1,649
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases

, , , & ORCID Icon
Pages 953-968 | Received 20 Oct 2020, Accepted 14 Jan 2021, Published online: 20 May 2021

References

  • Zhu B, Yin H. Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered. 2015;6(3):125–131.
  • Guo X, Wang Y, Qin Y, et al. Structures, properties and application of alginic acid: a review. Int J Biol Macromol. 2020;162:618–628.
  • Aliste AJ, Vieira FF, Del Mastro NL. Radiation effects on agar, alginates and carrageenan to be used as food additives. Radiat Phys Chem. 2000;57(3-6):305–308.
  • Brownlee IA, Allen A, Pearson JP, et al. Alginate as a Source of Dietary Fiber. Crit Rev Food Sci Nutr. 2005;45(6):497–510.
  • Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–126.
  • Sun H, Gao L, Xue C, et al. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci. 2020;19:2767–2796.
  • Zhu B, Ni F, Xiong Q, et al. Marine oligosaccharides originated from seaweeds: source, preparation, structure, physiological activity and applications. Crit Rev Food Sci. 2020;61(1):60–74.
  • Liu J, Yang S, Li X, et al. Alginate oligosaccharides: production, biological activities, and potential applications. Compr Rev Food Sci Food Saf. 2019;18(6):1859–1881.
  • Bose SK, Howlader P, Jia X, et al. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry. Food Chem. 2019;283:665–674.
  • Zhang B, Wu H, Yang H, et al. Cryoprotective roles of trehalose and alginate oligosaccharides during frozen storage of peeled shrimp (Litopenaeus vannamei). Food Chem. 2017;228:257–264.
  • Li Q, Hu F, Wang M, et al. Elucidation of degradation pattern and immobilization of a novel alginate lyase for preparation of alginate oligosaccharides. Int J Biol Macromol. 2020;146:579–587.
  • Kim HS, Lee CG, Lee EY. Alginate lyase: structure, property, and application. Biotechnol Bioproc E. 2011;16(5):843–851.
  • Li Q, Hu F, Zhu B, et al. Biochemical characterization and elucidation of action pattern of a novel polysaccharide lyase 6 family aginate lyase from marine bacterium Flammeovirga sp. NJ-04. Mar Drugs. 2019;17(6):323–334.
  • Zhu B, Hu F, Yuan H, et al. Biochemical characterization and degradation pattern of a unique pH-stable polyM-specific alginate lyase from newly isolated serratia marcescens NJ-07. Mar Drugs. 2018;16(4):129–141.
  • Inoue A, Ojima T. Functional identification of alginate lyase from the brown alga Saccharina japonica. Sci Rep. 2019;9(1):4937–4948.
  • Cheng D, Jiang C, Xu J, et al. Characteristics and applications of alginate lyases: a review. Int J Biol Macromol. 2020;164:1304–1320.
  • Xu F, Wang P, Zhang YZ, et al. Diversity of three-dimensional structures and catalytic mechanisms of alginate lyases. Appl Environ Microbiol. 2017;84(3):e02040–17.
  • Dong F, Xu F, Chen XL, et al. Alginate lyase Aly36B is a new bacterial member of the polysaccharide lyase family 36 and catalyzes by a novel mechanism with lysine as both the catalytic base and catalytic acid. J Mol Biol. 2019;431(24):4897–4909.
  • Itoh T, Nakagawa E, Yoda M, et al. Structural and biochemical characterisation of a novel alginate lyase from Paenibacillus sp. str. FPU-7. Sci Rep. 2019;9(1):14870–14884.
  • Ji S, Dix SR, Aziz AA, et al. The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a representative of a new lyase family, PL39. J Biol Chem. 2019;294(48):18077–18091.
  • Zheng Y, Huang CH, Liu W, et al. Crystal structure and substrate-binding mode of a novel pectate lyase from alkaliphilic Bacillus sp. N16-5. Biochem Biophys Res Commun. 2012;420(2):269–274.
  • Huang W, Matte A, Li Y, et al. Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 A resolution. J Mol Biol. 1999;294(5):1257–1269.
  • Xu F, Dong F, Wang P, et al. Novel Molecular Insights into the catalytic mechanism of marine bacterial alginate lyase AlyGC from polysaccharide lyase family 6. J Biol Chem. 2017;292(11):4457–4468.
