1,610
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Colors of life: a review on fungal pigments

ORCID Icon &
Pages 1153-1177 | Received 03 Nov 2019, Accepted 28 Jan 2021, Published online: 08 Apr 2021

References

  • Garber LL, Hyatt EM, Nafees L. The effects of food color on perceived flavor: a factorial investigation in India. J Food Prod Market. 2016;22(8):930–948.
  • Elliot AJ, Maier MA. Color psychology: effects of perceiving color on psychological functioning in humans. Annu Rev Psychol. 2014;65(1):95–120.
  • Melo MJ. History of natural dyes in the ancient Mediterranean world. In: Thomas Bechtold RM, editor. Handbook of natural colorants. Renewable resources. London (UK): Wiley; 2009. p. 1–20.
  • Abel A. the history of dyes and pigments: From natural dyes to high performance pigments. In: Best J, editor. Colour design. 2nd Ed. Sawston (UK): Woodhead Publishing; 2012. p. 557–587.
  • Gürses A, Açıkyıldız M, Güneş K, et al. Historical development of colorants. Dyes and pigments. Cham (Switzerland): Springer International Publishing; 2016. p. 1–12.
  • Vikram N, Kewat R, Singh R, et al. Natural edible colours and flavours. Int J Pharm Sci Res. 2015;6(11):4622.
  • Manikprabhu D, Lingappa K. γ Actinorhodin a natural and attorney source for synthetic dye to detect acid production of fungi. Saudi J Biol Sci. 2013;20(2):163–168.
  • Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry-challenges and the way forward. Front Nutr. 2019;6:7.
  • Natural colorant (natural pigment) market 2019 global industry analysis FG, business prospects and forecast to 2023: 360 Research Report. 2019. Available from: https://www.marketresearchfuture.com/reports/food-colorants-market-8812
  • Zhang C. Biosynthesis of carotenoids and apocarotenoids by microorganisms and their industrial potential. In: Leila Queiroz Zepka EJ-LVVDR, editor. Progress in Carotenoid research. London (UK): IntechOpen; 2018. p. 85.
  • Global vitamin B2 (Riboflavin) market 2019 by manufacturers R, type and application, forecast to 2024. 2019. https://www.fiormarkets.com/report/global-vitamin-b2-riboflavin-market-growth-2019-2024-374891.html
  • Henry BS. Natural food colours. In: Hendry GAF, Houghton JD, editors. Natural food colorants. Boston (MA): Springer US; 1996. p. 40–79.
  • Park WS, Kim H-J, Li M, et al. Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities. Molecules. 2018;23(8):2065.
  • Simpson BB, Klomklao S. Natural food pigments. In: Simpson BK, editor. Food biochemistry and food processing. Hoboken (NJ): John Wiley & Sons, Inc.; 2012. p. 704–722.
  • Narsing Rao MP, Xiao M, Li W-J. Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol. 2017;8:1113.
  • Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol. 2017;2(1):5–12.
  • Avalos J, Carmen Limón M. Biological roles of fungal carotenoids. Curr Genet. 2015;61(3):309–324.
  • Ribeiro BD, Barreto DW, Coelho MAZ. Technological aspects of β-carotene production. Food Bioprocess Technol. 2011;4(5):693–701.
  • Han M, He Q, Zhang W-G. Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Prep Biochem Biotechnol. 2012;42(4):293–303.
  • Tuli HS, Chaudhary P, Beniwal V, et al. Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol. 2015;52(8):4669–4678.
  • Stahmann KP, Revuelta JL, Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol. 2000;53(5):509–516.
  • Özbas T, Kutsal T. Comparative study of riboflavin production from two microorganisms: Eremothecium ashbyii and Ashbya gossypii. Enzyme Microb Technol. 1986;8(10):593–596.
  • Dufossé L, Galaup P, Yaron A, et al. Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol. 2005;16(9):389–406.
  • Ogbonna C. Production of food colourants by filamentous fungi. African J Microbiol Res. 2016;10:960–971.
  • Lagashetti AC, Dufossé L, Singh SK, et al. Fungal pigments and their prospects in different industries. Microorganisms. 2019;7(12):604.
  • Li Y, Li X, Lee U, et al. A new radical scavenging anthracene glycoside, asperflavin ribofuranoside, and polyketides from a marine isolate of the fungus microsporum. Chem Pharm Bull. 2006;54(6):882–883.
  • Hiort J, Maksimenka K, Reichert M, et al. New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod. 2004;67(9):1532–1543.
  • Li DL, Li XM, Wang BG. Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum: structural elucidation and DPPH radical scavenging activity. J Microbiol Biotechnol. 2009;19(7):675–680.
  • Dufossé L, Fouillaud M, Caro Y, et al. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61.
  • Zhou S, Wang M, Feng Q, et al. A study on biological activity of marine fungi from different habitats in coastal regions. Springerplus. 2016;5(1):1966.
  • Fouillaud M, Venkatachalam M, Llorente M, et al. Biodiversity of pigmented fungi isolated from marine environment in La Réunion Island, Indian Ocean: new resources for colored metabolites. JoF. 2017;3(3):36.
