626
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination

, , , , , , & show all
Pages 1257-1278 | Received 20 Mar 2020, Accepted 24 Feb 2021, Published online: 13 May 2021

References

  • Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993;294(1):1–14.
  • Cui L, Decker EA. Phospholipids in foods: prooxidants or antioxidants? J Sci Food Agr. 2016;96(1):18–31.
  • Guo Z, Vikbjerg AF, Xu X. Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv. 2005;23(3):203–259.
  • Moré MI, Freitas U, Rutenberg D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv Ther. 2014;31(12):1247–1262.
  • Lee B, Sur B-J, Han J-J, et al. Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats. Prog Neuro-Psychoph. 2015;56:1–10.
  • Hashioka S, Han Y-H, Fujii S, et al. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid β and interferon-γ-induced microglial activation. Free Radical Bio Med. 2007;42(7):945–954.
  • Enzymecode. What is phosphatidylserine. [Internet]. 2018 [cited 2020 Sep 22]. Available from http://en.enzymecode.com/news/show24550.html.
  • Kogon DP, Oulton M, Gray JH, et al. Amniotic fluid phosphatidylglycerol and phosphatidylcholine phosphorus as predictors of fetal lung maturity. Am J Obstet Gynecol. 1986;154(2):226–230.
  • Price N, Fei T, Clark S, et al. Extraction of phospholipids from a dairy by-product (whey protein phospholipid concentrate) using ethanol. J Dairy Sci. 2018;101(10):8778–8787.
  • Liu Y, Zhang T, Qiao J, et al. High-Yield Phosphatidylserine Production via Yeast Surface Display of Phospholipase D from Streptomyces chromofuscus on Pichia pastoris. J Agr Food Chem. 2014;62(23):5354–5360.
  • Damnjanović J, Kuroiwa C, Tanaka H, et al. Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D. Biotechnol Bioeng. 2016;113(1):62–71.
  • Li B, Duan D, Wang J, et al. Improving phospholipase D activity and selectivity by bio-imprinting-immobilization to produce phosphatidylglycerol. J Biotechnol. 2018;281:67–73.
  • Yamamoto Y, Hosokawa M, Kurihara H, et al. Preparation of phosphatidylated terpenes via phospholipase D-mediated transphosphatidylation. J Am Oil Chem Soc. 2008;85(4):313–320.
  • Song S, Cheong L-Z, Guo Z, et al. Phospholipase D (PLD) catalyzed synthesis of phosphatidyl-glucose in biphasic reaction system. Food Chem. 2012;135(2):373–379.
  • Takami M, Suzuki Y. Transphosphatidylation reaction of phosphatidylcholine to 4-methoxyphenol in water-immiscible organic solvents with immobilized phospholipase D. J Ferment Bioeng. 1995;79(4):313–316.
  • Liu B, Yao L, Wang W, et al. Molecular cloning and characterization of phospholipase D from Jatropha curcas. Mol Biol Rep. 2009;37(2):939.
  • Moreno-Pérez AJ, Martínez-Force E, Garcés R, et al. Phospholipase Dα from sunflower (Helianthus annuus): cloning and functional characterization. J Plant Physiol. 2010;167(7):503–511.
  • Shimbo K, Iwasaki Y, Yamane T, et al. Purification and Properties of Phospholipase D from Streptomyces antibioticus. Biosci Biotech Bioch. 1993;57(11):1946–1948.
  • Ogino C, Negi Y, Matsumiya T, et al. Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum. J Biochem. 1999;125(2):263–269.
  • Simkhada JR, Lee HJ, Jang SY, et al. A novel alkalo- and thermostable phospholipase D from Streptomyces olivochromogenes. Biotechnol Lett. 2008;31(3):429.
  • Matsumoto Y, Kashiwabara N, Oyama T, et al. Molecular cloning, heterologous expression, and enzymatic characterization of lysoplasmalogen-specific phospholipase D from Thermocrispum sp. FEBS Open Bio. 2016;6(11):1113–1130.
  • Mao X, Liu Q, Qiu Y, et al. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine. J Biotechnol. 2017;249:51–58.
  • Hou H-J, Gong J-S, Dong Y-X, et al. Phospholipase D engineering for improving the biocatalytic synthesis of phosphatidylserine. Bioproc Biosyst Eng. 2019;42(7):1185–1194.
  • Liu Y, Huang L, Fu Y, et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system. Food Chem. 2019;274:535–542.
  • Damnjanović J, Matsunaga N, Adachi M, et al. Facile enzymatic synthesis of phosphatidylthreonine using an engineered phospholipase D. Eur J Lipid Sci Technol. 2018;120(6):1800089.
  • Damnjanović J, Nakano H, Iwasaki Y. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Biotechnol Bioeng. 2014;111(4):674–682.
  • Damnjanović J, Iwasaki Y. Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure and protein engineering. J Biosci Bioeng. 2013;116(3):271–280.
  • Zambonelli C, Morandi P, Vanoni MA, et al. Cloning and expression in Escherichia coli of the gene encoding Streptomyces PMF PLD, a phospholipase D with high transphosphatidylation activity. Enzyme Microb Tech. 2003;33(5):676–688.
  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874.
  • Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. P Natl Acad Sci USA. 2001;98(21):12009.
  • Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. BBA-Mol Cell Biol L. 2009;1791(9):913–926.
  • Selvy PE, Lavieri RR, Lindsley CW, et al. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev. 2011;111(10):6064–6119.
  • McDermott MI, Wang Y, Wakelam MJO, et al. Mammalian phospholipase D: function, and therapeutics. Prog Lipid Res. 2020;78:101018.
  • Leiros I, Secundo F, Zambonelli C, et al. The first crystal structure of a phospholipase D. Structure. 2000;8(6):655–667.
  • Uesugi Y, Hatanaka T. Phospholipase D mechanism using Streptomyces PLD. BBA-Mol Cell Biol L. 2009;1791(9):962–969.
  • Spencer C, Brown HA. Biochemical characterization of a Pseudomonas aeruginosa phospholipase D. Biochemistry-Us. 2015;54(5):1208–1218.
  • Metrick CM, Peterson EA, Santoro JC, et al. Human PLD structures enable drug design and characterization of isoenzyme selectivity. Nat Chem Biol. 2020;16(4):391–399.
  • Li J, Yu F, Guo H, et al. Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res. 2020;30(1):61–69.
  • Ogino C, Daido H, Ohmura Y, et al. Remarkable enhancement in PLD activity from Streptoverticillium cinnamoneum by substituting serine residue into the GG/GS motif. BBA-Proteins Proteom. 2007;1774(6):671–678.
  • Stuckey JA, Dixon JE. Crystal structure of a phospholipase D family member. Nat Struct Mol Biol. 1999;6(3):278–284.
  • Leiros I, McSweeney S, Hough E. The reaction mechanism of phospholipase D from Streptomyces sp. strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J Mol Biol. 2004;339(4):805–820.
  • Davies DR, Interthal H, Champoux JJ, et al. The crystal structure of human tyrosyl-DNA phosphodiesterase, Tdp1. Structure. 2002;10(2):237–248.
  • Grazulis S, Manakova E, Roessle M, et al. Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc Natl Acad Sci USA. 2005;102(44):15797–15802.
  • Nishimasu H, Ishizu H, Saito K, et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature. 2012;491:284.
  • Stanacev NZ, Stuhne-Sekalec L. On the mechanism of enzymatic phosphatidylation. Biosynthesis of cardiolipin catalyzed by phospholipase D. BBA-Lipid Metab. 1970;210(2):350–352.
  • Holbrook PG, Pannell LK, Daly JW. Phospholipase D-catalyzed hydrolysis of phosphatidylcholine occurs with PO bond cleavage. BBA-Lipid Metab. 1991;1084(2):155–158.
  • Hanahan D, Chaikoff I. The phosphorus-containing lipides of the carrot. J Biol Chem. 1947;168:233–240.
  • Lerchner A, Mansfeld J, Kuppe K, et al. Probing conserved amino acids in phospholipase D (Brassica oleracea var. capitata) for their importance in hydrolysis and transphosphatidylation activity. Protein Eng Des Sel. 2006;19(10):443–452.
  • Hatanaka T, Negishi T, Kubota-Akizawa M, et al. Study on thermostability of phospholipase D from Streptomyces sp. BBA-Proteins Proteom. 2002;1598(1–2):156–164.
  • Hagishita T, Nishikawa M, Hatanaka T. Isolation of phospholipase d producing microorganisms with high transphosphatidylation activity. Biotechnol Lett. 2000;22(20):1587–1590.
  • D’Arrigo P, Piergianni V, Scarcelli D, et al. A spectrophotometric assay for phospholipase D. Anal Chim Acta. 1995;304(2):249–254.
  • Imamura S, Horiuti Y. Enzymatic determination of phospholipase D activity with choline oxidase. J Biochem. 1978;83(3):677–680.
  • Carrea G, D’Arrigo P, Piergianni V, et al. Purification and properties of two phospholipases D from Streptomyces sp. BBA-Lipid Metab. 1995;1255(3):273–279.
  • Ogino C, Negi Y, Daido H, et al. Identification of novel membrane-bound phospholipase D from Streptoverticillium cinnamoneum, possessing only hydrolytic activity. BBA-Mol Cell Biol L. 2001;1530(1):23–31.
  • Hatanaka T, Negishi T, Kubota-Akizawa M, et al. Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces sp. TH-2. Enzyme Microb Tech. 2002;31(3):233–241.
  • Simkhada JR, Cho SS, Lee HJ, et al. Purification and biochemical properties of phospholipase d (PLD57) produced by Streptomyces sp. CS-57. Arch Pharm Res. 2007;30(10):1302.
  • Simkhada JR, Lee HJ, Jang SY, et al. A novel low molecular weight phospholipase D from Streptomyces sp. CS684. Bioresource Technol. 2009;100(3):1388–1393.
  • Nakazawa Y, Sagane Y, Kikuchi T, et al. Purification, biochemical characterization, and cloning of phospholipase D from Streptomyces racemochromogenes strain 10-3. Protein J. 2010;29(8):598–608.
  • Yaqoob M, Nabi A, Masoom-Yasinzai M. Bioconversion of phosphatidylcholine to phosphatidylserine using immobilized enzyme mini-columns. Process Biochem. 2001;36(12):1181–1185.
  • Iwasaki Y, Mizumoto Y, Okada T, et al. An aqueous suspension system for phospholipase D-mediated synthesis of PS without toxic organic solvent. J Amer Oil Chem Soc. 2003;80(7):653.
  • Nakazawa Y, Uchino M, Sagane Y, et al. Isolation and characterization of actinomycetes strains that produce phospholipase D having high transphosphatidylation activity. Microbiol Res. 2009;164(1):43–48.
  • Duan Z-Q, Hu F. Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone. Green Chem. 2012;14(6):1581–1583.
  • Pinsolle A, Roy P, Buré C, et al. Enzymatic synthesis of phosphatidylserine using bile salt mixed micelles. Colloid Surface B. 2013;106:191–197.
  • Duan Z-Q, Hu F. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran. J Biotechnol. 2013;163(1):45–49.
  • Bi Y-H, Duan Z-Q, Li X-Q, et al. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine. J Agr Food Chem. 2015;63(5):1558–1561.
  • Choojit S, Bornscheuer UT, Upaichit A, et al. Efficient phosphatidylserine synthesis by a phospholipase D from Streptomyces sp. SC734 isolated from soil-contaminated palm oil. Eur J Lipid Sci Technol. 2016;118(5):803–813.
  • Li B, Wang J, Zhang X, et al. Aqueous–solid system for highly efficient and environmentally friendly transphosphatidylation catalyzed by phospholipase D to produce phosphatidylserine. J Agr Food Chem. 2016;64(40):7555–7560.
  • Yang S-L, Duan Z-Q. Insight into enzymatic synthesis of phosphatidylserine in deep eutectic solvents. Catal Commun. 2016;82:16–19.
  • Zhang X, Li B, Wang J, et al. High-yield and sustainable production of phosphatidylserine in purely aqueous solutions via adsorption of phosphatidylcholine on triton-X-100-modified silica. J Agric Food Chem. 2017;65(49):10767–10774.
  • Li SS, Li Y, Long NB, et al. Highly active and stable nanobiocatalyst based on in-situ cross-linking of phospholipase D for the synthesis of phosphatidylserine. Int J Biol Macromol. 2018;117:1188–1194.
  • Dittrich N, Ulbrich-Hofmann R. Transphosphatidylation by immobilized phospholipase D in aqueous media. Biotechnol Appl Bioc. 2001;34(3):189–194.
  • Li S, Li Y, Long N, et al. In-situ co-cross-linking of phospholipase D and poly-L-lysine for the highly efficient synthesis of phosphatidylglycerol. J Am Oil Chem Soc. 2019;96(1):15–23.
  • Hosokawa M, Shimatani T, Kanada T, et al. Conversion to docosahexaenoic acid-containing phosphatidylserine from squid skin lecithin by phospholipase D-mediated transphosphatidylation. J Agr Food Chem. 2000;48(10):4550–4554.
  • Inoue A, Adachi M, Damnjanović J, et al. Direct enzymatic synthesis of 1-phosphatidyl-β-D-glucose by engineered phospholipase D. Chemistryselect. 2016;1(13):4121–4125.
  • Nagao A, Ishida N, Terao J. Synthesis of 6-phosphatidyl-L-ascorbic acid by phospholipase D. Lipids. 1991;26(5):390–394.
  • Yamamoto Y, Kurihara H, Miyashita K, et al. Synthesis of novel phospholipids that bind phenylalkanols and hydroquinone via phospholipase D-catalyzed transphosphatidylation. New Biotechnol. 2011;28(1):1–6.
  • Stamler CJ, Breznan D, Neville TAM, et al. Phosphatidylinositol promotes cholesterol transport in vivo. J Lipid Res. 2000;41(8):1214–1221.
  • Masayama A, Tsukada K, Ikeda C, et al. Isolation of phospholipase D mutants having phosphatidylinositol-synthesizing activity with positional specificity on myo-inositol. Chembiochem. 2009;10(3):559–564.
  • Weihrauch JL, Son Y-S. Phospholipid content of foods. J Am Oil Chem Soc. 1983;60(12):1971–1978.
  • Hama S, Ogino C, Kondo A. Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. Appl Microbiol Biot. 2015;99(19):7879–7891.
  • Damnjanović J, Takahashi R, Suzuki A, et al. Improving thermostability of phosphatidylinositol-synthesizing Streptomyces phospholipase D. Protein Eng Des Sel. 2012;25(8):415–424.
  • Han H, Cao D, Shi S, et al. Optimization of fermentation conditions of phospholipase D from Streptomyces sp.CA-1. Sci Tech Food Ind. 2014;35(13):176–180.
  • Liang LM, Liu CF, Yang-Ji DU. Optimization of cultural medium for phospholipase D production by Streptomyces sp. Hebei (China): China Food Addit. 2014.
  • Hartley JL. Cloning technologies for protein expression and purification. Curr Opin Biotech. 2006;17(4):359–366.
  • Iwasaki Y, Mishima N, Mizumoto K, et al. Extracellular production of phospholipase D of Streptomyces antibioticus using recombinant Escherichia coli. J Ferment Bioeng. 1995;79(5):417–421.
  • Mishima N, Mizumoto K, Iwasaki Y, et al. Insertion of stabilizing loci in vectors of T7 RNA polymerase-mediated Escherichia coli expression systems: a case study on the plasmids involving foreign phospholipase D gene. Biotechnol Prog. 1997;13(6):864–868.
  • Nakazawa Y, Sagane Y, Sakurai S-i, et al. Large-scale production of phospholipase D from Streptomyces racemochromogenes and its application to soybean lecithin modification. Appl Biochem Biotech. 2011;165(7):1494–1506.
  • Zhou W-B, Gong J-S, Hou H-J, et al. Mining of a phospholipase D and its application in enzymatic preparation of phosphatidylserine. Bioengineered. 2018;9(1):80–89.
  • Huang TT, Lv XQ, Li JH, et al. Combinatorial fine-tuning of phospholipase D expression by Bacillus subtilis WB600 for the production of phosphatidylserine. J Microbiol Biotechnol. 2018;28(12):2046–2056.
  • Huang R-Y, Lee C-Y. Molecular and functional evidence of phosphatidylserine synthase in Vibrio parahaemolyticus. Microbiol Immunol. 2019;63(3–4):119–129.
  • Desai PN, Shrivastava N, Padh H. Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv. 2010;28(4):427–435.
  • Han R, Li J, Shin H-d, et al. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnol Adv. 2014;32(2):415–428.
  • Vassaux A, Meunier L, Vandenbol M, et al. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv. 2019;37(8):107449.
  • Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22(7):346–353.
  • Su C, Gong J-S, Zhang R-X, et al. A novel alkaline surfactant-stable keratinase with superior feather-degrading potential based on library screening strategy. Int J Biol Macromol. 2017;95:404–411.
  • Bouhajja E, Agathos SN, George IF. Metagenomics: probing pollutant fate in natural and engineered ecosystems. Biotechnol Adv. 2016;34(8):1413–1426.
  • Choi JH, Lee SY. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biot. 2004;64(5):625–635.
  • Tsirigotaki A, De Geyter J, Šoštaric N, et al. Protein export through the bacterial Sec pathway. Nat Rev Microbiol. 2016;15:21.
  • Yang L, Xu Y, Chen Y, et al. Efficient extracellular expression of phospholipase D in Escherichia coli with an optimized signal peptide. IOP Conf Ser: Mater Sci Eng. 2018;301:012105.
  • Wang Y, Wang H, Wei L, et al. Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res. 2020;48(12):6403–6412.
  • Han L, Cui W, Suo F, et al. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact. 2019;18(1):96.
  • Cui W, Han L, Suo F, et al. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microb Biot. 2018;34(10):145.
  • Claassens NJ, Finger-Bou M, Scholten B, et al. Bicistronic design-based continuous and high-level membrane protein production in Escherichia coli. ACS Synth Biol. 2019;8(7):1685–1690.
  • Leavitt JM, Alper HS. Advances and current limitations in transcript-level control of gene expression. Curr Opin Biotech. 2015;34:98–104.
  • Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech. 2006;17(4):353–358.
  • Lee SY, Choi JH, Xu Z. Microbial cell-surface display. Trends Biotechnol. 2003;21(1):45–52.
  • Zhang H, Chu W, Sun J, et al. Combining cell surface display and DNA-shuffling technology for directed evolution of Streptomyces phospholipase D and synthesis of phosphatidylserine. J Agr Food Chem. 2019;67(47):13119–13126.
  • Lipovšek D, Antipov E, Armstrong KA, et al. Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. Chem Biol. 2007;14(10):1176–1185.
  • Reese ET, Maguire A. Surfactants as stimulants of enzyme production by microorganisms. Appl Microbiol. 1969;17(2):242–245.
  • Rubingh DN. The influence of surfactants on enzyme activity. Curr Opin Colloid in. 1996;1(5):598–603.
  • Liu Y, Zhang X, Yao N, et al. Ultraviolet mutagenesis breeding and fermentation conditions of phospholipase D producing strain. Chem Ind Eng Prog. 2012;31(9):2036.
  • Schmidt FR. Optimization and scale up of industrial fermentation processes. Appl Microbiol Biot. 2005;68(4):425–435.
  • Shiloach J, Fass R. Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv. 2005;23(5):345–357.
  • Masayama A, Takahashi T, Tsukada K, et al. Streptomyces phospholipase D mutants with altered substrate specificity capable of phosphatidylinositol synthesis. Chembiochem. 2008;9(6):974–981.
  • Hatanaka T, Negishi T, Mori K. A mutant phospholipase D with enhanced thermostability from Streptomyces sp. BBA-Proteins Proteom. 2004;1696(1):75–82.
  • Negishi T, Mukaihara T, Mori K, et al. Identification of a key amino acid residue of Streptomyces phospholipase D for thermostability by in vivo DNA shuffling. BBA-Gen Subjects. 2005;1722(3):331–342.
  • Wang F, Wu Z, Abousalham A, et al. Deletion the C-terminal peptides of Vibrio harveyi phospholipase D significantly improved its enzymatic properties. Int J Biol Macromol. 2019;129:1140–1147.
  • Mandaci S. Site-directed mutagenesis as the cornerstone of protein engineering: from basic biotechnology to industrial enzymes. Curr Opin Biotech. 2011;22:S39.
  • Lu X, Cui Y, Wang P, et al. Designated mutation of phosphatidylserine synthetase (PSS) and its enzymatic activity. J Math Study. 2014;47(3):94–97.
  • Liu Q, Xun G, Feng Y. The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol Adv. 2019;37(4):530–537.
  • Eijsink VGH, Bjørk A, Gåseidnes S, et al. Rational engineering of enzyme stability. J Biotechnol. 2004;113(1):105–120.
  • Chen R. Enzyme engineering: rational redesign versus directed evolution. Trends Biotechnol. 2001;19(1):13–14.
  • Stemmer WPC. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994;370(6488):389–391.
  • Fromant M, Blanquet S, Plateau P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem. 1995;224(1):347–353.
  • Dippe M, Ulbrich-Hofmann R. Spectrophotometric determination of phosphatidic acid via iron(III) complexation for assaying phospholipase D activity. Anal Biochem. 2009;392(2):169–173.
  • Rahier R, Noiriel A, Abousalham A. Development of a direct and continuous phospholipase D assay based on the chelation-enhanced fluorescence property of 8-hydroxyquinoline. Anal Chem. 2016;88(1):666–674.
  • Zeymer C, Hilvert D. Directed evolution of protein catalysts. Annu Rev Biochem. 2018;87(1):131–157.
  • Wallraf A-M, Liu H, Zhu L, et al. A loop engineering strategy improves laccase lcc2 activity in ionic liquid and aqueous solution. Green Chem. 2018;20(12):2801–2812.
  • Chaudhary VK, Shrivastava N, Verma V, et al. Rapid restriction enzyme-free cloning of PCR products: a high-throughput method applicable for library construction. PLoS One. 2014;9(10):e111538.
  • Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature. 2011;472(7344):499–503.
  • Radivojac P, Obradovic Z, Smith DK, et al. Protein flexibility and intrinsic disorder. Protein Sci. 2004;13(1):71–80.
  • Sun Z, Liu Q, Qu G, et al. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev. 2019;119(3):1626–1665.
  • Chen A, Li Y, Nie J, et al. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Enzyme Microb Tech. 2015;78:74–83.
  • Kim HS, Le QAT, Kim YH. Development of thermostable lipase B from Candida antarctica (CalB) through in silico design employing B-factor and RosettaDesign. Enzyme Microb Tech. 2010;47(1–2):1–5.
  • Wang F, Wei R, Abousalham A, et al. Effect of N- and C-terminal amino acids on the interfacial binding properties of phospholipase D from Vibrio parahaemolyticus. IJMS. 2018;19(8):2447.
  • Thompson MJ, Eisenberg D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol. 1999;290(2):595–604.
  • Hirayama S, Terasawa K, Rabeler R, et al. The effect of phosphatidylserine administration on memory and symptoms of attention-deficit hyperactivity disorder: a randomised, double-blind, placebo-controlled clinical trial. J Hum Nutr Diet. 2014;27(s2):284–291.
  • Cantone S, Ferrario V, Corici L, et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev. 2013;42(15):6262–6276.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, et al. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 2013;42(15):6290–6307.
  • Lian X, Fang Y, Joseph E, et al. Enzyme–MOF (metal–organic framework) composites. Chem Soc Rev. 2017;46(11):3386–3401.
  • Li Z, Ding Y, Li S, et al. Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale. 2016;8(40):17440–17445.
  • Feng W, Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol Adv. 2011;29(6):889–895.
  • Tonova K, Lazarova Z. Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion. Biotechnol Adv. 2008;26(6):516–532.
  • Lancaster L, Abdallah W, Banta S, et al. Engineering enzyme microenvironments for enhanced biocatalysis. Chem Soc Rev. 2018;47(14):5177–5186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.