1,263
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production

, , , &
Pages 1131-1152 | Received 02 Jul 2020, Accepted 25 Feb 2021, Published online: 02 May 2021

References

  • MycoBank Fungal Databases Nomenclature and Species Banks. [Internet]. The Netherlands: International Mycological Association (IMA) and the Westerdijk Fungal Biodiversity Institute; 2019; [cited 2021 Apr 18]. Available from: http://www.mycobank.org/Biolomics.aspx?Table=Mycobank&Rec=106759&Fields=All
  • Barnett JA, Payne RW, Yarrow D. Yeasts: characteristics and identification. 3rd ed. Cambridge (UK): Cambridge University Press; 2000.
  • Hensing M, Vrouwenvelder H, Hellinga C, et al. Production of extracellular inulinase in high-cell-density fed-batch cultures of Kluyveromyces marxianus. Appl Microbiol Biotechnol. 1994;42:516–521.
  • Rouwenhorst RJ. Production and localization of inulinases in Kluyveromyces yeasts [dissertation]. Delft (NL): Delft University of Technology; 1990.
  • Jozala AF, Geraldes DC, Tundisi LL, et al. Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol. 2016;47:51–63.;
  • Vitorino LC, Bessa LA. Technological microbiology: development and applications. Front Microbiol. 2017;8:827.
  • Tittarelli F, Varela JÁ, Gethins L, et al. Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses. Microb Genom. 2018;4(2):1–10.
  • Rajkumar AS, Varela JA, Juergens H, et al. Biological parts for Kluyveromyces marxianus synthetic biology. Front Bioeng Biotechnol. 2019;7:97.
  • Varela JA, Gethins L, Stanton C, et al. Applications of Kluyveromyces marxianus in Biotechnology. In: Satyanarayana T, Kunze G, editors. Yeast diversity in human welfare. Singapore: Springer; 2017. p. 439–453.
  • Fonseca GG, Gombert AK, Heinzle E, et al. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res. 2007;7(3):422–435.
  • Rocha SN, Abrahão-Neto J, Gombert AK. Physiological diversity within the Kluyveromyces marxianus species. Antonie Van Leeuwenhoek. 2011;100(4):619–630.
  • Lane MM, Burke N, Karreman R, et al. Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek. 2011;100:507–519.
  • Olivares-Marin IK, González-Hernández JC, Regalado-Gonzalez C, et al. Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. J Vis Exp. 2018;139:e58192.
  • Mo W, Ren H, Yang X, et al. Comparative genomic analysis reveals metabolic mechanisms for Kluyveromyces marxianus’ fast growth during evolution. 16 Oct 2019; PREPRINT (Version 1) available at Research Square [+https://doi.org/10.21203/rs.2.18764/v1]
  • Lertwattanasakul N, Kosaka T, Hosoyama A, et al. Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels. 2015;8:47.
  • Matsumoto I, Arai T, Nishimoto Y, et al. Thermotolerant yeast Kluyveromyces marxianus reveals more tolerance to heat shock than the brewery yeast Saccharomyces cerevisiae. Biocontrol Sci. 2018;23(3):133–138.
  • Erdei É, Mólnar M, Gyémánt G, et al. Trehalose overproduction affects the stress tolerance of Kluyveromyces marxianus ambiguously. Bioresour Technol. 2011;102(14):7232–7235.
  • Mejía-Barajas J, Montoya-Pérez R, Manzo-Avalos S, et al. Fatty acid addition and thermotolerance of Kluyveromyces marxianus. FEMS Microbiolol Lett. 2018;365(7):fny043.
  • Fu X, Li P, Zhang L, Li S. Understanding the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation based on integration of RNA-Seq and metabolite data. Appl Microbiol Biotechnol. 2019;103(6):2715–2729.
  • National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]; [cited 2020 Jan 15]. Available from: https://www.ncbi.nlm.nih.gov/
  • Lens.org [Internet]. The Lens: patent database; [cited 2021 Jan 25]. Available from: https://link.lens.org/6Dl1DoFz58e
  • Lens.org [Internet]. The Lens: patent database; [cited 2021 Jan 25]. Available from: https://link.lens.org/hPXsZe0Lc7c
  • Research and Markets [Internet]; [cited 2021 Jan 26]. Available from: https://www.prnewswire.com/news-releases/insights-on-the-worldwide-yeast-industry-to-2025–-impact-of-covid-19-301072917.html.