  • Fouillaud M, Venkatachalam M, Caro Y, et al. Marine-derived fungi producing red anthraquinones: new resources for natural colors? Paper presented at the 8th International Congress of Pigments in Food – “Coloured foods for health benefits”; 2016 June 28–July 1. Cluj-Napoca, Romania.
  • Caro Y, Venkatachalam M, Lebeau J, et al. Pigments and colorants from filamentous fungi. In: Merillon J-M, Ramawat KG, editors. Fungal metabolites. Cham (Switzerland): Springer International Publishing; 2016. p. 1–70.
  • Fouillaud M, Venkatachalam M, Girard-Valenciennes E, et al. Anthraquinones and derivatives from marine-derived fungi: structural diversity and selected biological activities. Mar Drugs. 2016;14(4):64.
  • Chen Y, Cai X, Pan J, et al. Structure elucidation and NMR assignments for three anthraquinone derivatives from the marine fungus Fusarium sp. (No. ZH-210). Magn Reson Chem. 2009;47(4):362–365.
  • Agrawal S, Adholeya A, Barrow CJ, et al. Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem Lett. 2018;23:15–20.
  • Kanoh K, Kohno S, Asari T, et al. (−)-Phenylahistin: a new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett. 1997;7(22):2847–2852.
  • dos Reis Celestino J, de Carvalho LE, da Paz Lima M, et al. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem. 2014;49(4):569–575.
  • Akilandeswari P, Pradeep B. Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol. 2016;100(4):1631–1643.
  • Lin L, Xu J. Fungal pigments and their roles associated with human health. JoF. 2020;6(4):280.
  • Britton G, Liaaen-Jenson S, Pfander H, editors. Carotenoids handbook. Basle (Switzerland): Birkhauser Verlag; 2004.
  • Bhosale P, Bernstein PS. Microbial xanthophylls. Appl Microbiol Biotechnol. 2005;68(4):445–455.
  • Barredo JL, García-Estrada C, Kosalkova K, et al. Biosynthesis of astaxanthin as a main carotenoid in the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous. JoF. 2017;3(3):44.
  • Pombeiro-Sponchiado S, Sousa G S, Reyes J, et al. Production of melanin pigment by fungi and its biotechnological applications. In: Melanin. London (UK): InTech Open; 2017; p. 47–75.
  • Camacho E, Vij R, Chrissian C, et al. The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem. 2019;294(27):10471–10489.
  • Mapari SA, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010;28(6):300–307.
  • Osmanova N, Schultze W, Ayoub N. Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev. 2010;9(2):315–342.
  • Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans. 2000;28(4):283–296.
  • Liu S, Hu W, Wang Z, et al. Production of riboflavin and related cofactors by biotechnological processes. Microb Cell Fact. 2020;19(1):31.
  • Veiter L, Rajamanickam V, Herwig C. The filamentous fungal pellet-relationship between morphology and productivity. Appl Microbiol Biotechnol. 2018;102(7):2997–3006.
  • Sugiharto S. A review of filamentous fungi in broiler production. Annals Agric Sci. 2019;64(1):1–8.
  • Martínez JM, Delso C, Álvarez I, et al. Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Compr Rev Food Sci Food Saf. 2020;19(2):530–552.
  • Chadni Z, Rahaman MH, Jerin I, et al. Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology. 2017;8(1):48–57.
  • Suwannarach N, Kumla J, Nishizaki Y, et al. Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Appl Microbiol Biotechnol. 2019;103(17):6973–6987.
  • Ledesma-Amaro R, Serrano-Amatriain C, Jiménez A, et al. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization. Microb Cell Fact. 2015;14:163.
  • Li D, Tang Y, Lin J, et al. Methods for genetic transformation of filamentous fungi. Microb Cell Fact. 2017;16(1):168.
  • Klempová T, Slaný O, Šišmiš M, et al. Dual production of polyunsaturated fatty acids and beta-carotene with Mucor wosnessenskii by the process of solid-state fermentation using agro-industrial waste. J Biotechnol. 2020;311:1–11.
  • Durakli Velioglu S, Tırpancı Sivri G. Optimizing β-carotene production by Blakeslea trispora using bug damaged wheat. PRT. 2018;47(3):189–195.
  • Nanou K, Roukas T. Waste cooking oil: a new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresour Technol. 2016;203:198–203.
  • Roukas T, Varzakakou M, Kotzekidou P. From cheese whey to carotenes by blakeslea trispora in a bubble column reactor. Appl Biochem Biotechnol. 2015;175(1):182–193.
  • Roukas T. Modified rotary biofilm reactor: a new tool for enhanced carotene productivity by Blakeslea trispora. J Cleaner Prod. 2018;174:1114–1121.
  • Nuraini N, Sabrina A, Latif S. Improving the quality of tapioca by product through fermentation by Neurospora crassa to produce β carotene rich feed. Pakistan J Nutr. 2009;8(4):487–490.
  • Sevgili A, Erkmen O. Improved lycopene production from different substrates by mated fermentation of Blakeslea trispora. Foods. 2019;8(4):120.
