8,379
Views
72
CrossRef citations to date
0
Altmetric
Review Articles

Can omics deliver temperature resilient ready-to-grow crops?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1209-1232 | Received 11 Sep 2020, Accepted 03 Jan 2021, Published online: 07 Apr 2021

References

  • Raza A, Razzaq A, Mehmood SS, et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants. 2019;8(2):34.
  • Zhang J, Li X-M, Lin H-X, et al. Crop improvement through temperature resilience. Ann Rev Plant Biol. 2019;70:753–780.
  • Palit P, Kudapa H, Zougmore R, et al. An integrated research framework combining genomics, systems biology, physiology, modelling and breeding for legume improvement in response to elevated CO2 under climate change scenario. Curr Plant Biol. 2020;22:100149.
  • Raza A, Ashraf F, Zou X, et al. Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. In: Hasanuzzaman M, editor. Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Amsterdam (The Netherlands): Springer; 2020. p. 117–145.
  • Razzaq A, Sadia B, Raza A, et al. Metabolomics: a way forward for crop improvement. Metabolites. 2019;9(12):303.
  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):681.
  • Raza A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul. 2020. doi:https://doi.org/10.1007/s00344-020-10231-z
  • Jha UC, Bohra A, Singh NP. Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding. 2014;133(6):679–701.
  • Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci. 2018;23(7):623–637.
  • Tai HH, Lagüe M, Thomson S, et al. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. Plant Physiol Biochem. 2020;146:163–176.
  • Zhou H, He Y, Zhu Y, et al. Comparative transcriptome profiling reveals cold stress responsiveness in two contrasting Chinese jujube cultivars. BMC Plant Biol. 2020;20:1–12.
  • Wu S, Guo Y, Joan HI, et al. iTRAQ-based comparative proteomic analysis reveals high temperature accelerated leaf senescence of tobacco (Nicotiana tabacum L.) during flue-curing. Genomics. 2020;112(5):3075–3088.
  • Dhatt BK, Abshire N, Paul P, et al. Metabolic dynamics of developing rice seeds under high night-time temperature stress. Front Plant Sci. 2019;10:1443.
  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98.
  • Lin Y, Zhang L, Zhao Y, et al. Comparative analysis and functional identification of temperature-sensitive miRNA in Arabidopsis anthers. Biochem Biophys Res Commun. 2020;532(1):1–10.
  • Kage U, Powell JJ, Gardiner DM, et al. Ribosome profiling in plants: what is NOT lost in translation? J Exp Bot. 2020;71(18):5323–5332.
  • Zhu J, Liu M, Liu X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat Plants. 2018;4(12):1112–1123.
  • Chow C-N, Lee T-Y, Hung Y-C, et al. PlantPAN3. 0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Res. 2019;47(D1):D1155–D1163.
  • Song L, Koga Y, Ecker JR. Profiling of transcription factor binding events by chromatin immunoprecipitation sequencing (ChIP‐seq). Curr Protoc Plant Biol. 2016;1(2):293–306.
  • Muhammad II, Kong SL, Akmar Abdullah SN, et al. RNA-seq and ChIP-seq as complementary approaches for comprehension of plant transcriptional regulatory mechanism. Int J Mol Sci. 2020;21(1):167.
  • Luo Q. Temperature thresholds and crop production: a review. Climatic Change. 2011;109(3–4):583–598.
  • Prasad PV, Boote KJ, Allen Jr LH, et al. Effects of elevated temperature and carbon dioxide on seed‐set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biol. 2002;8(8):710–721.
  • Salem MA, Kakani VG, Koti S, et al. Pollen‐based screening of soybean genotypes for high temperatures. Crop Sci. 2007;47(1):219–231.
  • Prasad R, Gunn SK, Rotz CA, et al. Projected climate and agronomic implications for corn production in the Northeastern United States. PLoS One. 2018;13(6):e0198623.
  • Meseka S, Menkir A, Bossey B, et al. Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agronomy. 2018;8(12):274.
  • Koscielny C, Gardner S, Duncan R. Impact of high temperature on heterosis and general combining ability in spring canola (Brassica napus L.). Field Crops Res. 2018;221:61–70.
  • Devasirvatham V, Tan DK. Impact of high temperature and drought stresses on chickpea production. Agronomy. 2018;8(8):145.
