2019;2012:1–10.
  • Collaboration for Environmental Evidence. Guidelines and standards for evidence synthesis in environmental management, Version 5, Bangor (UK): The Environmental Evidence Library; 2018.
  • Roberts PD, Stewart GB, Pullin AS. Are review articles a reliable source of evidence to support conservation and environmental management? A comparison with medicine. Biol Conserv. 2006;132:409–423.
  • Stewart GB. Meta-analysis in applied ecology. Biol Lett. 2010;6(1):78–81.
  • Whittaker RJ. Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness-productivity relationship. Ecology. 2010;91(9):2522–2533.
  • Chang SW, Shaw JF. Biocatalysis for the production of carbohydrate esters. N Biotechnol. 2009;26(3–4):109–116.
  • Vescovi V, dos Santos JBC, Tardioli PW. Porcine pancreatic lipase hydrophobically adsorbed on octyl-silica: a robust biocatalyst for syntheses of xylose fatty acid esters. Biocatal Biotransform. 2017;35(4):298–305.
  • Grüninger J, Delavault A, Ochsenreither K. Enzymatic glycolipid surfactant synthesis from renewables. Process Biochem. 2019;87:45–54.
  • Tan J, Dou Y. Deep eutectic solvents for biocatalytic transformations: focused lipase-catalyzed organic reactions. Appl Microbiol Biotechnol. 2020;104(4):1481–1496.
  • Maguire AR. Accepted Article. 2019. https://doi.org/10.1002/ejoc.201900208.
  • Kerthy S, Ibinga K, Fabre J, et al. Atypical reaction media and organized systems for the synthesis of low-substitution sugar esters. Front Chem. 2019;7:587.
  • Siebenhaller S, Kirchhoff J, Kirschhöfer F, et al. Integrated process for the enzymatic production of fatty acid sugar esters completely based on lignocellulosic substrates. Front Chem. 2018;6:421.
  • Coulon D, Ismail A, Girardin M, et al. Effect of different biochemical parameters on the enzymatic synthesis of fructose oleate. J. Biotechnol. 1996;51(2):115–121.
  • Chamouleau F, Coulon D, Girardin M, et al. Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. J Mol Catal - B Enzym. 2001;11(4–6):949–954.
  • Degn P, Zimmermann W. Optimization of carbohydrate fatty acid ester synthesis in organic media by a lipase from Candida antarctica. Biotechnol Bioeng. 2001;74(6):483–491.
  • Abbas H, Comeau L. Aroma synthesis by immobilized lipase from Mucor Sp. Enzyme Microb Technol. 2003;32(5):589–595.
  • Tarahomjoo S, Alemzadeh I. Surfactant production by an enzymatic method. Enzyme Microb Technol. 2003;33(1):33–37.
  • Ferrer M, Soliveri J, Plou FJ, et al. Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida antarctica B, and their antimicrobial properties. Enzyme Microb Technol. 2005;36(4):391–398.
  • Abdulmalek E, Salami H, Saupi M, et al. Improved enzymatic galactose oleate ester synthesis in ionic liquids. Journal Mol Catal B Enzym. 2012;76:37–43.
  • Khan NR, Rathod VK. Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem. 2015;50(11):1793–1806.
  • Neta NS, Teixeira JA, Rodrigues LR. Sugar ester surfactants: enzymatic synthesis and applications in food industry. Crit Rev Food Sci Nutr. 2015;55(5):595–610.
  • Abdulmalek E, Hamidon NF, Abdul Rahman MB. Optimization and characterization of lipase catalysed synthesis of xylose caproate ester in organic solvents. J Mol Catal B Enzym. 2016;132:1–4.
  • Vescovi V, Giordano RLC, Mendes AA, et al. Immobilized lipases on functionalized silica particles as potential biocatalysts for the synthesis of fructose oleate in an organic solvent/water system. Molecules. 2017;22(2):212.
  • Vescovi V, Kopp W, Guisán JM, et al. Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms. Process Biochem. 2016;51(12):2055–2066.
  • Fernandez-Lafuente R. Lipase from thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym. 2010;62(3–4):197–212.
  • Gumel AM, Annuar MSM, Heidelberg T, et al. Lipase mediated synthesis of sugar fatty acid esters. Process Biochem. 2011;46(11):2079–2090.
  • Kobayashi T. Lipase-catalyzed syntheses of sugar esters in non-aqueous media. Biotechnol Lett. 2011;33(10):1911–1919.
