628
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (Oryza sativa L.)

ORCID Icon, , , , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 139-162 | Received 28 Nov 2021, Accepted 27 Jul 2022, Published online: 29 Sep 2022

References

  • Pradhan SK, Barik SR, Nayak DK, et al. Genetics, molecular mechanisms and deployment of bacterial blight resistance genes in rice. CRC Crit Rev Plant Sci. 2020;39(4):360–385.
  • Donde R, Kumar J, Gouda G, et al. Assessment of genetic diversity of drought tolerant and susceptible rice genotypes using microsatellite markers. Rice Sci. 2019;26(4):239–247.
  • Eckardt NA. Sequencing the rice genome. Plant Cell. 2000;12(11):2011–2017.
  • Mayer KFX, Rogers J, Doležel J, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science (80-). 2014;345(6194):1251788.
  • Schnable PS, Ware D, Fulton RS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112–1115.
  • Martienssen R, McCombie WR. The first plant genome. Cell. 2001;105(5):571–574.
  • USDA. United States department of agriculture, foreign agricultural service, Office of Global Analysis. 2020. Available from: https://www.fas.usda.gov/dataUSDA
  • Hickey LT, N Hafeez A, Robinson H, et al. Breeding crops to feed 10 billion. Nat Biotechnol. 2019;37(7):744–754.
  • Zeigler RS, Dobermann A. A global rice science partnership. Food All. 2011;106–116.
  • Varshney RK, Bansal KC, Aggarwal PK, et al. Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci. 2011;16(7):363–371.
  • Sharma G, Giri J, Tyagi AK. Sub-functionalization in rice gene families with regulatory roles in abiotic stress responses. CRC Crit Rev Plant Sci. 2016;35(4):231–285.
  • Khush GS. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol. 2005;59(1):1–6.
  • Gomiero T, Pimentel D, Paoletti MG. Is there a need for a more sustainable agriculture? CRC Crit Rev Plant Sci. 2011;30(1–2):6–23.
  • Zhao C, Liu B, Piao S, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci USA. 2017;114(35):9326–9331.
  • Long-ping YUAN. Development of hybrid rice to ensure food security. Rice Sci. 2014;21(1):1–2.
  • Peng S, Khush GS, Virk P, et al. Progress in ideotype breeding to increase rice yield potential. F Crop Res. 2008;108(1):32–38.
  • Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice. Curr Opin Plant Biol. 2008;11(2):209–214.
  • Li X, Qian Q, Fu Z, et al. Control of tillering in rice. Nature. 2003;422(6932):618–621.
  • Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production. Science. 2005;309(5735):741–745.
  • Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;112(6):1164–1171.
  • Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet. 2007;39(5):623–630.
  • Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet. 2008;40(8):1023–1028.
  • Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res. 2008;18(12):1199–1209.
  • Wang E, Wang J, Zhu X, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet. 2008;40(11):1370–1374.
  • Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008;40(6):761–767.
  • Li S, Qian Q, Fu Z, et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J. 2009;58(4):592–605.
  • Mao H, Sun S, Yao J, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA. 2010;107(45):19579–19584.
  • Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet. 2010;42(6):545–549.
  • Wei X, Xu J, Guo H, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 2010;153(4):1747–1758.
  • Yan WH, Wang P, Chen HX, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant. 2011;4(2):319–330.
  • Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol. 2010;61:421–442.
  • Yu H, Lin T, Meng X, et al. A route to de novo domestication of wild allotetraploid rice. Cell. 2021;184(5):1156–1170.
  • Kaur R, Kaur R, Sharma N, et al. Protein profiling in a set of wild rice species and rice cultivars: a stepping stone to protein quality improvement. Cereal Res Commun. 2022;1–15. DOI:10.1007/s42976-022-00273-2
  • Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol. 2021;42:548–561.
  • Varshney RK, Sinha P, Singh VK, et al. 5Gs for crop genetic improvement. Curr Opin Plant Biol. 2020;56:190–196.
  • Bakala HS, Singh G, Srivastava P. Smart breeding for climate resilient agriculture. Plant breeding-current futur views. London: IntechOpen; 2020.
  • Yano M. Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol. 2001;4(2):130–135.
  • Yano M, Kojima S, Takahashi Y, et al. Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 2001;127(4):1425–1429.
  • Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet. 2009;41(4):494–497.
  • Huang XY, Chao DY, Gao JP, et al. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev. 2009;23(15):1805–1817.
  • Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–853.
  • Yu P, Wang CH, Xu Q, et al. Genome-wide copy number variations in Oryza sativa L. BMC Genomics. 2013;14:612–649.
  • Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell. 2013;152(3):394–405.
  • Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science. 2006;311(5769):1936–1939.
  • Sweeney MT, Thomson MJ, Pfeil BE, et al. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell. 2006;18(2):283–294.
  • Wang Y, Li J. Molecular basis of plant architecture. Annu Rev Plant Biol. 2008;59:253–279.
  • Sakamoto T, Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol. 2004;15(2):144–147.