  • Orlandi F, Sgromo C, Bonofiglio T, et al. Spring influences on olive flowering and threshold temperatures related to reproductive structure formation. HortScience. 2010;45(7):1052–1057.
  • Jia C, Yu X, Zhang M, et al. Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers). J Plant Growth Regul. 2020;39(2):631–640.
  • Bhandari K, Siddique KH, Turner NC, et al. Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J Crop Improv. 2016;30(2):118–151.
  • Liang S-m, Kuang J-f, Ji S-j, et al. The membrane lipid metabolism in horticultural products suffering chilling injury. Food Qual Saf. 2020;4(1):9–14.
  • Elkelish A, Qari SH, Mazrou YS, et al. Exogenous ascorbic acid induced chilling tolerance in tomato plants through modulating metabolism, osmolytes, antioxidants, and transcriptional regulation of catalase and heat shock proteins. Plants. 2020;9(4):431.
  • Bao G, Tang W, An Q, et al. Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biol. 2020;20:1–9.
  • Arora R. Mechanism of freeze-thaw injury and recovery: a cool retrospective and warming up to new ideas. Plant Sci. 2018;270:301–313.
  • Rahman A, Kawamura Y, Maeshima M, et al. Plasma membrane aquaporin members pips act in concert to regulate cold acclimation and freezing tolerance responses in Arabidopsis thaliana. Plant Cell Physiol. 2020;61(4):787–802.
  • Prasad PV, Bheemanahalli R, Jagadish SK. Field crops and the fear of heat stress—opportunities, challenges and future directions. Field Crop Res. 2017;200:114–121.
  • Yamori W, Hikosaka K, Way D. Temperature response of photosynthesis in C3, C 4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Res. 2014;119(1–2):101–117.
  • Heskel MA, O’Sullivan OS, Reich PB, et al. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceed Nat Acad Sci. 2016;113(14):3832–3837.
  • Sabagh AE, Hossain A, Islam MS, et al. Elevated CO2 concentration improves heat-tolerant ability in crops. In: Abiotic stress in plants. London (UK): IntechOpen; 2020.
  • Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019;221(1):32–49.
  • Smith NG, Dukes JS. Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO2. Global change Biol. 2013;19(1):45–63.
  • Sperling O, Earles JM, Secchi F, et al. Frost induces respiration and accelerates carbon depletion in trees. PLoS One. 2015;10(12):e0144124.
  • Adamski JM, Rosa LMG, Menezes Peixoto CRd, et al. Photosynthetic activity of indica rice sister lines with contrasting cold tolerance. Physiol Mol Biol Plants. 2020:26(5):955–964.
  • Zhang X, Da Silva JAT, Niu M, et al. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci Rep. 2017;7:42165.
  • Valdés-López O, Batek J, Gomez-Hernandez N, et al. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Front Plant Sci. 2016;7:517.
  • Zeng X, Xu Y, Jiang J, et al. iTRAQ-Based Comparative proteomic analysis of the roots of two winter turnip rapes (Brassica rapa L.) with different freezing-tolerance. Int J Mol Sci. 2018;19(12):4077.
  • Sehgal A, Sita K, Kumar J, et al. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci. 2017;8:1776.
  • Martinez-Rodriguez A, Macedo-Raygoza G, Huerta-Robles AX, et al. Agave seed endophytes: ecology and impacts on root architecture, nutrient acquisition, and cold stress tolerance. In: Verma SK, White JF, Jr, editors. Seed endophytes. Amsterdam (The Netherlands): Springer; 2019. p. 139–170.
  • Zhang M, Shi J, Jiang L. Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae. Electr J Biotechnol. 2015;18(3):202–209.
  • Yan J, Ban Z, Luo Z, et al. Variation in cell membrane integrity and enzyme activity of the button mushroom (Agaricus bisporus) during storage and transportation. J Food Sci Technol. 2020:1–8.
  • McCULLY ME, Canny M, Huang C. The management of extracellular ice by petioles of frost-resistant herbaceous plants. Ann Bot. 2004;94(5):665–674.
  • Yildiz D, Nzokou P, Deligoz A, et al. Chemical and physiological responses of four Turkish red pine (Pinus brutia Ten.) provenances to cold temperature treatments. Eur J Rorest Res. 2014;133(5):809–818.
  • Parmoon G, Moosavi SA, Akbari H, et al. Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. Crop J. 2015;3(2):145–151.
  • Dürr C, Dickie J, Yang X-Y, et al. Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database. Agric Forest Meteorol. 2015;200:222–232.