  • Research and Markets [Internet]; [cited 2021 Jan 26]. Available from: https://www.prnewswire.com/news-releases/the-global-feed-yeast-market-size-estimated-at-usd-1-8-billion-in-2020-and-is-projected-to-grow-at-a-cagr-of-5-1-to-reach-usd-2-3-billion-by-2025–301118807.html
  • Markets and Markets [Internet]; [cited 2021 Jan 26]. Available from: https://www.marketsandmarkets.com/Market-Reports/organic-yeast-market-159691317.html
  • Öhgren K, Bura R, Lesnicki G, et al. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreaded corn stover. Process Biochem. 2007;42(5):839–854.
  • Olofsson K, Bertilsson M, Lidén GA. Short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7.
  • Fan M, Zhang S, Ye G, et al. Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading. Biotechnol Biofuels. 2018;11:329.
  • Löser C, Urit T, Keil P, et al. Studies on the mechanism of synthesis of ethyl acetate in Kluyveromyces marxianus DSM 5422. Appl Microbiol Biotechnol. 2015;99(3):1131–1144.
  • McTaggart TL, Bever D, Bassett S, et al. Synthesis of polyketides from low cost substrates by the thermotolerant yeast Kluyveromyces marxianus. Biotechnol Bioeng. 2019;116(7):1721–1730.
  • Wang W, Li Z, Gan L, et al. Dietary supplemental Kluyveromyces marxianus alters the serum metabolite profile in broiler chickens. Food Funct. 2018;9(7):3776–3787.
  • Sarri S, Misaelides P, Papanikolaou M, et al. Uranium removal from acidic aqueous solutions by Saccharomyces cerevisiae, Debaryomyces hansenii, Kluyveromyces marxianus and Candida colliculosa. J Radioanal Nucl Chem. 2009;279(3):709–711.
  • Sofia D, Joshi Y A, Poletto M. Kinetics of Bioethanol production from lactose converted by Kluyveromyces marxianus. Chem Eng Trans. 2013;32:1135–1140.
  • Parrondo J, Garcia LA, Diaz M. Nutrient balance and metabolic analysis in a Kluyveromyces marxianus fermentation with lactose-added whey. Braz J Chem Eng. 2009;26(3):445–456.
  • Magalhães-Guedes KT, Rodrigues AK, Gervasio IM, et al. Ethanol production from deproteinized cheese whey fermentations by co-cultures of Kluyveromyces marxianus and Saccharomyces cerevisiae. Afr J Microbiol Res. 2013;7(13):1121–1127.
  • Rosenberg, M, Tomáška, M, Kaňuch, J, et al. Improved ethanol production from whey with Saccharomyces cerevisiae using permeabilized cells of Kluyveromyces marxianus. Acta Biotechnol. 1995;15(4):387–390.
  • Yuan WJ, Zhao XQ, Ge XM, et al. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol. 2008;105(6):2076–2083.
  • Charoensopharat K, Thanonkeo P, Thanonkeo S, et al. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulinutilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie van Leeuwenhoek. 2015;108:173–190.
  • Biswas R, Uellendahl H, Ahring BK. Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054. AMB Express. 2013;3(1):42–47.
  • Kim S, Kwon D, Park J, et al. Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose. Biotechnol Biofuels. 2019;12:1–9.
  • Nitiyon S, Keo-Oudone C, Murata M, et al. Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21. SpringerPlus. 2016;5:185.
  • Jönsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112.
  • Wang D, Wu D, Yang X, et al. Transcriptomic analysis of thermotolerant yeast Kluyveromyces marxianus in multiple inhibitors tolerance. RSC Adv. 2018;8:14177–14192.
  • Margaritis A, Bajpai P. Direct fermentation of D-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol. 1982;44(5):1039–1041.
  • Signori L, Passolunghi S, Ruohonen L, et al. Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact. 2014;13:51.