  • Hernández-Almanza A, Montanez-Sáenz J, Martinez G, et al. Carotenoid production by Rhodotorula glutinis YB-252 in solid-state fermentation. Food Biosci. 2014;7:31–36.
  • Luque EM, Gutiérrez G, Navarro-Sampedro L, et al. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One. 2012;7(3):e33658.
  • Poyedinok N, Mykhaylova O, Tugay T, et al. Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.:Pers.) Pilát. Appl Biochem Biotechnol. 2015;176(2):333–343.
  • Figueiredo-Carvalho MHG, dos Santos FB, Nosanchuk JD, et al. l-Dihydroxyphenylalanine induces melanin production by members of the genus Trichosporon. FEMS Yeast Res. 2014;14(6):988–991.
  • Helan M, Rani Mi HS, Thangavelu R, et al. Production and characterization of melanin pigment from halophilic black yeast Hortaea werneckii. Int J Pharma Res Rev. 2013;2:9–17.
  • Zou Y, Tian M. Fermentative production of melanin by Auricularia auricula. J Food Process Preserv. 2017;41(3):e12909.
  • Ribera J, Panzarasa G, Stobbe A, et al. Scalable biosynthesis of melanin by the basidiomycete Armillaria cepistipes. J Agric Food Chem. 2019;67(1):132–139.
  • Suwannarach N, Kumla J, Watanabe B, et al. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS One. 2019;14(9):e0222187.
  • Schwechheimer SK, Becker J, Peyriga L, et al. Improved riboflavin production with Ashbya gossypii from vegetable oil based on 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR. Metab Eng. 2018;47:357–373.
  • Semenova EF, Shpichka AI, Presnyakova EV. Aromatic and monoterpene alcohol accumulation by Eremothecium ashbyi strains differing in riboflavinogenesis. Appl Biochem Microbiol. 2017;53(3):374–380.
  • Yatsyshyn V, Fedorovych D, Sibirny A. Metabolic and bioprocess engineering of the yeast Candida famata for FAD production. J Ind Microbiol Biotechnol. 2014;41(5):823–835.
  • Marx H, Mattanovich D, Sauer M. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris. Microb Cell Fact. 2008;7(1):23.
  • Wei S, Hurley J, Jiang Z, et al. Isolation and characterization of an Ashbya gossypii mutant for improved riboflavin production. Braz J Microbiol. 2012;43(2):441–448.
  • El-Kashef D, Youssef F, Hartmann R, et al. Azaphilones from the red sea fungus Aspergillus falconensis. Mar Drugs. 2020;18(4):204.
  • Venkatachalam M, Magalon H, Dufossé L, et al. Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: new resources for natural red-colored metabolites. J Food Compos Anal. 2018;70:35–48.
  • Said F, Razali MAA. Red pigment production by Monascus purpureus in stirred-drum bioreactor. Galeri Warisan Sains. 2017;1:13–15.
  • Cheng M-J, Wu M-D, Chan H-Y, et al. A new azaphilone derivative from the Monascus kaoliang fermented rice. Chem Nat Compd. 2019;55(1):79–81.
  • Lv J, Zhang B-B, Liu X-D, et al. Enhanced production of natural yellow pigments from Monascus purpureus by liquid culture: the relationship between fermentation conditions and mycelial morphology. J Biosci Bioeng. 2017;124(4):452–458.
  • Wang W, Liao Y, Chen R, et al. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar Drugs. 2018;16(2):61.
  • Gu B-B, Wu Y, Tang J, et al. Azaphilone and isocoumarin derivatives from the sponge-derived fungus Eupenicillium sp. 6A-9. Tetrahedron Lett. 2018;59(36):3345–3348.
  • Zhang Z-X, Yang X-Q, Zhou Q-Y, et al. New azaphilones from Nigrospora oryzae co-cultured with Beauveria bassiana. Molecules. 2018;23(7):1816.
  • Pan D, Zhang X, Zheng H, et al. Novel anthraquinone derivatives as inhibitors of protein tyrosine phosphatases and indoleamine 2,3-dioxygenase 1 from the deep-sea derived fungus Alternaria tenuissima DFFSCS013. Org Chem Front. 2019;6(18):3252–3258.
  • Zhang Y, Zhou L, Ma W, et al. Bidirectional solid fermentation using Trametes robiniophila Murr. for enhancing efficacy and reducing toxicity of rhubarb (Rheum palmatum L.). J Trad Chinese Med Sci. 2017;4(3):306–313.
  • Griffiths S, Saccomanno B, de Wit PJGM, et al. Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum. Fungal Genet Biol. 2015;84:52–61.
  • Brauers G, Edrada RA, Ebel R, et al. Anthraquinones and betaenone derivatives from the sponge-associated fungus microsphaeropsis species: novel inhibitors of protein kinases. J Nat Prod. 2000;63(6):739–745.
  • Basnet BB, Liu L, Zhao W, et al. New 1, 2-naphthoquinone-derived pigments from the mycobiont of lichen Trypethelium eluteriae Sprengel. Nat Prod Res. 2019;33(14):2044–2050.
  • Basnet B, Liu L, Zhao W, et al. New 1, 2-naphthoquinone-derived pigments from the mycobiont of lichen Trypethelium eluteriae Sprengel. Nat Prod Res. 2018;33:1–7.
  • Unagul P, Wongsa P, Kittakoop P, et al. Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J Ind Microbiol Biotechnol. 2005;32(4):135–140.
  • Gracida-Rodríguez J, Gómez-Valadez A, Tovar-Jiménez X, et al. Optimization of the biosynthesis of naphthoquinones by endophytic fungi isolated of Ferocactus latispinus. Biologia. 2017;72(12):1416–1421.
  • Chavez-Parga MC, Gonzalez-Ortega O, Negrete-Rodríguez MLX, et al. Kinetic of the gibberellic acid and bikaverin production in an airlift bioreactor. Process Biochem. 2008;43(8):855–860.
  • Santos MCd, Mendonça ML, Bicas JL. Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresour Bioprocess. 2020;7(1):13.
  • Lale GJ, Gadre RV. Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express. 2016;6(1):34.
  • Avalos J, Nordzieke S, Parra O, et al. Carotenoid production by filamentous fungi and yeasts. In: Sibirny AA, editor. Biotechnology of yeasts and filamentous fungi. Amsterdam (The Netherlands): Springer; 2017. p. 225–279.
  • Sahadevan Y, Richter-Fecken M, Kaerger K, et al. Early and late trisporoids differentially regulate β-carotene production and gene transcript levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo. Appl Environ Microbiol. 2013;79(23):7466–7475.
  • Gmoser R, Ferreira JA, Lennartsson PR, et al. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol. 2017;4(1):4.
  • Choudhury NK, Behera RK. Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplast constituents. Photosynt. 2001;39(4):481–488.
  • Mata-Gómez LC, Montañez JC, Méndez-Zavala A, et al. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact. 2014;13:12.
  • Bogacz-Radomska L, Harasym J, Piwowar A. Commercialization aspects of carotenoids. In: Galanakis CM, editor. Carotenoids: properties, processing and applications. Waltham (MA): Academic Press; 2020. p. 327–357.
  • Avalos J, Pardo-Medina J, Parra-Rivero O, et al. Carotenoid biosynthesis in fusarium. JoF. 2017;3(3):39.
  • Panesar R, Kaur S, Panesar PS. Production of microbial pigments utilizing agro-industrial waste: a review. Curr Opin Food Sci. 2015;1:70–76.
  • van Eijk GW. Presence of carotenoids and ergosterol in Mucor azygospora and in Mucor inaequisporus. Antonie Van Leeuwenhoek. 1972;38(2):163–167.
  • Pollmann H, Breitenbach J, Wolff H, et al. Combinatorial biosynthesis of novel multi-hydroxy carotenoids in the red yeast Xanthophyllomyces dendrorhous. JoF. 2017;3(1):9.
  • Bogacz-Radomska L, Harasym J. β-Carotene—properties and production methods. Food Qual Safe. 2018;2(2):69–74.
  • Markham KA, Alper HS. Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol. 2018;36(10):1085–1095.
  • Wang Q, Liu D, Yang Q, et al. Enhancing carotenoid production in Rhodotorula mucilaginosa KC8 by combining mutation and metabolic engineering. Ann Microbiol. 2017;67(6):425–431.
  • Zhang X-K, Wang D-N, Chen J, et al. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica. Biotechnol Lett. 2020;42(6):945–956.
  • Hyde KD, Xu J, Rapior S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity. 2019;97(1):1–136.
  • Martínez-Cámara S, Rubio S, del Río H, et al. Lycopene production by mated fermentation of Blakeslea trispora. In: Barreiro C, Barredo J-L, editors. Microbial carotenoids: methods and protocols. New York (NY): Springer New York; 2018. p. 257–268.
  • Shi Y-q, Xin X-l, Yuan Q-p. Improved lycopene production by Blakeslea trispora with isopentenyl compounds and metabolic precursors. Biotechnol Lett. 2012;34(5):849–852.
  • Klempova T, Basil E, Kubatova A, et al. Biosynthesis of gamma-linolenic acid and beta-carotene by Zygomycetes fungi. Biotechnol J. 2013;8(7):794–800.
  • Slaný O, Klempová T, Marcinčák S, et al. Production of high-value bioproducts enriched with γ-linolenic acid and β-carotene by filamentous fungi Umbelopsis isabellina using solid-state fermentations. Ann Microbiol. 2020;70(1):5.
  • Gervasi T, Santini A, Daliu P, et al. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate. Agroforest Syst. 2020;94(4):1229–1234.
  • Yamamoto K, Hara KY, Morita T, et al. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Microb Cell Fact. 2016;15(1):155.
  • Tramontin LRR, Kildegaard KR, Sudarsan S, et al. Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolytica via microalgal pathway. Microorganisms. 2019;7(10):472–417.
  • Silva C, Cabral J, Keulen F. Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett. 2004;26(3):257–262.