  • Nafees K, Kumar M, Bose B. Effect of different temperatures on germination and seedling growth of primed seeds of tomato. Russian J Plant Physiol. 2019;66(5):778–784.
  • Kilasi NL, Singh J, Vallejos CE, et al. Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci. 2018;9:1578.
  • Hussain HA, Men S, Hussain S, et al. Maize tolerance against drought and chilling stresses varied with root morphology and antioxidative defense system. Plants. 2020;9(6):720.
  • Ayub M, Ashraf MY, Kausar A, et al. Growth and physio-biochemical responses of maize (Zea mays L.) to drought and heat stresses. Plant Biosys. 2020. doi:https://doi.org/10.1080/11263504.2020.1762785
  • Abd El-Daim IA, Bejai S, Meijer J. Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil. 2014;379(1–2):337–350.
  • Fahad S, Hussain S, Saud S, et al. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One. 2016;11(7):e0159590.
  • Hütsch BW, Jahn D, Schubert S. Grain yield of wheat (Triticum aestivum L.) under long‐term heat stress is sink‐limited with stronger inhibition of kernel setting than grain filling. J Agron Crop Sci. 2019;205(1):22–32.
  • Youldash KM, Barutcular C, El Sabagh A, et al. Evaluation of grain yield in fifty-eight spring bread wheat genotypes grown under heat stress. Pak J Bot. 2020;52(1):33–42.
  • Li PF, Ma BL, Xiong YC, et al. Morphological and physiological responses of different wheat genotypes to chilling stress: a cue to explain yield loss. J Sci Food Agric. 2017;97(12):4036–4045.
  • Waqas MA, Khan I, Akhter MJ, et al. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize. Environ Sci Pollut Res. 2017;24(12):11459–11471.
  • Zheng Y, Yin X, Ma H. Effects of hydrogen peroxide on seed germination, seedling growth and physiological characteristcs of bombax ceiba after heat shock Pakistan. Pak J Bot. 2018;50:1327–1333.
  • Ren Y, Huang Z, Jiang H, et al. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice caryopsis filling. J Exp Bot. 2021:erab027. doi:https://doi.org/10.1093/jxb/erab027
  • Liu XH, Lyu YS, Yang W, et al. A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J. 2020;18(5):1317–1329.
  • Samakovli D, Tichá T, Vavrdová T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactivation of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis. Molecular Plant. 2020;13(4):612–633.
  • Hillmann K. Looking for maize genes involved in cold response: producing knockouts for Arabidopsis homologs of maize candidate genes using a CRISPR/Cas9 approach [Departmental Honors Projects]. St. Paul (MN): Hamline University; 2019.
  • Yin Y, Qin K, Song X, et al. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol. 2018;59(11):2239–2254.
  • Que Z, Lu Q, Liu T, et al. The rice annexin gene OsAnn5 is a positive regulator of cold stress tolerance at the seedling stage. 2020. doi:https://doi.org/10.21203/rs.3.rs-21726/v1
  • Zeng Y, Wen J, Zhao W, et al. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Front Plant Sci. 2020;10:1663.
  • Li R, Zhang L, Wang L, et al. Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J Agric Food Chem. 2018;66(34):9042–9051.
  • Shen C, Que Z, Xia Y, et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol. 2017;60(6):539–547.
  • Sanderson BJ, Park S, Jameel MI, et al. Genetic and physiological mechanisms of freezing tolerance in locally adapted populations of a winter annual. American J Bot. 2020;107(2):250–261.
  • Jia Y, Ding Y, Shi Y, et al. The cbfs triple mutants reveal the essential functions of CBF s in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016;212(2):345–353.
  • Liu G, Zha Z, Cai H, et al. Dynamic transcriptome analysis of anther response to heat stress during anthesis in thermotolerant rice (Oryza sativa L.). Int J Mol Sci. 2020;21(3):1155.
  • Wang Y, Zhang Y, Zhang Q, et al. Comparative transcriptome analysis of panicle development under heat stress in two rice (Oryza sativa L.) cultivars differing in heat tolerance. PeerJ. 2019;7:e7595.
  • Nandha A, Mehta D, Tulsani N, et al. Transcriptome analysis of response to heat stress in heat tolerance and heat susceptible wheat (Triticum aestivum L.) genotypes. J Pharma Phytochem. 2019;8(2):275–284.