  • Dasgupta D, Ghosh D, Bandhu S, et al. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453. Microbiol Res. 2017;200:64–72.
  • Cheng KK, Wu J, Lin ZN, et al. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol Biofuel. 2014;7:166–174.
  • Franceschin G, Sudiro M, Ingram T, et al. Conversion of rye straw into fuel and xylitol; a technical and economic assessment based on experimental data. Chem Eng Res Des. 2011;89(6):631–640.
  • Wang R, Li L, Zhang B, et al. Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway. J Ind Microbiol Biotechnol. 2013;40(8):841–854.
  • Zhang J, Zhang B, Wang D, et al. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metab Eng. 2015;31:140–152.
  • Zhang B, Li L, Zhang J, et al. Improving ethanol and xylitol fermentation at elevated temperature through substituition of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol. 2013;40(3–4):305–316.
  • Sakihama Y, Hidese R, Hasunuma T, et al. Increased flux in acetyl-CoA synthetic pathway and TCA cycle of Kluyveromyces marxianus under respriratory conditions. Sci Rep. 2019;9:1–10.
  • Bellaver LH, Carvalho NMB, Abrahão-Neto J, et al. Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. FEMS Yeast Res. 2004;4(7):691–698.
  • Fonseca GC, Carvalho NMB, Gombert AK. Growth of the yeast Kluyveromyces marxianus CBS 6556 on different sugar combinations as sole carbon and energy source. Appl Microbiol Biotechnol. 2013;97:5055–5067.
  • Ricci M, Martini S, Bonechi C, et al. Inhibition effects of ethanol on the kinetics of glucose metabolism by Saccharomyces cerevisiae: NMR and modelling study. Chem Phys Lett. 2004;387(4–6):377–382.
  • Thomas DS, Rose AH. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition. Arch Microbiol. 1979;122:49–55.
  • Leão C, Van Uden N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta. 1984;774(1):43–48.
  • Cartwright CP, Verzey FJ, Rose AH. Effect of ethanol on activity of the plasma-membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. J Gen Microbiol. 1987;133(4):857–865.
  • Gášková D, Plášek J, Zahumenský J, Benešová I. Alcohols are inhibitors of Saccharomyces cerevisiae multidrug-resistance pumps Pdr5p and Snq2p. FEMS Yeast Res. 2013;13(8):782–795.
  • Rosa MF, Sá-Correia I. Ethanol tolerance and activity of plasma membrane ATPase in Kluyveromyces marxianus and Saccharomyces cerevisiae. Enzyme Microb Technol. 1992;14:23–27.
  • Luong JHT. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol. Bioeng. 1985;27(3):280–285.
  • Zhang Q, Wu D, Lin Y, et al. Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels. 2015;29:1019–1027.
  • Tavares B, Felipe MGA, Santos JC, et al. An experimental and modeling approach for ethanol production by Kluyveromyces marxianus in stirred tank bioreactor using vacuum extraction as a strategy to overcome product inhibition. Renew Energ. 2019;131:261–267.
  • Mo W, Wang M, Zhan R, et al. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol Biofuels. 2019;12:63.
  • Diniz RHS, Villada JC, Alvim, MCT, et al. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress. Appl Microbiol Biotechnol. 2017;101:6969–6980.
  • Henderson CM, Block DE. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl Environ Microbiol. 2014;80(10):2966–2972.
  • Madeira Jr JV, Gombert AK. Towards high-temperature fuel ethanol production using Kluyveromyces marxianus: on the search for plug-in strains for the Brazilian sugarcane – based biorefinery. Biomass Bioenerg. 2018;119:217–228.
  • Yan J, Wei Z, Wang Q, et al. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianus strain. Bioresour Technol. 2015;193:103–109.
  • Rodrussamee N, Lertwattanasakul N, Hirata K, et al. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol. 2011;90(4):1573–1586.
  • Zhang G, Liu J, Kong II, et al. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol. 2015;29:49–57.
  • Zhang C. Lignocellulosic ethanol: technology and economics. In: Yun Y, editors. Alcohol fuels – current technologies and future prospect. London (UK): IntechOpen; 2019. pp. 1–22.