  • Adlercreutz P. Immobilisation and application of lipases in organic media. Chem Soc Rev. 2013;42(15):6406–6436.
  • Bidjou-Haiour C, Klai N. Lipase catalyzed synthesis of fatty acid xylose esters and their surfactant properties. Asian J Chem. 2013;25(8):4347–4350.
  • Hasegawa S, Azuma M, Takahashi K. Enzymatic esterification of lactic acid, utilizing the basicity of particular polar organic solvents to suppress the acidity of lactic acid. J Chem Technol Biotechnol. 2008;83:1503–1510.
  • Ravelo M, Fuente E, Blanco Á, et al. Esterification of glycerol and ibuprofen in solventless media catalyzed by free CALB: kinetic modelling. Biochem Eng J. 2015;101(lid):228–236.
  • Kundys A, Białecka-Florjańczyk E, Fabiszewska A, et al. Candida antarctica lipase B as catalyst for cyclic esters synthesis, their polymerization and degradation of aliphatic polyesters. J Polym Environ. 2018;26(1):396–407.
  • Kapoor M, Gupta MN. Lipase promiscuity and its biochemical applications. Process Biochem. 2012;47(4):555–569.
  • Pope C, Mays N, Popay J. Synthesizing qualitative and quantitative health evidence. A guide to methods. Buckingham (UK): Open University Press; 2007.
  • Paez A. Gray literature: an important resource in systematic reviews. J Evid Based Med. 2017;10(3):233–240.
  • Driscoll L. Introduction to primary research: observations, surveys, and interviews. In Writing spaces: readings on writing (Vol. 2). Anderson (SC): Parlor Press; 2011.
  • Berger-Tal O, Greggor AL, Macura B, et al. Systematic reviews and maps as tools for applying behavioral ecology to management and policy. Behav. Ecol. 2019;30(1):1–8.
  • Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;XX(1):37–46.
  • R Core. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2019.
  • Jan N, Ludo VE. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523–538.
  • Gonçalves MCP, Kieckbusch TG, Perna RF, et al. Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochem. 2019;76:95–110.
  • de Lima LN, Mendes AA, Fernandez-Lafuente R, et al. Performance of different immobilized lipases in the syntheses of short- and long-chain carboxylic acid esters by esterification reactions in organic media. Molecules. 2018;23(4):766.
  • Mai NL, Ahn K, Bae SW, et al. Ionic liquids as novel solvents for the synthesis of sugar fatty acid ester. Biotechnol J. 2014;9(12):1565–1572.
  • De Paula AV, De Souza Barboza JC, De Castro HF. Estudo Da Influência Do Solvente, Carboidrato e Ácido Graxo Na Síntese Enzimática de Ésteres de Açúcares. Quím Nova. 2005;28(5):792–796.
  • Boyère C, Favrelle A, Broze G, et al. Lipase catalysis and thiol-michael addition: a relevant association for the synthesis of new surface-active carbohydrate esters. Carbohydr Res. 2011;346(14):2121–2125.
  • Puat SBA, Taib M, Suhaimi H. The catalytic properties of htab-alkanol-hydrocarbon-water microemulsion system for esterification. J Sustain Sci Manag. 2010;5(1):87–93.
  • Berger B, Faber K. “Immunization” of lipase against acetaldehyde emerging in acyl transfer reactions from vinyl acetate. J Chem Soc Chem Commun. 1991;(17):1198–1200.
  • Casas-Godoy L, Arrizon J, Arrieta-Baez D, et al. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation. Food Chem. 2016;204:437–443.
  • Suqihara JM. Relative reactivities of hydroxyl groups of carbohydrates. Adv Carbohydr Chem. 1953;8:1–44.
  • Cruces MA, Plou FJ, Ferrer M, et al. Improved synthesis of sucrose fatty acid monoesters. J Amer Oil Chem Soc. 2001;78(5):541–546.
  • Liang MY, Chen Y, Banwell MG, et al. Enzymatic preparation of a homologous series of long-chain 6- O -acylglucose esters and their evaluation as emulsifiers. 2018;66.
  • Castro HF, de Mendes AA, Santos JC dos, et al. Modificação de Óleos e Gorduras Por Biotransformação. Quím Nova. 2004;27(1):146–156.
  • Kumari A, Mahapatra P, Garlapati VK, et al. Enzymatic transesterification of jatropha oil. Biotechnol Biofuels. 2009;2(1):1–7.