  • Lyu Q, Zhang K, Shi Y, et al. Structural insights into a novel Ca2+-independent PL-6 alginate lyase from Vibrio OU02 identify the possible subsites responsible for product distribution. Biochim Biophys Acta Gen Subj. 2019;1863(7):1167–1176.
  • Stender EGP, Dybdahl AC, Fredslund F, et al. Structural and functional aspects of mannuronic acid-specific PL6 alginate lyase from the human gut microbe Bacteroides cellulosilyticus. J Biol Chem. 2019;294(47):17915–17930.
  • Bryan AW, Starner-Kreinbrink JL, Hosur R, et al. Structure-based prediction reveals capping motifs that inhibit β-helix aggregation. Proc Natl Acad Sci U S A. 2011;108(27):11099–11104.
  • Helbert W, Poulet L, Drouillard S, et al. Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space. Proc Natl Acad Sci USA. 2019;116(13):6063–6068.
  • Yamasaki M, Moriwaki S, Miyake O, et al. Structure and function of a hypothetical Pseudomonas aeruginosa Protein PA1167 Classified into Family PL-7: a novel alginate lyase with a beta-sandwich fold. J Biol Chem. 2004;279(30):31863–31872.
  • Ogura K, Yamasaki M, Mikami B, et al. Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1. J Mol Biol. 2008;380(2):373–385.
  • Qin HM, Miyakawa T, Inoue A, et al. Structural basis for controlling the enzymatic properties of polymannuronate preferred alginate lyase FlAlyA from the PL-7 family. Chem Commun (Camb)). 2018;54(5):555–558.
  • Xu F, Chen XL, Sun XH, et al. Structural and molecular basis for the substrate positioning mechanism of a new PL7 subfamily alginate lyase from the Arctic. J Biol Chem. 2020;295(48):16380–16392.
  • Thomas F, Lundqvist LCE, Jam M, et al. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J Biol Chem. 2013;288(32):23021–23037.
  • Osawa T, Matsubara Y, Muramatsu T, et al. Crystal structure of the alginate (Poly alpha-l-guluronate) lyase from Corynebacterium sp. at 1.2 A resolution . J Mol Biol. 2005;345(5):1111–1118.
  • Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490–5.
  • Guillén D, Sánchez S, Rodríguez-Sanoja R. Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol. 2010;85(5):1241–1249.
  • Lyu Q, Zhang K, Zhu Q, et al. Structural and biochemical characterization of a multidomain alginate lyase reveals a novel role of CBM32 in CAZymes. Biochim Biophys Acta Gen Subj. 2018;1862(9):1862–1869.
  • Sim PF, Furusawa G, Teh AH. Functional and structural studies of a multidomain alginate lyase from Persicobacter sp. CCB-QB2. Sci Rep. 2017;7(1):13656.
  • Ogura K, Yamasaki M, Yamada T, et al. Crystal structure of family 14 polysaccharide lyase with pH-dependent modes of action. J Biol Chem. 2009;284(51):35572–35579.
  • Qin HM, Miyakawa T, Inoue A, et al. Structure and polymannuronate specificity of a eukaryotic member of polysaccharide lyase family 14. J Biol Chem. 2017;292(6):2182–2190.
  • Dong S, Wei TD, Chen XL, et al. Molecular insight into the role of the N-terminal extension in the maturation, substrate recognition, and catalysis of a bacterial alginate lyase from polysaccharide lyase family 18. J Biol Chem. 2014;289(43):29558–29569.
  • Yoon HJ, Hashimoto W, Miyake O, et al. Crystal structure of alginate lyase A1-III complexed with trisaccharide product at 2.0 A resolution. J Mol Biol. 2001;307(1):9–16.
  • Park D, Jagtap S, Nair SK. Structure of a PL17 Family alginate lyase demonstrates functional similarities among exotype depolymerases. J Biol Chem. 2014;289(12):8645–8655.
  • Ochiai A, Yamasaki M, Mikami B, et al. Crystal structure of exotype alginate lyase Atu3025 from Agrobacterium tumefaciens. J Biol Chem. 2010;285(32):24519–24528.
  • Hu F, Li Q, Zhu B, et al. Effects of module truncation on biochemical characteristics and products distribution of a new alginate lyase with two catalytic modules. Glycobiology. 2019;29(12):876–884.
  • Yan J, Chen P, Zeng Y, et al. The characterization and modification of a novel bifunctional and robust alginate lyase derived from Marinimicrobium sp. H1. Mar Drugs. 2019;17(10):545–558.