  • Hua Y, Wang J, Zhu Y, et al. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Fact. 2019;18(1):1–18.
  • Silva DDV, Arruda PV, Vicente FMCF, et al. Evaluation of the fermentative potential of Kluyveromyces marxianus ATCC 36907 in cellulosic and hemicellulosic sugarcane bagasse hydrolysates on xylitol and ethanol production. Ann Microbiol. 2015;65(2):687–694.
  • Rugthaworn P, Murata Y, Machida M, et al. Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp. Appl Biochem Biotechnol. 2014;173(5):1197–1208.
  • Furtado AT, Hekkert MP, Negro SO. Of actors, functions, and fuels: exploring a second generation ethanol transition from a technological innovation systems perspective in Brazil. Energy Res Soc Sci. 2020;70:101706.
  • Susmozas A, Martín-Sampedro R, Ibarra D, et al. Process strategies for the transition of 1G to advanced bioethanol production. Processes 2020;8(10):1310.
  • Goshima T, Tsuji M, Inoue H, et al. Bioethanol production fronm lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Biosci Biotechnol Biochem. 2013;77(7):1505–1510.
  • Dussan K, Silva D, Moraes E, et al. Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans. 2014;38:433–438.
  • Banerjee S, Mudliar S, Sen R, et al. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Bioref. 2010;4(1):77–93.
  • Barbosa FC, Silvello MA, Goldbeck R. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol Lett. 2020;42:875–884.
  • Choudhary J, Singh S, Nain L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol. 2016;21:82–92.
  • Sandoval-Nuñez D, Arellano-Plaza M, Gschaedler A, et al. A comparative study of lignocellulosic ethanol productivities by Kluyveromyces marxianus and Saccharomyces cerevisiae. Clean Techn Environ Policy. 2018;20(7):1491–1499.
  • Kuloyo OO, Du Preez JC, García-Aparício MP, et al. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World J Microbiol Biotechnol. 2014;30:3173–3183.
  • Guilherme AA, Dantas PVF, Padilha CEA, et al. Ethanol production from sugarcane bagasse: use of different fermentation strategies to enhance an environmental-friendly process. J Environ Manage. 2019;234:44–51.
  • da Costa JA, Marques Jr. JE, Gonçalves LRB, et al. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide. Bioresour Technol. 2015;179:249–259.
  • Camargo D, Gomes SD, Sene L. Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907. Bioprocess Biosyst Eng. 2014;37:2235–2242.
  • Castro RCA, Roberto IC. Selection of a thermotolerant Kluyveromyces marxianus strain with potential application for cellulosic ethanol production by simultaneous saccharification and fermentation. Appl Biochem Biotechnol. 2014;172:1553–1564.
  • García-Aparicio MP, Oliva JM, Manzanares P, et al. Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel. 2011;90:1624–1630.
  • Tomás-Pejó E, Oliva JM, González A, et al. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel. 2009;88(11):2142–2147.
  • Ballesteros M, Oliva JM, Negro MJ, et al. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochem. 2004;39(12):1843–1848.
  • Kim S, Park JM, Kim CH. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555. Appl Biochem Biotechnol. 2013;169:1531–1545.
  • Cheng K, Zhang J, Ping W, et al. Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Appl Biochem Biotechnol. 2008;151:43–50.
  • Saini JK, Agrawal R, Satlewal A, et al. Second generation bioethanol production at high gravity of pilot-scale pretreated wheat straw employing newly isolated thermotolerant yeast Kluyveromyces marxianus DBTIOC-35. RSC Adv. 2015;5:37485–37494.
  • Ganesan S, Gopal NO. Production of bioethanol from bamboo using thermotolerant yeast with simultaneous saccharification and fermentation process. Int J Curr Microbiol App Sci. 2019;8(03):1718–1727.
  • Yu C, Jiang B, Duan K. Production of bioethanol from carrot pomace using the thermotolerant yeast Kluyveromyces marxianus. Energies. 2013;6:1794–1801.
  • Suttikul S, Srinorakutara T, Butivate E, et al. Comparison of SHF and SSF processes for ethanol production from alkali-acid pretreated sugarcane trash. KKU Res J. 2016;21(25):229–235.