  • Fallavena LP, Antunes FHF, Alves JS, et al. Ultrasound technology and molecular sieves improve the thermodynamically controlled esterification of butyric acid mediated by immobilized lipase from Rhizomucor miehei. RSC Adv. 2014;4(17):8675–8681.
  • Kobayashi T, Ehara T, Mizuoka T, et al. Efficient synthesis of 6- O -palmitoyl-1, 2- O -isopropylidene- a - D -glucofuranose in an organic solvent system by lipase-catalyzed esterification. Biotechnol Lett. 2010;32(11):1679–1684.
  • Perin GB, Felisberti MI. Enzymatic synthesis and structural characterization of methacryloyl-D-fructose- and methacryloyl-D-glucose-based monomers and poly (methacryloyl-D-fructose) -based hydrogels. 2018.
  • Chávez-Flores LF, Beltran HI, Arrieta-Baez D, et al. Regioselective synthesis of lactulose esters by Candida antarctica and Thermomyces lanuginosus lipases. Catalysts. 2017;7(9):263–217.
  • Adachi S, Kobayashi T. Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent. J Biosci Bioeng. 2005;99(2):87–94.
  • Pöhnlein M, Slomka C, Kukharenko O, et al. Enzymatic synthesis of amino sugar fatty acid esters. Eur J Lipid Sci Technol. 2014;116(4):423–428.
  • Favrelle A, Boyère C, Laurent P, et al. Enzymatic synthesis and surface active properties of novel hemifluorinated mannose esters. Carbohydr Res. 2011;346(9):1161–1164.
  • Lin XS, Zhao KH, Zhou QL, et al. Synthesis of glucose laurate with excellent productivity. Bioresour Bioprocess. 2016;3(1):1–7.
  • Li L, Ji F, Wang J, et al. Esterification degree of fructose laurate exerted by Candida antarctica lipase B in organic solvents. Enzyme Microb Technol. 2015;69:46–53.
  • Reetz MT. Lipases as practical biocatalysts. Curr Opin Chem Biol. 2002;6(2):145–150.
  • Shi YG, Li JR, Chu YH. Enzyme-catalyzed regioselective synthesis of sucrose-based esters. J Chem Technol Biotechnol. 2011;86(12):1457–1468.
  • Fischer F, Happe M, Emery J, et al. Enzymatic enzymatic synthesis of 6- and 6’-O-Linoleyl-α-d-maltose: from solvent-free to binary ionic liquid reaction media. J Mol Catal B Enzym. 2013;90:98–106.
  • Andler SM, Wang L, Rotello VM, et al. Influence of hierarchical interfacial assembly on lipase stability and performance in deep eutectic solvent. J Agric Food Chem. 2017;65:1907–1914.
  • Ji F, Wang J, Jiang B, et al. Efficient mono-acylation of fructose by lipase-catalyzed esterification in ionic liquid co-solvents. Carbohydr Res. 2015;416:51–58.
  • Zhao K, Cai Y, Lin X, et al. Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules. 2016;21(10):1294–1213.
  • Ha SH, Hiep NM, Koo Y. Enhanced production of fructose palmitate by lipase-catalyzed esterification in ionic liquids. Biotechnol Bioproc E. 2010;15(1):126–130.
  • Yang R, Zhao X, Liu X. Novel and highly efficient regioselective route to helicid esters by lipozyme TLL. Plos One. 2013;8(11):e80715–e80716.
  • Siebenhaller S, Hajek T, Muhle-Goll C, et al. Beechwood carbohydrates for enzymatic synthesis of sustainable glycolipids. Bioresour Bioprocess. 2017;4(1):25.
  • Zhang X, Nie K, Wang M, et al. Site-specific xylitol dicaprate ester synthesized by lipase from Candida Sp. 99-125 with solvent-free system. J Mol Catal B Enzym. 2013;89:61–66.
  • Ogawa S, Endo A, Kitahara N, et al. Factors determining the reaction temperature of the solvent-free enzymatic synthesis of trehalose esters. Carbohydr Res. 2019;482:107739.
  • Galonde N, Nott K, Richard G, et al. Study of the influence of pure ionic liquids on the lipase-catalyzed (trans)esterification of mannose based on their anion and cation nature. COC. 2013;17(7):763–770.