  • Wang M, Zhang X, Li Q, et al. Comparative transcriptome analysis to elucidate the enhanced thermotolerance of tea plants (Camellia sinensis) treated with exogenous calcium. Planta. 2019;249(3):775–786.
  • Kang W-H, Sim YM, Koo N, et al. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci Data. 2020;7(1):1–7.
  • Dharshini S, Hoang NV, Mahadevaiah C, et al. Root transcriptome analysis of Saccharum spontaneum uncovers key genes and pathways in response to low-temperature stress. Environ Exp Bot. 2020;171:103935.
  • Jian H, Xie L, Wang Y, et al. Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ. 2020;8:e8704.
  • Kong Y, Zhang T, Guan Y, et al. Comparative transcriptome analysis reveals the responses of winter rye to cold stress. Acta Physiol Plant. 2020;42(5):77.
  • Pu Y, Liu L, Wu J, et al. Transcriptome profile analysis of winter rapeseed (Brassica napus L.) in response to freezing stress, reveal potentially connected events to freezing stress. Int J Mol Sci. 2019;20(11):2771.
  • Song T, Li K, Wu T, et al. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS One. 2019;14(1):e0210672.
  • Zhao Y, Zhou M, Xu K, et al. Integrated transcriptomics and metabolomics analyses provide insights into cold stress response in wheat. Crop J. 2019;7(6):857–866.
  • Cheng C, Liu Y, Fang W, et al. iTRAQ-based proteomic and physiological analyses of mustard sprouts in response to heat stress. RSC Adv. 2020;10(10):6052–6062.
  • Li T, Wu Q, Duan X, et al. Proteomic and transcriptomic analysis to unravel the influence of high temperature on banana fruit during postharvest storage. Funct Integr Genomics. 2019;19(3):467–486.
  • Wang Y, Yu Y, Huang M, et al. Transcriptomic and proteomic profiles of II YOU 838 (Oryza sativa) provide insights into heat stress tolerance in hybrid rice. PeerJ. 2020;8:e8306.
  • Wang X, Shen Y, Sun D, et al. iTRAQ-based proteomic reveals cell cycle and translation regulation involving in peanut buds cold stress. Russ J Plant Physiol. 2020;67(1):103–110.
  • Yang Y, Saand MA, Abdelaal WB, et al. iTRAQ-based comparative proteomic analysis of two coconut varieties reveals aromatic coconut cold-sensitive in response to low temperature. J Proteomics. 2020;220:103766.
  • Huan C, Xu Y, An X, et al. iTRAQ-based protein profiling of peach fruit during ripening and senescence under different temperatures. Postharvest Biol Technol. 2019;151:88–97.
  • Ling F, Su Q, Jiang H, et al. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci Rep. 2020;10(1):1–8.
  • Masocha VF, Li Q, Zhu Z, et al. Proteomic variation in Vitis amurensis and V. vinifera buds during cold acclimation. Sci Hortic. 2020;263:109143.
  • Lin Q, Xie Y, Guan W, et al. Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chem. 2019;297:124991.
  • Wang L, Ma K-B, Lu Z-G, et al. Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biol. 2020;20(1):86.
  • Ren S, Ma K, Lu Z, et al. Transcriptomic and metabolomic analysis of the heat-stress response of Populus tomentosa Carr. Forests. 2019;10(5):383.
  • Chen L, Zhao X, Wu Je, et al. Metabolic analysis of salicylic acid-induced chilling tolerance of banana using NMR. Food Res Int. 2020;128:108796.
  • Yang M, Yang J, Su L, et al. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Sci. 2019;289:110282.
  • Xu J, Chen Z, Wang F, et al. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Sci Rep. 2020;10(1):1–13.
  • Chai F, Liu W, Xiang Y, et al. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Hortic Res. 2019;6(1):1–12.
  • Yang C, Yang H, Xu Q, et al. Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon). Phytochemistry. 2020;174:112346.
  • Cheong BE, Ho WWH, Biddulph B, et al. Phenotyping reproductive stage chilling and frost tolerance in wheat using targeted metabolome and lipidome profiling. Metabolomics. 2019;15(11):144.
  • Javier OGP, Beatriz GA, Natalia T, et al. Cold acclimation and freezing tolerance in three Eucalyptus species: a metabolomic and proteomic approach. Plant Physiol Biochem. 2020;154:316–327.