  • Diaz JT, Chinn MS, Truong V. Simultaneous saccharification and fermentation of industrial sweetpotatoes for ethanol production and anthocyanins extraction. Ind Crops Prod. 2014;62:53–60.
  • Chang Y, Chang K, Chen C, et al. Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation. 2018;4(2):45.
  • Amaya-Delgado L, Flores-Cosío G, Sandoval-Nuñez D, et al. Comparative of Lignocellulosic Ethanol Production by Kluyveromyces marxianus and Saccharomyces cerevisiae. In: Yuksel E, Gok A, Eyvaz M, editors. Special topics in renewable energy systems. London (UK): IntechOpen; 2018. p. 1–21.
  • Sorokina KN, Taran OP, Medvedeva TB, et al. Cellulose biorefinery based on a combined catalytic and biotechnological approach for production of 5‐HMF and ethanol. ChemSusChem. 2017;10(3):562–574.
  • Faga BA, Wilkins MR, Banat IM. Ethanol production though simultaneous saccharification and fermentation of switchgrass using Saccharomyces cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains. Bioresour Technol. 2010;101:2273–2279.
  • Boyle M, Barron N, McHale AP. Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Biotechnol Lett. 1997;19:49–51.
  • Ballesteros M, Oliva JM, Manzanares P, et al. Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microbiol Biotechnol. 2002;18:559–561.
  • Paschos T, Xiros C, Christakopoulos P. Simultaneous saccharification and fermentation by co-cultures of Fusarium oxysporum and Saccharomyces cerevisiae enhances ethanol production from liquefied wheat straw at high solid content. Ind Crops Prod. 2015;76:793–802.
  • Gao Y, Xu J, Yuan Z, et al. Ethanol production from sugarcane bagasse by fed-batch simultaneous saccharification and fermentation at high solids loading. Energy Sci Eng. 2018;6(6):810–818.
  • Ballesteros I, Oliva JM, Ballesteros M, et al. Optimization of the simultaneous saccharification and fermentation process using thermotolerant yeasts. Appl Biochem Biotechnol. 1993;39–40:201–211.
  • Nedeva T, Dolashka-Angelova P, Moshtanska V, et al. Purification and partial characterization of Cu/Zn superoxide dismutase from Kluyveromyces marxianus yeast. J Chromatogr B. 2009;877(29):3529–3536.
  • Silva-Santisteban BOY, Maugeri Filho F. Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme Microb Technol. 2005;36(5–6):717–724.
  • Rech R, Cassini CF, Secchi A, et al. Utilization of protein-hydrolyzed cheese whey for production of β-galactosidase by Kluyveromyces marxianus. J Ind Microbiol Biotechnol. 1999;23(2):91–96.
  • Ramírez-Zavala B, Mercado-Flores Y, Hernández-Rodríguez C, et al. Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiol Lett. 2004;235(2):369–375.
  • Jolivet P, Bergeron E, Benyair H, et al. Characterization of major protein phosphatases from selected species of Kluyveromyces. Comparison with protein phosphatases from Yarrowia lipolytica. Can J Microbiol. 2001;47(9):861–870.
  • Fabre CE, Blanc PJ, Goma G. Production of 2‐phenylethyl alcohol by Kluyveromyces marxianus. Biotechnol Prog. 1998;14:270–274.
  • Etschmann MMW, Sell D, Schrader J. Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Biotechnol Bioeng. 2005;92(5):624–634.
  • Urit T, Li M, Bley T, et al. Growth of Kluyveromyces marxianus and formation of ethyl acetate depending on temperature. Appl Microbiol Biotechnol. 2013;97:10359–10371.
  • Yocum RR, Dole S, Pero JG, inventors; Myriant Corporation, assignee. Production of organic acids by fermentation at low pH. World patent WO 2014/043591A1. 2014 March 20. English.
  • Albuquerque TL, Silva Jr IJ, Macedo GR, et al. Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem. 2014;49(11):1779–1789.
  • Kim JS, Park JB, Jang SW, et al. Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl Biochem Biotechnol. 2015;176(7):1975–1984.