  • Hirata DB, Albuquerque TL, Rueda N, et al. Advantages of heterofunctional octyl supports: production of 1,2-dibutyrin by specific and selective hydrolysis of tributyrin catalyzed by immobilized lipases. ChemistrySelect. 2016;1(12):3259–3270.
  • Dulęba J, Czirson K, Siódmiak T, et al. Lipase B from Candida antarctica — the wide applicable biocatalyst in obtaining pharmaceutical compounds. Med Res J. 2019;4(3):174–177.
  • Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS, et al. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv. 2019;37(5):746–770.
  • Neta NDAS, Santos JCSD, Sancho SDO, et al. Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocoll. 2012;27(2):324–331.
  • de Lima LN, Vieira GNA, Kopp W, et al. Mono- and heterofunctionalized silica magnetic microparticles (SMMPs) as new carriers for immobilization of lipases. J Mol Catal B Enzym. 2016;133:S491–S499.
  • Rahman M, Arumugam M, Khairuddin NSK, et al. Microwave assisted enzymatic synthesis of fatty acid sugar ester in ionic liquid-tert-butanol biphasic solvent system. Asian J Chem. 2012;24:5058–5062.
  • Sutili FK, Nogueira DDO, Leite SGF, et al. Lipase immobilized in microemulsion based organogels (MBGs) as an efficient catalyst for continuous-flow esterification of protected fructose. RSC Adv. 2015;5(47):37287–37291.
  • Neta NS, Peres AM, Teixeira JA, et al. Maximization of fructose esters synthesis by response surface methodology. N Biotechnol. 2011;28(4):349–355.
  • Findrik Z, Megyeri G, Gubicza L, et al. Lipase catalyzed synthesis of glucose palmitate in ionic liquid. J Clean Prod. 2016;112:1106–1111.
  • Pappalardo VM, Boeriu CG, Zaccheria F, et al. Synthesis and characterization of arabinose-palmitic acid esters by enzymatic esterification. Mol Catal. 2017;433:383–390.
  • Méline T, Muzard M, Deleu M, et al. D-xylose and L-arabinose laurate esters: enzymatic synthesis, characterization and physico-chemical properties. Enzyme Microb Technol. 2018;112:14–21.
  • Ortiz C, Ferreira ML, Barbosa O, et al. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol. 2019;9(10):2380–2420.
  • Nott K, Brognaux A, Richard G, et al. (Trans)esterification of mannose catalyzed by lipase B from Candida antarctica in an improved reaction medium using co-solvents and molecular sieve . Prep Biochem Biotechnol. 2012;42(4):348–363.
  • Galonde N, Brostaux Y, Richard G, et al. Use of response surface methodology for the optimization of the lipase-catalyzed synthesis of mannosyl myristate in pure ionic liquid. Process Biochem. 2013;48(12):1914–1920.
  • Adnani A, Basri M, Abdul E, et al. Optimization of lipase-catalyzed synthesis of xylitol ester by taguchi robust design method. Ind Crop Prod. 2010;31(2):350–356.
  • Shin DW, Mai NL, Bae SW, et al. Enhanced lipase-catalyzed synthesis of sugar fatty acid esters using supersaturated sugar solution in ionic liquids. Enzyme Microb Technol. 2019;126:18–23.
  • Jia C, Wang H, Zhang W, et al. Efficient enzyme-selective synthesis of monolauryl mannose in a circulating fluidized bed reactor. Process Biochem. 2018;66:28–32.
  • Gao J, Huang X, Zhang L. Comparative analysis between international research hotspots and national-level policy keywords on artificial intelligence in China from 2009 to 2018. Sustainability. 2019;11(23):6574.
  • Cao L, Bornscheuer UT, Schmid RD. Lipase-catalyzed solid-phase synthesis of sugar esters. influence of immobilization on productivity and stability of the enzyme. J Mol Catal - B Enzym. 1999;6(3):279–285.
  • Soultani S, Engasser JM, Ghoul M. Effect of acyl donor chain length and sugar/acyl donor molar ratio on enzymatic synthesis of fatty acid fructose esters. J Mol Catal - B Enzym. 2001;11(4–6):725–731.
  • Juhl PB, Doderer K, Hollmann F, et al. Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol. 2010;150(4):474–480.
  • Abdulla H, Smith K, Atherton PJ, et al. Role of insulin in the regulation of human skeletal muscle protein synthesis and breakdown: a systematic review and meta-analysis. Diabetologia. 2016;59(1):44–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.