  • Wang J, Lv J, Liu Z, et al. Integration of transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress. Int J Mol Sci. 2019;20(20):5042.
  • Uarrota VG, Fuentealba C, Hernández I, et al. Integration of proteomics and metabolomics data of early and middle season Hass avocados under heat treatment. Food Chem. 2019;289:512–521.
  • Zhang W-F, Gong Z-H, Wu M-B, et al. Integrative comparative analyses of metabolite and transcript profiles uncovers complex regulatory network in tomato (Solanum lycopersicum L.) fruit undergoing chilling injury. Sci Rep. 2019;9(1):1–13.
  • Gilliham M, Able JA, Roy SJ. Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J. 2017;90(5):898–917.
  • Varshney RK, Singh VK, Kumar A, et al. Can genomics deliver climate-change ready crops? Curr Opin Plant Biol. 2018;45:205–211.
  • El-Metwally S, Ouda OM, Helmy M. Next generation sequencing technologies and challenges in sequence assembly. Vol. 7. Amsterdam (The Netherlands): Springer Science & Business; 2014.
  • Wang P, Su L, Gao H, et al. Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Front Plant Sci. 2018;9:64.
  • Zhang L, Cheng J, Sun X, et al. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes. Plant Cell Rep. 2018;37(8):1159–1172.
  • Shen W, Li H, Teng R, et al. Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics. 2019;111(5):1142–1151.
  • Wen J, Jiang F, Weng Y, et al. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol. 2019;19(1):398.
  • Nubankoh P, Wanchana S, Saensuk C, et al. QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.). Plant Cell Rep. 2020;39(1):149–162.
  • Vivitha P, Raveendran M, Vijayalakshmi C, et al. Genetic dissection of high temperature stress tolerance using photosynthesis parameters in QTL introgressed lines of rice cv. Improved White Ponni. Indian J Plant Physiol. 2018;23(4):741–747.
  • Cao Z, Li Y, Tang H, et al. Fine mapping of the qHTB1-1 QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. Theor Appl Genet. 2020;133:1161–1175.
  • Yi Q, Malvar R, Álvarez-Iglesias L, et al. Dissecting the genetics of cold tolerance in a multiparental maize population. Theor Appl Genet. 2020;133(2):503–516.
  • Najeeb S, Ali J, Mahender A, et al. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination-and early seedling vigor-related traits in rice (Oryza sativa L.). Mol Breed. 2020;40(1):10.
  • Wainaina CM, Makihara D, Nakamura M, et al. Identification and validation of QTLs for cold tolerance at the booting stage and other agronomic traits in a rice cross of a Japanese tolerant variety, Hananomai, and a NERICA parent, WAB56-104. Plant Prod Sci. 2018;21(2):132–143.
  • Yu S, Li M, Xiao Y, et al. Mapping QTLs for cold tolerance at seedling stage using an Oryza sativa × O. rufipogon backcross inbred line population. Czech J Genet Plant Breed. 2018;54(2):59–64.
  • Yang LM, Liu HL, Lei L, et al. Identification of QTLs controlling low-temperature germinability and cold tolerance at the seedling stage in rice (Oryza sativa L.). Euphytica. 2017;214(1):13.
  • Guo J, Shi W, Guo J, et al. Genome-wide association studies on heat stress tolerance during grain development in wheat (Triticum aestivum L.). 2020. doi:https://doi.org/10.21203/rs.2.20460/v1
  • Tafesse EG, Gali KK, Lachagari V, et al. Genome-wide association mapping for heat stress responsive traits in field pea. Int J Mol Sci. 2020;21(6):2043.
  • Varshney RK, Thudi M, Roorkiwal M, et al. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet. 2019;51(5):857–864.
  • Thapa R, Tabien RE, Thomson MJ, et al. Genome-wide association mapping to identify genetic loci for cold tolerance and cold recovery during germination in rice. Front Genet. 2020;11:22.
  • Shi Y, Phan H, Liu Y, et al. Glycosyltransferase OsUGT90A1 helps protect the plasma membrane during chilling stress in rice. J Exp Bot. 2020;71(9):2723–2739.
  • Schlappi M, Shimoyama N, Johnson M, et al. Multiple cold tolerance trait phenotyping reveals shared quantitative trait loci in Oryza sativa. Rice. 2020;13:57.
  • Zhao Y, Li J, Zhao R, et al. Genome-wide association study reveals the genetic basis of cold tolerance in wheat. Mol Breed. 2020;40(4):36.