  • Gupte AM, Nair JS. Biosorption of cooper by the yeast Kluyveromyces marxianus grown on whey. DY Patil J Health Sci. 2013;1(1):3–38.
  • Scharpf LG, Seitz EW, Morris JA, et al. Generation of flavor and odor compounds through fermentation processes. In: Parliment TH, Croteau R, editors. Biogeneration of aroma. Washington (DC): American Chemical Society; 1986. p. 323–346.
  • Morrissey JP, Etschmann MM, Schrader J, et al. Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules. Yeast. 2015;32(1):3–16.
  • Lima LA, Diniz RHS, Queiroz MV, et al. Screening of yeasts isolated from brazilian environments for the 2-phenylethanol (2-PE) production. Biotechnol Bioproc E. 2018;23:326–332.
  • Chia M, Schwartz TJ, Shanks BH, et al. Triacetic acid lactone as a potential biorenewable platform chemical. Green Chem. 2012;14:1850–1853.
  • Aksu Z, Dönmez G. The use of molasses in copper (II) containing wastewaters: effects on growth and copper (II) bioaccumulation properties of Kluyveromyces marxianus. Process Biochem. 2000;36(5):451–458.
  • Skountzou P, Soupioni M, Bekatorou A, et al. Lead (II) uptake during baker’s yeast production by aerobic fermentation of molasses. Process Biochem. 2003;38(10), 1479–1482.
  • Malik A. Metal bioremediation through growing cells. Environ Int. 2004;30(2):261–278.
  • Yazgan, A, Özcengiz, G. Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett. 1994;16(8):871–874.
  • Chandel AK, Albarelli JQ, Santos DT, Chundawat SP. Comparative analysis of key technologies for cellulosic ethanol production from brazilian sugarcane bagasse at the commercial-scale. Biofuels Bioprod Bioref. 2019;13:994–1014.
  • Chandel AK, Garlapati VK, Singh AK, et al. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018;264:370–381.
  • Nambu-Nishida Y, Nishida K, Hasunuma T, et al. Development of a comprehensive set of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus yeast strain. Sci Rep. 2017;7:8993.
  • Varela JA, Puricelli M, Montini N, et al. Expansion and diversification of mfs transporters in Kluyveromyces marxianus. Front Microbiol. 2019;10(9):3330.
  • Kwon DH, Park JB, Hong E, et al. Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1.Bioprocess Biosyst Eng. 2019;42:63–70.
  • Zhou J, Zhu P, Hu X, et al. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. Biotechnol Biofuels. 2018;11:235.
  • Žolnere K, Ciproviča I. The comparison of commercially available β-galactosidases for dairy industry: review. Food Science. 2017.
  • Belloch C, Querol A, Barrio E. Yeasts and Molds Kluyveromyces spp. In John W. Fuquay editor. Encyclopedia of dairy sciences. 2nd ed, Vol 4, Cambridge: Academic Press; 2011. p. 754–764, ISBN 9780123744074.
  • Cernak P, Estrela R, Poddar S, et al. Engineering Kluyveromyces marxianus as a robust synthetic biology platform host. mBio. 2018;9(5):1–16.
  • Kim T, Lee S, Oh M. Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzyme Microb Technol. 2014;61–62:44–47.
  • Koyanagi T. Genetic engineering of Kluyveromyces marxianus for effective production of the rose-like odor 2-phenylethanol. Noda Institute for Scientific Research GRANT 2013 Young Investigator Research Grant Outline of Research Result, 2013.
  • Chang J, Ho C, Mao C, et al. A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production. Appl Energy. 2014;132:465–474.
  • Payen C, Thompson D. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast. 2019;36(12):685–700.
  • Karim A, Gerliani N, Aider M. Kluyveromyces marxianus: an emerging yeast cell factory for applications in food and biotechnology. Int J Food Microbiol. 2020;333:108818.
  • Suzuki T, Hoshino T, Matsushika A. High-temperature ethanol production by a series of recombinant xylose fermenting Kluyveromyces marxianus strains. Enzyme Microb Technol. 2019;129:109359.
  • Pang Z, Liang J, Qin X, et al. Multiple induced mutagenesis for improvement of ethanol production by Kluyveromyces marxianus. Biotechnol Lett. 2010;32:1847–1851.
  • Yanase S, Hasunuma T, Yamada R, et al. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol. 2010;88:381–388.
  • Goshima T, Negi K, Tsuji M, et al. Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng. 2013b;116(5):551–554.
  • Zhang B, Zhang J, Wang D, et al. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Bioresour Technol. 2016;216:227–237.
  • Bae J, Kim H, Kim M, et al. Direct fermentation of Jerusalem artichoke tuber powder for production of l-lactic acid and d-lactic acid by metabolically engineered Kluyveromyces marxianus. J Biotechnol. 2018;266:27–33.
  • Zhang B, Zhu Y, Zhang J, et al. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. Bioresour Technol. 2017;224:553–562.
  • Cheon Y, Kim JS, Park JB, et al. A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. J Biotechnol. 2014;182–183:30–36.
  • Marcišauskas S, Ji B, Nielsen J. Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics. 2019;20:551.
  • Jeong H, Lee DH, Kim SH, et al. Genome sequence of the thermotolerant yeast Kluyveromyces marxianus var. marxianus KCTC 17555. Eukaryot Cell. 2012;11(12):1584–1585.
  • Suzuki T, Hoshino T, Matsushika A. Draft genome sequence of Kluyveromyces marxianus strain DMB1, isolated from sugarcane sagasse Hydrolysate. Genome Announc. 2014;2(4):e00733-14.
  • Inokuma K, Ishii J, Hara KY, et al. Complete genome sequence of Kluyveromyces marxianus NBRC1777, a nonconventional thermotolerant yeast. Genome Announc. 2015;3(2):e00389-15.
  • Loser C, Haas C, Liu W, et al. Uptake of iron by Kluyveromyces marxianus DSM 5422 cultivated in a whey-based medium. Eng Life Sci. 2018;18(7):459–474.
  • Wehrs M, Tanjore D, Eng T, et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 2019;27(6):524–537.
  • Löbs A, Engel R, Schwartz C, et al. CRISPR–Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus.Biotechnol Biofuels. 2017;10:164.
  • Lee M, Lin J, Lin Y, et al. Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain. Sci Rep. 2018;8:7305.
  • Löbs A, Schwartz C, Thorwall S, et al. Highly Multiplexed CRISPRi repression of respiratory functions enhances mitochondrial localized ethyl acetate biosynthesis in Kluyveromyces marxianus. ACS Synth Biol. 2018;7(11):2647–2655.
  • Juergens H, Varela JA, Vries ARG, et al. Genome editing in Kluyveromyces and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. FEMS Yeast Res. 2018;18(3):foy012.
  • Nambu-Nishida Y, Nishida K, Hasunuma T, et al. Genetic and physiological basis for antibody production by Kluyveromyces marxianus. AMB Expr. 2018;8:56.
  • Schabort DTWP, Letebele PK, Steyn L, et al. Differential RNA-seq, multi-network analysis and metabolic regulation analysis of Kluyveromyces marxianus reveals a compartmentalised response to xylose. PLoS One. 2016;11(6):e0156242.
  • Schabort DTWP, Kilian SG, Du Preez JC,. Gene regulation in Kluyveromyces marxianus in the context of chromosomes. Plos One. 2018;13(1):e0190913.
  • Lang X, Besada-Lombana PB, Li M, et al. Developing a broad-range promoter set for metabolic engineering in the thermotolerant yeast Kluyveromyces marxianus. Metab Eng Commun. 2020;11:e00145.
  • Anandharaj M, Lin Y, Rani RP, et al. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc Natl Acad Sci USA. 2020;117(5):2385–2394.
  • Li P, Fu X, Chen M, et al. Proteomic profiling and integrated analysis with transcriptomic data bring new insights in the stress responses of Kluyveromyces marxianus after an arrest during high-temperature ethanol fermentation. Biotechnol Biofuels. 2019;12:49.
  • Wu L, Wang M, Zha G, et al. Improving the expression of a heterologous protein by genome shuffling in Kluyveromyces marxianus. J Biotechnol. 2020;320:11–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.