  • Yang M, Yang SX, Liu ZM, et al. Rational design of alginate lyase from Microbulbifer sp. Q7 to improve thermal stability. Mar Drugs. 2019;17(6):378–391.
  • Inoue A, Anraku M, Nakagawa S, et al. Discovery of a novel alginate lyase from Nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. J Biol Chem. 2016;291(30):15551–15563.
  • Wang B, Ji SQ, Ma XQ, et al. Substitution of one calcium-binding amino acid strengthens substrate binding in a thermophilic alginate lyase. FEBS Lett. 2018;592(3):369–379.
  • Shu L, Wei Z, Chunmei Z, et al. Directed evolution of alginate lyase Alg-2 based on error prone PCR. Food Science. 2019;40:146–151.
  • Yang M, Li N, Yang S, et al. Study on expression and action mode of recombinant alginate lyases based on conserved domains reconstruction. Appl Microbiol Biotechnol. 2019;103(2):807–817.
  • Zhang Z, Tang L, Bao M, et al. Functional characterization of carbohydrate-binding modules in a new alginate lyase. TsAly7B, from Thalassomonas sp. LD5. Mar Drugs. 2019;18(1):25–35.
  • Li S, Yang X, Bao M, et al. Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS Microbiol Lett. 2015;10:362–372.
  • Han W, Gu J, Cheng Y, et al. Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp. strain MY04: effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. Appl Environ Microbiol. 2016;82(1):364–374.
  • Hu F, Cao S, Li Q, et al. Construction and biochemical characterization of a novel hybrid alginate lyase with high activity by module recombination to prepare alginate oligosaccharides. Int J Biol Macromol. 2021; 166:1272–1279.
  • Hu F, Zhu B, Li Q, et al. Elucidation of a unique pattern and the role of carbohydrate binding module of an alginate lyase. Mar Drugs. 2019;18(1):32–44.
  • Tang L, Wang Y, Gao S, et al. Biochemical characteristics and molecular mechanism of an exo-type alginate lyase VxAly7D and its use for the preparation of unsaturated monosaccharides. Biotechnol Biofuels. 2020;13:99.
  • Zhu B, Ni F, Sun Y, et al. Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides. Biotechnol Biofuels. 2019;12:13.
  • G JJ, M LL, Hong TS, et al. Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis. Mar Drugs. 2016;14(12):231–244.
  • Tøndervik A, Klinkenberg G, Aarstad OA, et al. Isolation of mutant alginate lyases with cleavage specificity for Di-guluronic acid linkages. J Biol Chem. 2010;285(46):35284–35292.
  • Wargacki AJ, Leonard E, Win MN, et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science. 2012;335(6066):308–313.
  • Hobbs JK, Lee SM, Robb M, et al. KdgF, the missing link in the microbial metabolism of uronate sugars from pectin and alginate. Proc Natl Acad Sci USA. 2016;113(22):6188–6193.
  • Takeda H, Yoneyama F, Kawai S, et al. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci. 2011;4(7):2575–2581.
  • Santos CNS, Regitsky DD, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat Commun. 2013;4:2503–2513.
  • Enquist-Newman M, Faust AME, Bravo DD, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature. 2014;505(7482):239–243.
  • Lu D, Zhang Q, Wang S, et al. Biochemical characteristics and synergistic effect of two novel alginate lyases from Photobacterium sp. FC615. Biotechnol Biofuels. 2019;12:260.
  • Li S, Wang L, Chen X, et al. Cloning, expression, and biochemical characterization of two new oligoalginate lyases with synergistic degradation capability. Mar Biotechnol (NY)). 2018;20(1):75–86.
  • Aarstad OA, Stanisci A, Saetrom GI, et al. Biosynthesis and function of long guluronic acid-blocks in alginate produced by Azotobacter vinelandii. Biomacromolecules. 2019;20(4):1613–1622.
  • Aarstad OA, Tøndervik A, Sletta H, et al. Alginate sequencing: an analysis of block distribution in alginates using specific alginate degrading enzymes. Biomacromolecules. 2012;13(1):106–116.
  • Blanco-Cabra N, Paetzold B, Ferrar T, et al. Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci Rep. 2020;10(1):9390.
  • Wan B, Zhu Y, Tao J, et al. Alginate lyase guided silver nanocomposites for eradicating Pseudomonas aeruginosa from lungs. ACS Appl Mater Interfaces. 2020;12(8):9050–9061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.