  • Estrada AF, Youssar L, Scherzinger D, et al. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol. 2008;69(5):1207–1220.
  • Tisch D, Schmoll M. Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol. 2010;85(5):1259–1277.
  • Yang J, Guo L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb Cell Fact. 2014;13:160.
  • Belozerskaya T, Gessler N, Isakova E, et al. Neurospora crassa light signal transduction is affected by ROS. J Signal Transduct. 2012;2012:791963.
  • Ádám AL, García-Martínez J, Szűcs EP, et al. The MAT1-2-1 mating-type gene upregulates photo-inducible carotenoid biosynthesis in Fusarium verticillioides. FEMS Microbiol Lett. 2011;318(1):76–83.
  • Gmoser R, Sintca C, Taherzadeh MJ, et al. Combining submerged and solid state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus N. intermedia. Waste Manag. 2019;97:63–70.
  • Kot AM, Błażejak S, Gientka I, et al. Torulene and torularhodin: “new” fungal carotenoids for industry? Microb Cell Fact. 2018;17(1):49.
  • Elfeky N, Elmahmoudy M, Zhang Y, et al. Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Applied Sciences. 2019;9(12):2444.
  • Heinekamp T, Thywißen A, Macheleidt J, et al. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol. 2012;3:440.
  • Schumacher J. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol Microbiol. 2016;99(4):729–748.
  • Upadhyay S, Torres G, Lin X. Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis. Eukaryot Cell. 2013;12(12):1641–1652.
  • Bayry J, Beaussart A, Dufrêne YF, et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect Immun. 2014;82(8):3141–3153.
  • Eisenman H, Mues M, Weber S, et al. Cryptococcus neoformans laccase catalyses melanin synthesis from both D- and L-DOPA. Microbiology (Reading)). 2007;153(12):3954–3962.
  • Janusz G, Pawlik A, Świderska-Burek U, et al. Laccase properties, physiological functions, and evolution. Int J Mol Sci. 2020;21(3):966.
  • Zhang P, Zhou S, Wang G, et al. Two transcription factors cooperatively regulate DHN melanin biosynthesis and development in Pestalotiopsis fici. Mol Microbiol. 2019;112(2):649–666.
  • Kul’ko AB, Marfenina O. Distribution of microscopic fungi along Moscow roads. Mikrobiologiia. 2001;70:709–713.
  • Belozerskaya TA, Gessler NN, Aver’Yanov AA. Melanin pigments of fungi. In: Mérillon J-M, Ramawat KG, editors. Fungal metabolites. Cham (Switzerland): Springer International Publishing; 2017. p. 263–291.
  • Ebert MK, Spanner RE, de Jonge R, et al. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi. Environ Microbiol. 2019;21(3):913–927.
  • Terán Hilares R, Orsi CA, Ahmed MA, et al. Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. Bioresour Technol. 2017;230:76–81.
  • Cordero RJ, Casadevall A. Functions of fungal melanin beyond virulence. Fungal Biol Rev. 2017;31(2):99–112.
  • Caro Y, Venkatachalam M, Lebeau J, et al. Pigments and colorants from filamentous fungi. In: Mérillon J-M, Ramawat KG, editors. Fungal metabolites. Cham (Switzerland): Springer International Publishing; 2017. p. 499–568.
  • Mukherjee G, Mishra T, Deshmukh S. Fungal pigments: an overview. In: Satyanarayana TDS, Johri B, editors. Developments in fungal biology and applied mycology. Singapore (Singapore): Springer; 2017. p. 525–541.
  • DeLiberto S, Werner S. Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manag Sci. 2016;72(10):1813–1825.
  • Hewedy M, Ashour S. Production of a melanin like pigment by Kluyveromyces marxianus and Streptomyces Chibaensis. Aust J Basic, Appl Sci. 2009;3(2):920–927.
  • Oh Y, Robertson SL, Parker J, et al. Comparative proteomic analysis between nitrogen supplemented and starved conditions in Magnaporthe oryzae. Proteome Sci. 2017;15(1):20.
  • Saleh H, Abdelrazak A, Elsayed A, et al. Optimizing production of a biopesticide protectant by black yeast. Egypt J Biol Pest Control. 2018;28(1):72.
  • Zhang M, Xiao G, Thring RW, et al. Production and characterization of melanin by submerged culture of culinary and medicinal fungi Auricularia auricula. Appl Biochem Biotechnol. 2015;176(1):253–266.
  • Rychen G, Aquilina G, Azimonti G, et al. Safety and efficacy of vitamin B2 (riboflavin) produced by Ashbya gossypii for all animal species based on a dossier submitted by BASF SE. EFSA J. 2018;16(7):5337.
  • Kato T, Park E. Riboflavin production by Ashbya gossypii. Biotechnol Lett. 2012;34(4):611–618.
  • Dmytruk KV, Sibirny AA. Candida famata (Candida flareri). Yeast. 2012;29(11):453–458.
  • Aguiar TQ, Silva R, Domingues L. Ashbya gossypii beyond industrial riboflavin production: a historical perspective and emerging biotechnological applications. Biotechnol Adv. 2015;33(8):1774–1786.