  • Sallam A, Arbaoui M, El-Esawi M, et al. Identification and verification of QTL associated with frost tolerance using linkage mapping and GWAS in winter faba bean. Front Plant Sci. 2016;7:1098.
  • Razzaq A, Saleem F, Kanwal M, et al. Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox. Int J Mol Sci. 2019;20(16):4045.
  • Yu W, Wang L, Zhao R, et al. Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol. 2019;19(1):1–13.
  • Wang X, Ding Y, Li Z, et al. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. Devel Cell. 2019;51(2):222–235.
  • Jiang B, Shi Y, Zhang X, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proceed Nati Acad Sci. 2017;114(32):E6695–E6702.
  • Hussain S. Native RNA-sequencing throws its hat into the transcriptomics ring. Trends Biochem Sci. 2018;43(4):225–227.
  • Xu L, Tang X, Wang B, et al. Comparative transcriptome analysis of five Medicago varieties reveals the genetic signals underlying freezing tolerance. Crop Past Sci. 2019;70(3):273–282.
  • Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. J Chromatographic Sci. 2017;55(2):182–196.
  • Li Z, Feng S, Zhan W, et al. Lsi1 plays an active role in enhancing the chilling tolerance of rice roots. Plant Growth Regul. 2020;90:529–543.
  • Raza A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep. 2020. doi:https://doi.org/10.1007/s00299-020-02635-8
  • Shaar‐Moshe L, Hayouka R, Roessner U, et al. Phenotypic and metabolic plasticity shapes life‐history strategies under combinations of abiotic stresses. Plant Direct. 2019;3(1):e00113.
  • Xu H, Li Z, Tong Z, et al. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (Medicago sativa L.) after continuous water deficit. BMC Plant Biology. 2020;20(1):15.
  • Min K, Chen K, Arora R. A metabolomics study of ascorbic acid‐induced in situ freezing tolerance in spinach (Spinacia oleracea L.). Plant Direct. 2020;4(2):e00202.
  • Pratap A, Gupta S, Nair RM, et al. Using plant phenomics to exploit the gains of genomics. Agronomy. 2019;9(3):126.
  • Walter A, Liebisch F, Hund A. Plant phenotyping: from bean weighing to image analysis. Plant Methods. 2015;11(1):1–11.
  • Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015;16(4):237–251.
  • Cabrera‐Bosquet L, Crossa J, von Zitzewitz J, et al. High‐throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol. 2012;54(5):312–320.
  • Chen S, Guo Y, Sirault X, et al. Nondestructive phenomic tools for the prediction of heat and drought tolerance at anthesis in Brassica species. Plant Phenomics. 2019;2019:3264872.
  • Gao G, Tester MA, Julkowska MM. The use of high-throughput phenotyping for assessment of heat stress-induced changes in Arabidopsis. Plant Phenomics. 2020;2020:3723916.
  • Ambrosino L, Colantuono C, Diretto G, et al. Bioinformatics resources for plant abiotic stress responses: state of the art and opportunities in the fast evolving-omics era. Plants. 2020;9(5):591.
  • Wong DC. Harnessing integrated omics approaches for plant specialized metabolism research: new insights into shikonin biosynthesis. Plant Cell Physiol. 2019;60(1):4–6.
  • Muthuramalingam P, Jeyasri R, Krishnan SR, et al. Integrating the bioinformatics and omics tools for systems analysis of abiotic stress tolerance in Oryza sativa (L.). In: Sathishkumar R, Kumar SR, Hema J, Baskar V, editors. Advances in plant transgenics: methods and applications. Amsterdam (The Netherlands): Springer; 2019. p. 59–77.
  • Goh H-H. Integrative multi-omics through bioinformatics. In: Aizat WM, Goh HH, Baharum SN, editors. Omics applications for systems biology. Amsterdam (The Netherlands): Springer; 2018. p. 69–80.
  • Laha A, Chakraborty P, Banerjee C, et al. Application of bioinformatics for crop stress response and mitigation. In: Roychowdhury R, Choudhury S, Hasanuzzaman M, Srivastava S, editors. Sustainable agriculture in the era of climate change. Amsterdam (The Netherlands): Springer; 2020. p. 589–614.
  • Raza A, Razzaq A, Mehmood SS, et al. Omics: the way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops Food. 2021;12(1):251–281.