  • Peng J, Richards DE, Hartley NM, et al. Green revolution’genes encode mutant gibberellin response modulators. Nature. 1999;400(6741):256–261.
  • Lin Z, Griffith ME, Li X, et al. Origin of seed shattering in rice (Oryza sativa L.). Planta. 2007;226(1):11–20.
  • Jin J, Huang W, Gao JP, et al. Genetic control of rice plant architecture under domestication. Nat Genet. 2008;40(11):1365–1369.
  • Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet. 2008;40(11):1360–1364.
  • Zhu BF, Si L, Wang Z, et al. Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol. 2011;155(3):1301–1311.
  • Ishii T, Numaguchi K, Miura K, et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet. 2013;45(4):462–465.
  • Zhu Z, Tan L, Fu Y, et al. Genetic control of inflorescence architecture during rice domestication. Nat Commun. 2013;4(1):8.
  • Gu B, Zhou T, Luo J, et al. An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol Plant. 2015;8(11):1635–1650.
  • Hua L, Wang DR, Tan L, et al. LABA1, a domestication gene associated with long, barbed awns in wild rice. Plant Cell. 2015;27(7):1875–1888.
  • Jin J, Hua L, Zhu Z, et al. GAD1 encodes a secreted peptide that regulates grain number, grain length, and awn development in rice domestication. Plant Cell. 2016;28(10):2453–2463.
  • Yang XC, Hwa CM. Genetic modification of plant architecture and variety improvement in rice. Heredity (Edinb). 2008;101(5):396–404.
  • Yoshida S. Physiological aspects of grain yield. Annu Rev Plant Physiol. 1972;23(1):437–464.
  • Donald CT. The breeding of crop ideotypes. Euphytica. 1968;17(3):385–403.
  • Wang Y, Li J. Branching in rice. Curr Opin Plant Biol. 2011;14(1):94–99.
  • Bai X, Huang Y, Hu Y, et al. Duplication of an upstream silencer of FZP increases grain yield in rice. Nat Plants. 2017;3(11):885–893.
  • Ikeda K, Nagasawa N, Nagato Y. ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol. 2005;282(2):349–360.
  • Komatsu M, Maekawa M, Shimamoto K, et al. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev Biol. 2001;231(2):364–373.
  • Zuo J, Li J. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet. 2014;48:99–118.
  • Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet. 2010;42(6):541–544.
  • Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet. 2011;43(12):1266–1269.
  • Azizi P, Osman M, Hanafi MM, et al. Molecular insights into the regulation of rice kernel elongation. Crit Rev Biotechnol. 2019;39(7):904–923.
  • Si L, Chen J, Huang X, et al. OsSPL13 controls grain size in cultivated rice. Nat Genet. 2016;48(4):447–456.
  • Qi P, Lin YS, Song XJ, et al. The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1; 3. Cell Res. 2012;22(12):1666–1680.
  • Wang S, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet. 2015;47(8):949–954.
  • Wang Y, Xiong G, Hu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet. 2015;47(8):944–948.
  • Wang S, Wu K, Yuan Q, et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet. 2012;44(8):950–954.
  • Huo X, Wu S, Zhu Z, et al. NOG1 increases grain production in rice. Nat Commun. 2017;8(1):17.
  • Gao F, Wang K, Liu Y, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants. 2015;2:1–9.
  • Che R, Tong H, Shi B, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants. 2015;2:1–8.
  • Duan P, Ni S, Wang J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants. 2015;2:1–5.
  • Khush GS. Green revolution: preparing for the 21st century. Genome. 1999;42(4):646–655.
  • Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA. 2007;104(42):16402–16409.
  • Gudi S, Atri C, Goyal A, et al. Physical mapping of introgressed chromosome fragment carrying the fertility restoring (rfo) gene for ogura CMS in brassica juncea L. Czern & coss. Theor Appl Genet. 2020;133(10):2949–2959.
  • Joshi SP, Ranjekar PK, Gupta VS. Molecular markers in plant genome analysis. Curr Sci. 1999;77:230–240.
  • Liu J, Van Eck J, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA. 2002;99(20):13302–13306.
  • Frary A, Nesbitt TC, Frary A, et al. fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000;289(5476):85–88.
  • Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell. 2000;12(12):2473–2483.
  • Moncada P, Martinez CP, Borrero J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet. 2001;102:41–52.
  • Gudi S, Saini DK, Singh G, et al. Unravelling consensus genomic regions associated with quality traits in wheat using Meta-analysis of quantitative trait loci. Planta. 2022;255(6):1–19.
  • Sharma P, Singh I, Sirari A, et al. Inheritance and molecular mapping of restorer-of-fertility (Rf) gene in A2 hybrid system in pigeonpea (Cajanus cajan). Plant Breed. 2019;138(6):741–747.
  • McCouch SR, Kochert G, Yu ZH, et al. Molecular mapping of rice chromosomes. Theor Appl Genet. 1988;76(6):815–829.
  • Ashkani S, Rafii MY, Shabanimofrad M, et al. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol. 2016;36(2):353–367.
  • Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet. 1996;92(2):191–203.
  • Wang P, Xing Y, Li Z, et al. Improving rice yield and quality by QTL pyramiding. Mol Breeding. 2012;29(4):903–913.
  • Takai T, Fukuta Y, Shiraiwa T, et al. Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot. 2005;56(418):2107–2118.
  • Ishimaru K, Hirotsu N, Madoka Y, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet. 2013;45(6):707–711.
  • Ying JZ, Ma M, Bai C, et al. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant. 2018;11(5):750–753.
  • Guo T, Chen K, Dong NQ, et al. GRAIN SIZE aND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell. 2018;30(4):871–888.
  • Hwang I, Sheen J, Müller B. Cytokinin signaling networks. Annu Rev Plant Biol. 2012;63:353–380.
  • Tsai YC, Weir NR, Hill K, et al. Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol. 2012;158(4):1666–1684.
  • Li S, Zhao B, Yuan D, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Natl Acad Sci USA. 2013;110(8):3167–3172.
  • Yeh SY, Chen HW, Ng CY, et al. Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice. 2015;8(1):13.
  • Wu Y, Wang Y, Mi XF, et al. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet. 2016;12(10):e1006386.
  • Yan L, Loukoianov A, Blechl A, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science. 2004;303(5664):1640–1644.
  • Taguchi-Shiobara F, Kawagoe Y, Kato H, et al. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breed. Sci. 2011;61(1):17–25.
  • Qiao Y, Piao R, Shi J, et al. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet. 2011;122(7):1439–1449.
  • Aohara T, Kotake T, Kaneko Y, et al. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol. 2009;50(11):1886–1897.
  • Ye ZH. Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol. 2002;53:183–202.
  • Piao R, Jiang W, Ham TH, et al. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet. 2009;119(8):1497–1506.
  • Hiltunen JK, Mursula AM, Rottensteiner H, et al. The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2003;27(1):35–64.
  • Ikeda K, Ito M, Nagasawa N, et al. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 2007;51(6):1030–1040.
  • Kolovos P, Knoch TA, Grosveld FG, et al. Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin. 2012;5(1):1–8.
  • Liu J, Chen J, Zheng X, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants. 2017;3:1–7.
  • Liu L, Adrian J, Pankin A, et al. Induced and natural variation of promoter length modulates the photoperiodic response of FLOWERING LOCUS T. Nat Commun. 2014;5(1):1–9.
  • Clark RM, Wagler TN, Quijada P, et al. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet. 2006;38(5):594–597.
  • Lou S, Chen S, Zhao X, et al. The far-upstream regulatory region of RFL is required for its precise spatial-temporal expression for floral development in rice. Plant Mol Biol. 2017;93(1–2):185–195.
  • McEachern LA, Lloyd VK. The maize b1 paramutation control region causes epigenetic silencing in Drosophila melanogaster. Mol Genet Genomics. 2012;287(7):591–606.
  • Fan C, Yu S, Wang C, et al. A causal C–a mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet. 2009;118(3):465–472.
  • Li J, Thomson M, McCouch SR. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics. 2004;168(4):2187–2195.
  • Borden KL, Freemont PS. The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol. 1996;6(3):395–401.
  • Su Z, Hao C, Wang L, et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2011;122(1):211–223.
  • Lee KH, Park SW, Kim YJ, et al. Grain width 2 (GW2) and its interacting proteins regulate seed development in rice Oryza sativa L.). Bot Stud. 2018;59:1–7.
  • Nagata K, Yoshinaga S, Takanashi JI, et al. Effects of dry matter production, translocation of nonstructural carbohydrates and nitrogen application on grain filling in rice cultivar takanari, a cultivar bearing a large number of spikelets. Plant Prod Sci. 2001;4(3):173–183.
  • Tang GQ, Lüscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell. 1999;11(2):177–189.
  • Sturm A, Tang GQ. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 1999;4(10):401–407.
  • Cho JI, Lee SK, Ko S, et al. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep. 2005;24(4):225–236.
  • Duan P, Xu J, Zeng D, et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant. 2017;10(5):685–694.
  • Lee YK, Kim GT, Kim IJ, et al. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in arabidopsis. Development. 2006;133(21):4305–4314.
  • Ma X, Feng F, Zhang Y, et al. A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. PLoS Genet. 2019;15(5):e1008191.
  • Lee YS, Lee DY, Cho LH, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice (NY). 2014;7(1):13–31.
  • Lee DY, Lee J, Moon S, et al. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant J. 2007;49(1):64–78.
  • Unte US, Sorensen AM, Pesaresi P, et al. SPL8, an SBP-box gene that affects pollen sac development in arabidopsis. Plant Cell. 2003;15(4):1009–1019.
  • Wang H, Nussbaum-Wagler T, Li B, et al. The origin of the naked grains of maize. Nature. 2005;436(7051):714–719.
  • Jain S, Jain RK, McCOUCH SR. