589
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in liposome development for studying protein-lipid interactions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-14 | Received 20 Oct 2021, Accepted 29 May 2022, Published online: 28 Sep 2022

References

  • Watson H. Biological membranes. Essays Biochem. 2015;59:43–69.
  • Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York, NY: Macmillan; 2005.
  • Dowhan W, Mileykovskaya E, Bogdanov M. Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta. 2004;1666(1–2):19–39.
  • Lemmon MA, Ferguson KM, O'Brien R, et al. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA. 1995;92(23):10472–10476.
  • Krogh A, Larsson B, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–580.
  • Wang W, Bai L, Li W, et al. The lipid metabolic landscape of cancers and new therapeutic perspectives. Front Oncol. 2020;10:605154.
  • Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–176.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996.
  • Cao S, Chung S, Kim S, et al. K-Ras G-domain binding with signaling lipid phosphoinositides: PIP2 association, orientation, function. J Biol Chem. 2019;294(17):7068–7084.
  • Dunn R, Klos DA, Adler AS, et al. The C2 domain of the Rsp5 ubiquitin ligase binds membrane phosphoinositides and directs ubiquitination of endosomal cargo. J Cell Biol. 2004;165(1):135–144.
  • Melnikova D, Bogdanov I, Ovchinnikova T, et al. Interaction between the lentil lipid transfer protein Lc-LTP2 and its novel signal ligand PI(4,5)P2. Membranes-Basel. 2020;10(11):357.
  • Saliba AE, Vonkova I, Gavin AC. The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol. 2015;16(12):753–761.
  • Shirey CM, Scott JL, Stahelin RV. Notes and tips for improving quality of lipid-protein overlay assays. Anal Biochem. 2017;516:9–12.
  • Stevenson JM, Perera IY, Boss WF. A phosphatidylinositol 4-kinase pleckstrin homology domain that binds phosphatidylinositol 4-monophosphate. J Biol Chem. 1998;273(35):22761–22767.
  • Wang QR, Corey RA, Hedger G, et al. Lipid interactions of a ciliary membrane TRP channel: simulation and structural studies of polycystin-2. Structure. 2020;28(2):169–184.e5.
  • Herianto S, Chen C-S, Zhu H. Protein microarrays and liposome: a method for studying lipid–protein interactions. Lipid-Protein Interactions: Springer; 2019. p. 191–199.
  • Jung H, Robison AD, Cremer PS. Multivalent ligand-receptor binding on supported lipid bilayers. J Struct Biol. 2009;168(1):90–94.
  • Trucillo P, Campardelli R, Reverchon E. Liposomes: from bangham to supercritical fluids. Processes. 2020;8(9):1022.
  • Saliba A-E, Vonkova I, Ceschia S, et al. A quantitative liposome microarray to systematically characterize protein-lipid interactions. Nat Methods. 2014;11(1):47–50.
  • Oppelt A, Lobert VH, Haglund K, et al. Production of phosphatidylinositol 5‐phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep. 2013;14(1):57–64.
  • Vonkova I, Saliba A-E, Deghou S, et al. Lipid cooperativity as a general membrane-recruitment principle for PH domains. Cell Rep. 2015;12(9):1519–1530.
  • Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science. 2001;293(5537):2101–2105.
  • Piaścik M, Zegarlińska J, Sikorski AF, et al. Optimization of flotation assay conditions for syndapin binding to phosphatidic acid containing liposomes. FBOe. 2017;13(1):9–17.
  • Stiasny K, Allison SL, Schalich J, et al. Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH. J Virol. 2002;76(8):3784–3790.
  • Pattipeiluhu R, Crielaard S, Klein-Schiphorst I, et al. Unbiased identification of the liposome protein corona using photoaffinity-based chemoproteomics. ACS Cent Sci. 2020;6(4):535–545.
  • Zhao H, Hakala M, Lappalainen P. ADF/cofilin binds phosphoinositides in a multivalent manner to act as a PIP2-density sensor. Biophys J. 2010;98(10):2327–2336.
  • van Galen J, Olrichs NK, Schouten A, et al. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochim Biophys Acta. 2012;1818(9):2175–2183.
  • Herianto S, Rathod J, Shah P, et al. Systematic analysis of phosphatidylinositol-5-phosphate-Interacting proteins using yeast proteome microarrays. Anal Chem. 2021;93(2):868–877.
  • Temmerman K, Nickel W. A novel flow cytometric assay to quantify interactions between proteins and membrane lipids. J Lipid Res. 2009;50(6):1245–1254.
  • Adler A, Inoue Y, Sato Y, et al. Synthesis of poly (2-methacryloyloxyethyl phosphorylcholine)-conjugated lipids; its characterization and surface properties of modified liposomes for protein interactions. Biomater Sci. 2021;9(17):5854–5867.
  • Morita S, Nukui M, Kuboi R. Immobilization of liposomes onto quartz crystal microbalance to detect interaction between liposomes and proteins. J Colloid Interface Sci. 2006;298(2):672–678.
  • Beseničar M, Maček P, Lakey JH, et al. Surface plasmon resonance in protein–membrane interactions. Chem Phys Lipids. 2006;141(1-2):169–178.
  • Anbazhagan V, Sankhala RS, Singh BP, et al. Isothermal titration calorimetric studies on the interaction of the major bovine seminal plasma protein, PDC-109 with phospholipid membranes. PLOS One. 2011;6(10):e25993.
  • Ziegler A, Blatter XL, Seelig A, et al. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry-Us. 2003;42(30):9185–9194.
  • Sommer LAM, Schaad M, Dames SA. NMR- and circular dichroism-monitored lipid binding studies suggest a general role for the FATC domain as membrane anchor of phosphatidylinositol 3-Kinase-related kinases (PIKK). J Biol Chem. 2013;288(27):20046–20063.
  • Gallego O, Betts MJ, Gvozdenovic-Jeremic J, et al. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol. 2010:6:430.
  • Lu KY, Tao SC, Yang TC, et al. Profiling lipid-protein interactions using nonquenched fluorescent liposomal nanovesicles and proteome microarrays. Mol Cell Proteomics. 2012;11(11):1177–1190.
  • Saliba A-E, Vonkova I, Deghou S, et al. A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay. Nat Protoc. 2016;11(6):1021–1038.
  • Simons K, Sampaio JL. Membrane organization and lipid rafts. Csh Perspect Biol. 2011;3(10):a004697.
  • Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res. 2020;30(4):336–365.
  • Saito H, Kato Y, Le Berre M, et al. Time‐resolved tracking of a minimum gene expression system reconstituted in giant liposomes. Chembiochem. 2009;10(10):1640–1643.
  • Shaker S, Gardouh AR, Ghorab MM. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12(5):346–352.
  • Ahmed KS, Hussein SA, Ali AH, et al. Liposome: composition, characterisation, preparation, and recent innovation in clinical applications. J Drug Target. 2019;27(7):742–761.
  • Li J, Wang XL, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98.
  • Casares D, Escriba PV, Rossello CA. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci. 2019;20(9):2167.
  • Hullin-Matsuda F, Taguchi T, Greimel P, et al. Lipid compartmentalization in the endosome system. Semin Cell Dev Biol. 2014;31:48–56.
  • Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7(2):169–177.
  • Goldenberg HB, McCool TL, Weiser JN. Cross-reactivity of human immunoglobulin G2 recognizing phosphorylcholine and evidence for protection against major bacterial pathogens of the human respiratory tract. J Infect Dis. 2004;190(7):1254–1263.
  • Young NM, Foote SJ, Wakarchuk WW. Review of phosphocholine substituents on bacterial pathogen glycans: synthesis, structures and interactions with host proteins. Mol Immunol. 2013;56(4):563–573.
  • Najafinobar N, Mellander LJ, Kurczy ME, et al. Cholesterol alters the dynamics of release in protein independent cell models for exocytosis. Sci Rep. 2016;6:33702.
  • Takechi-Haraya Y, Sakai-Kato K, Abe Y, et al. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir. 2016;32(24):6074–6082.
  • Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–242.
  • Heider S, Reimhult E, Metzner C. Real-time analysis of protein and protein mixture interaction with lipid bilayers. Biochim Biophys Acta Biomembr. 2018;1860(2):319–328.
  • Masserini M, Palestini P, Pitto M. Preparation and use of liposomes for the study of sphingolipid segregation in membrane model systems. In: Basu SC, Basu M, editors. Liposome methods and protocols. Totowa, NJ: Humana Press; 2002. p. 17–27.
  • Busse RA, Scacioc A, Schalk AM, et al. Analyzing protein–phosphoinositide interactions with liposome flotation assays. In Waugh MG, editor. Lipid signaling protocols. New York, NY: Springer New York; 2016. p. 155–162.
  • De Franceschi N, Miihkinen M, Hamidi H, et al. ProLIF–quantitative integrin protein–protein interactions and synergistic membrane effects on proteoliposomes. J Cell Sci. 2019;132(4):jcs214270.
  • Mohri I, Taniike M, Okazaki I, et al. Lipocalin-type prostaglandin D synthase is up-regulated in oligodendrocytes in lysosomal storage diseases and binds gangliosides. J Neurochem. 2006;97(3):641–651.
  • Inoshita M, Mima J. Human rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system. J Biol Chem. 2017;292(45):18500–18517.
  • Zhao HX, Lappalainen P. A simple guide to biochemical approaches for analyzing protein-lipid interactions. Mol Biol Cell. 2012;23(15):2823–2830.
  • Elizondo E, Moreno E, Cabrera I, et al. Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine. Prog Mol Biol Transl Sci. 2011;104:1–52.
  • Chen C-S, Zhu H. Protein microarrays. Biotechniques. 2006;40(4):423–429.
  • Del Vecchio K, Stahelin RV. Using surface plasmon resonance to quantitatively assess lipid–protein interactions. Lipid signaling protocols. New York, NY: Humana Press; 2016. p. 141–153.
  • Šakanovič A, Hodnik V, Anderluh G. Surface plasmon resonance for measuring interactions of proteins with lipids and lipid membranes. Lipid-Protein interactions. New York, NY: Humana Press; 2019. p. 53–70.
  • Stahelin RV. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions. Mol Biol Cell. 2013;24(7):883–886.
  • Matos ALL, Kudruk S, Moratz J, et al. Membrane binding promotes annexin A2 oligomerization. Cells-Basel. 2020;9(5):1169.
  • Matsuo K, Gekko K. Circular-dichroism and synchrotron-radiation circular-dichroism spectroscopy as tools to monitor protein structure in a lipid environment. Lipid-Protein interactions. Totowa, NJ: Humana Press; 2019. p. 151–176.
  • Contreras FX, Ernst AM, Wieland F, et al. Specificity of intramembrane protein-lipid interactions. Csh Perspect Biol. 2011;3(6):a004705.
  • Kleinschmidt JH. Lipid-protein interactions – methods and protocols. 1 ed. Methods in Molecular Biology. Totowa, NJ: Humana Press; 2013. p. 974.
  • Stahelin RV, Cho W. Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry-Us. 2001;40(15):4672–4678.
  • Narayan K, Lemmon MA. Determining selectivity of phosphoinositide-binding domains. Methods. 2006;39(2):122–133.
  • Swamy MJ, Sankhala RS. Probing the thermodynamics of protein–lipid interactions by isothermal titration calorimetry. Lipid-Protein interactions. Totowa, NJ: Springer; 2013. p. 37–53.
  • Wiseman T, Williston S, Brandts JF, et al. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989;179(1):131–137.
  • Singh N, Reyes-Ordonez A, Compagnone MA, et al. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. bioRxiv. 2021.
  • Garidel P, Hegyi M, Bassarab S, et al. A rapid, sensitive and economical assessment of monoclonal antibody conformational stability by intrinsic tryptophan fluorescence spectroscopy. Biotechnol J. 2008;3(9–10):1201–1211.
  • Kraft CA, Garrido JL, Leiva-Vega L, et al. Quantitative analysis of protein-lipid interactions using tryptophan fluorescence. Sci Signal. 2009;2(99):pl4.
  • Raghuraman H, Chattopadhyay A. Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys J. 2004;87(4):2419–2432.
  • Haldar S, Raghuraman H, Namani T, et al. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1. Biochim Biophys Acta. 2010;1798(6):1056–1061.
  • Ho JAA, Hsu HW, Huang MR. Liposome-based microcapillary immunosensor for detection of Escherichia coli O157: H7. Anal Biochem. 2004;330(2):342–349.
  • Park S, Durst RA. Immunoliposome sandwich assay for the detection of Escherichia coli O157: H7. Anal Biochem. 2000;280(1):151–158.
  • Nishi K, Isobe S, Zhu Y, et al. Fluorescence-based bioassays for the detection and evaluation of food materials. Sensors. 2015;15(10):25831–25867.
  • Fahy E, Subramaniam S, Murphy RC, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50:S9–S14.
  • Smith LM, Kelleher NL, Proteomics CTD. Proteoform: a single term describing protein complexity. Nat Methods. 2013;10(3):186–187.
  • Syu GD, Dunn J, Zhu H. Developments and applications of functional protein microarrays. Mol Cell Proteomics. 2020;19(6):916–927.
  • Chen CS, Korobkova E, Chen H, et al. A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods. 2008;5(1):69–74.
  • Zhu H, Hu SH, Jona G, et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc Natl Acad Sci USA. 2006;103(11):4011–4016.
  • Hu SH, Xie Z, Onishi A, et al. Profiling the human Protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell. 2009;139(3):610–622.
  • Jeong JS, Jiang LZ, Albino E, et al. Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics. 2012;11(6):O111.016253.
  • Popescu SC, Popescu GV, Bachan S, et al. Differential binding of calmodulin-related proteins to their targets revealed through high-density arabidopsis protein microarrays. Proc Natl Acad Sci USA. 2007;104(11):4730–4735.
  • Deng JY, Bi LJ, Zhou L, et al. Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep. 2014;9(6):2317–2329.
  • Duarte JG, Blackburn JM. Advances in the development of human protein microarrays. Expert Rev Proteomics. 2017;14(7):627–641.
  • Sutandy FX, Qian J, Chen CS, et al. Overview of protein microarrays. Curr Protoc Protein Sci. 2013;72(1):2711–2716.
  • Wilson DS, Nock S. Functional protein microarrays. Curr Opin Chem Biol. 2002;6(1):81–85.
  • Xu Z, Huang L, Zhang H, et al. PMD: a resource for archiving and analyzing protein microarray data. Sci Rep. 2016;6(1):19955–19956.
  • Uzoma I, Zhu H. Interactome mapping: Using protein microarray technology to reconstruct diverse protein networks. Genomics Proteomics Bioinformatics. 2013;11(1):18–28.
  • Hall DA, Zhu H, Zhu XW, et al. Regulation of gene expression by a metabolic enzyme. Science. 2004;306(5695):482–484.
  • Dubouloz F, Deloche O, Wanke V, et al. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell. 2005;19(1):15–26.
  • Huang J, Zhu H, Haggarty SJ, et al. Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA. 2004;101(47):16594–16599.
  • Jones RB, Gordus A, Krall JA, et al. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 2006;439(7073):168–174.
  • Lu KY, Syu G-D, Chen C-S. Liposomes in proteome microarrays for the study of lipid protein interactions. Liposomes Anal Methodol. 2016;30(3):139.
  • Abatchev G, Bogard A, Hutchinson Z, et al. Rapid production and purification of dye-loaded liposomes by electrodialysis-driven depletion. Membranes-Basel. 2021;11(6):417.
  • Ho TYJ, Chan C-C, Chan K, et al. Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of gentamycin. Biosens Bioelectron. 2013;49:126–132.
  • Sung T-C, Chen W-Y, Shah P, et al. A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin. Sci Rep. 2016;6:21369.
  • Tansi FL, Rüger R, Rabenhold M, et al. Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging. JoVE. 2015;95:e52136.
  • Ogawa M, Kosaka N, Choyke PL, et al. H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. ACS Chem Biol. 2009;4(7):535–546.
  • Suzuki T. The hydration of glucose: the local configurations in sugar–water hydrogen bonds. Phys Chem Chem Phys. 2008;10(1):96–105.
  • Te JA, Tan ML, Ichiye T. Solvation of glucose, trehalose, and sucrose by the soft-sticky dipole-quadrupole-octupole water model. Chem Phys Lett. 2010;491(4–6):218–223.
  • Angelov B, Angelova A. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. Nanoscale. 2017;9(28):9797–9804.
  • Angelov B, Angelova A, Filippov SK, et al. Multicompartment lipid cubic nanoparticles with high protein upload: millisecond dynamics of formation. ACS Nano. 2014;8(5):5216–5226.
  • Angelov B, Angelova A, Papahadjopoulos-Sternberg B, et al. Protein-Containing PEGylated cubosomic particles: freeze-fracture electron microscopy and synchrotron radiation circular dichroism study. J Phys Chem B. 2012;116(26):7676–7686.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.