  • Park EY, Kato A, Ming H. Utilization of waste activated bleaching earth containing palm oil in riboflavin production by Ashbya gossypii. J Amer Oil Chem Soc. 2004;81(1):57–62.
  • Revuelta JL, Ledesma-Amaro R, Lozano-Martinez P, et al. Bioproduction of riboflavin: a bright yellow history. J Ind Microbiol Biotechnol. 2017;44(4–5):659–665.
  • Dietl A-M, Meir Z, Shadkchan Y, et al. Riboflavin and pantothenic acid biosynthesis are crucial for iron homeostasis and virulence in the pathogenic mold Aspergillus fumigatus. Virulence. 2018;9(1):1036–1049.
  • Meir Z, Osherov N. Vitamin biosynthesis as an antifungal target. JoF. 2018;4(2):72.
  • Guhr A, Horn M, Weig R. Vitamin B2 (Riboflavin) increases drought tolerance of Agaricus bisporus. Mycologia. 2017;109(6):860–873.
  • Patel MV, Chandra TS. Metabolic engineering of Ashbya gossypii for enhanced FAD production through promoter replacement of FMN1 gene. Enzyme Microb Technol. 2020;133:109455.
  • Cheng.   Improved riboflavin production by Eremothecium ashbyii using glucose and yeast extract. African J Biotechnol. 2011;10(70):15777–15782.
  • Tsyrulnyk AO, Andreieva YA, Ruchala J, et al. Expression of yeast homolog of the mammal BCRP gene coding for riboflavin efflux protein activates vitamin B2 production in the flavinogenic yeast Candida famata. Yeast. 2020;37(9–10):467–473.
  • Dmytruk K, Lyzak O, Yatsyshyn V, et al. Construction and fed-batch cultivation of Candida famata with enhanced riboflavin production. J Biotechnol. 2014;172:11–17.
  • Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev. 2011;75(2):321–360.
  • Roya D, Mohammad R, Najafzadeh H, et al. Isolation of two riboflavin producer yeasts from environment and optimization of vitamin production. J Appl Env Biol Sci. 2013;3:23–29.
  • Siva Mathiyalagan BKM. A review on analytical methods for the determination of natural colorants (green) in food commodities and beverages. Biointerface Res Appl Chem. 2020;20(2):4493–5010.
  • Hossain MF, Rashid M, Sidhu R, et al. A simplified, specific HPLC method of assaying thiamine and riboflavin in mushrooms. Int J Food Sci. 2019;2019:8716986.
  • Swalaha FM. Production by fungi on edible oil effluent [Dissertateion]. Durban (South Africa): Durban University of Technology; 2010.
  • Batghare AH, Roy K, Khaire KC, et al. Mechanistic investigations in ultrasound-induced intensification of fermentative riboflavin production. Bioresour Technol Rep. 2020;9:100380.
  • Laudert D, Hohmann H3. Application of enzymes and microbes for the industrial production of vitamins and vitamin-like compounds. In: Moo-Young M, editor. Comprehensive biotechnology. 3rd ed. Oxford (UK): Pergamon; 2011. p. 616–634.
  • Frisvad J, Yilmaz N, Thrane U, et al. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS One. 2013;8(12):e84102.
  • Chen W, Chen R, Liu Q, et al. Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chem Sci. 2017;8(7):4917–4925.
  • Yu H, Sperlich J, Höfert S-P, et al. Azaphilone pigments and macrodiolides from the coprophilous fungus Coniella fragariae. Fitoterapia. 2019;137:104249.
  • Liu L, Zhao J, Huang Y, et al. Diversifying of chemical structure of native Monascus pigments. Front Microbiol. 2018;9:3143.
  • Chen W, Feng Y, Molnár I, et al. Nature and nurture: confluence of pathway determinism with metabolic and chemical serendipity diversifies Monascus azaphilone pigments. Nat Prod Rep. 2019;36(4):561–572.
  • Venkatachalam M, Zelena M, Cacciola F, et al. Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. J Food Compos Anal. 2018;67:38–47.
  • Liu B-H, Wu T-S, Su M-C, et al. Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J Agric Food Chem. 2005;53(1):170–175.
  • Liang B, Du X-J, Li P, et al. Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front Microbiol. 2018;9:1374.
  • Huang Z-R, Zhou W-B, Yang X-L, et al. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses. Food Res Int. 2018;106:626–635.
  • Ketkaeo S, Sanpamongkolchai W, Morakul S, et al. Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry. J Gen Appl Microbiol. 2020;66(3):163–168.
  • Lim YJ, Lee DW, Park S-H, et al. Extractive fermentation of Monascus purpureus promotes the production of oxidized congeners of the pigment azaphilone. JABC. 2018;61(4):327–334.
  • Wu WT, Wang PM, Chang YY, Huang TK, et al. Suspended rice particles for cultivation of Monascus purpureus in a tower-type bioreactor. Appl Microbiol Biotechnol. 2000;53(5):542–544.
  • Liu J, Ren Y, Yao S. Repeated-batch cultivation of encapsulated Monascus purpureus by polyelectrolyte complex for natural pigment production. Chin J Chem Eng. 2010;18(6):1013–1017.
  • Chen G, Yang S, Wang C, et al. Investigation of the mycelial morphology of Monascus and the expression of pigment biosynthetic genes in high-salt-stress fermentation. Appl Microbiol Biotechnol. 2020;104(6):2469–2479.
  • Caro Y, Anamale L, Fouillaud M, et al. Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect. 2012;2(5):174–193.
  • Prateeksha YM, Singh BN, Sudheer S, et al. Chrysophanol: a natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules. 2019;9(2):68.
  • Gessler NN, Egorova AS, Belozerskaya TA. Fungal anthraquinones. Appl Biochem Microbiol. 2013;49(2):85–99.
  • Stępień Ł, Lalak-Kańczugowska J, Witaszak N, et al. Fusarium secondary metabolism biosynthetic pathways: so close but so far away. In: Mérillon J-M, Ramawat KG, editors. Co-evolution of secondary metabolites. Cham (Switzerland): Springer International Publishing; 2020. p. 211–247.
  • Griffiths S, Mesarich CH, Saccomanno B, et al. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization. Proc Natl Acad Sci USA. 2016;113(25):6851–6856.
  • Yang J, Huang Y, Xu H, et al. Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks. Food Chem. 2020;313:126138.
  • Futuro DF, Nicoletti CD, Borba-Santos LP, et al. The antifungal activity of naphthoquinones: an integrative review. An Acad Bras Cienc. 2018;90(1):1187–1214.
  • Lebeau J, Petit T, Clerc P, et al. Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by Fusarium oxysporum. Biotechnol Prog. 2019;35(1):e2738.
  • Tyurenkov Vladimir A, Tyurenkov Alexey A, Turiyansky Yuriy D. inventors; LYCORED LTD, assignee. Preparation for radio protection. US patent US 2015/0328269 A1. 2015.
  • Luo WEI, Cheng M, Gong Z, et al. inventors; UNIV JIANGNAN, assignee. Crga gene of Blakeslea trispora negative bacteria as well as cloning method and application of Crga gene. CN patent CN 107099541 A. 2017.
  • Chevreux B, Royer J. inventors; DSM IP ASSETS BV, assignee. Novel ferredoxin. WO patent WO 2019/016383 A1. 2019.
  • Pätz Robert R, Papert T, Peter V, et al. inventors; HOCHSCHULE ANHALT, assignee. Process for preparing carotenoids by submerged fermentation with mixed cultures of (+) And (−) strains of the fungus Blakeslea trispora. WO patent WO 2015/173236 A1. 2015.
  • Li Y, Chi S, He Y, et al. inventors; UNIV CHINA AGRICULTURAL, assignee. Phaffia rhodozyma strain obtained by efficiently over-expressing endogenous astaxanthin synthetase gene. CN patent CN 104278015 A. 2015.
  • Du X, Bai M, Huang Y, et al. inventors; UNIV JIMEI, assignee. Method for separating and purifying beta-carotene from phaffia rhodozyma. CN patent CN 107501151 A. 2017.
  • Bailey R, Madden Kevin T, Trueheart J. inventors. DSM IP ASSETS BV, assignee. Production of carotenoids in oleaginous yeast and fungi. US patent US 2013/0045504 A1. 2013.
  • Chen MIN, Shen N, Chen Z. inventors; UNIV YANGZHOU, assignee. Azaphilones compounds in marine fungus Hk1-6 and application of azaphilones compounds as mrsa-resistant drug. CN patent CN 108101878 A. 2018.
  • Li J, Yang XIN, Liu LAN, et al. inventors; UNIV SUN YAT SEN, assignee. Marine fungus-derived azaphilone dimer compound, and preparation method and application thereof. CN patent CN 103911407 A. 2014.
  • Tolborg G, Petersen Thomas I, Larsen Thomas O, et al. inventors; UNIV DANMARKS TEKNISKE, assignee. Process for producing an azaphilone in talaromyces atroroseus. WO patent WO 2018/206590 A1. 2018.
  • Koehler K. inventor; CHR HANSEN NATURAL COLORS AS, assignee. Coloring composition comprising monascus red pigment and a hydrocolloid. WO patent WO 2016/008779 A1. 2016.
  • Pan T-M, Lee C-L. inventors; SUNWAY BIOTECH CO LTD, assignee. Composition and method for prevention and treatment of Alzheimer’s disease. EP patent EP 2072055 B1. 2016.
  • Chen LI, Li Y, Li X, et al. inventors; UNIV FUZHOU, assignee. Iso-penicillixanthone a derived from penicillium oxalicum and application to cervical cancer. CN patent CN 109776478 A. 2019.
  • Agievich Mariya A, Gribankova Anzhela A, Kudinov Pavel V. inventors; OBSHCHESTVO S OGRANICHENNOJ OTVETSTVENNOSTYU RUSSKIE IGRUSHKI, assignee. Inhibitor Of micromycetic corrosion of St3 steel with Cu-Zn galvanic coating. RU patent RU 2674499 C1. 2018.
  • Lorito M, Vecchi A. inventors; ALPHA BIOPESTICIDES LTD, assignee. New product. US patent US 2018/0146683 A1. 2018.
  • Lyu X, Huang X, Qi F, et al. inventors; QINGDAO INST BIOENERGY & BIOPROCESS TECH CAS, assignee. Genetic engineering strain for accumulating emodin and construction method and application thereof. CN patent CN 110527638 A. 2019.
  • Park JH. inventor; JAEHWAN PARK, assignee. B2 Vitamin B2 fermentation deodorant and method thereof. KR patent KR 101924281 B1. 2018.
  • Ye M, Li S, Shi F, et al. inventors; UNIV HEFEI TECHNOLOGY, assignee. Application of lachnum melanin as anti-renal-failure medicine. CN patent CN 106389482 A. 2017.
  • Koike K, Saito Y, Obata H, et al. inventors; LOREAL SA, assignee. Process for preparing a hair dye composition. EP patent EP 1820491 B1. 2018.
  • Solis Herrera A. inventor; SOLIS HERRERA ARTURO, assignee. Process and cell for generating electric current. WO patent WO 2016/125098 A1. 2016.
  • Dufossé L. Red colourants from filamentous fungi: are they ready for the food industry? J Food Compos Anal. 2018;69:156–161.
  • Abdel-Raheam HEF, Abdel-Mageed WS, Abd El-Rahman MAM. Optimization of production of Monascus ruber pigments on broth medium and their application in flavored yogurts. Egypt J Food Sci. 2019;47(2):271–283.
  • Kang B, Zhang X, Wu Z, et al. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb Technol. 2014;55:50–57.
  • Merinas-Amo R, Martínez-Jurado M, Jurado-Güeto S, et al. Biological effects of food coloring in in vivo and in vitro model systems. Foods. 2019;8(5):176.
  • Challa S, Dutta T, Neelapu NRR. Fungal white biotechnology applications for food security: Opportunities and challenges. In: Yadav A, Singh S, Mishra S, Gupta A, editors. Cham (Switzerland): Springer; 2019. p. 119–148.
  • Nigam PS, Luke JS. Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci. 2016;7:93–100.
  • Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules. 2012;17(3):3202–3242.
  • Koli SH, Suryawanshi RK, Mohite BV, et al. Prospective of Monascus pigments as an additive to commercial sunscreens. Nat Prod Commun. 2019;14(12):1934578X1989409.
  • Sánchez-Muñoz S, Mariano-Silva G, Leite MO, et al. Production of fungal and bacterial pigments and their applications. In: Verma ML, Chandel AK, editors. Biotechnological production of bioactive compounds. Amsterdam (The Netherlands): Elsevier; 2020. p. 327–361.
  • Rajendran P, Sakthi AR, Prabhu S. Evaluation of In vitro antioxidant activity of fungal pigments. The Pharma Innov J. 2019;8(6):326–330.
  • Bouhri Y, Askun T, Tunca B, et al. The orange-red pigment from Penicillium mallochii: pigment production, optimization, and pigment efficacy against Glioblastoma cell lines. Biocatal Agric Biotechnol. 2020;23:101451.
  • Amache R, Yerramalli S, Giovanni S, et al. Quorum sensing involvement in response surface methodology for optimisation of sclerotiorin production by Penicillium sclerotiorum in shaken flasks and bioreactors. Ann Microbiol. 2019;69(13):1415–1423.
  • Sajid S. Applications of fungal pigments in biotechnology. Pure Appl Biol. 2018;7(2):1–9.
  • Weber G, Chen H-L, Hinsch E, et al. Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Coloration Technol. 2014;130(6):445–452.
  • Hernández VA, Machuca Á, Saavedra I, et al. Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J Microbiol Biotechnol. 2019;35(10):160.
  • Song T, Cheng F, Sun J. Stain capacity of three fungi on two fast-growing wood. J for Res. 2021;32(1):427–434.
  • Robinson S, Tudor D, Cooper P. Utilizing pigment-producing fungi to add commercial value to American beech (Fagus grandifolia). Appl Microbiol Biotechnol. 2012;93(3):1041–1048.
  • Liu Y, Zhang Y, Yu Z, et al. Microbial dyes: dyeing of poplar veneer with melanin secreted by Lasiodiplodia theobromae isolated from wood. Appl Microbiol Biotechnol. 2020;104(8):3367–3377.
  • Malo ME, Dadachova E. Melanin as an energy transducer and a radioprotector in black fungi. In: Tiquia-Arashiro SM, Grube M, editors. Fungi in extreme environments: ecological role and biotechnological significance. Cham (Switzerland): Springer International Publishing; 2019. p. 175–184.
  • Kallscheuer N. Engineered microorganisms for the production of food additives approved by the European Union-a systematic analysis. Front Microbiol. 2018;9:1746.
  • Kim D, Ku S. Beneficial effects of Monascus sp. KCCM 10093 pigments and derivatives: a mini review. Molecules. 2018;23(1):98.
  • Kalra R, Conlan XA, Goel M. Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem. 2020;8:369.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.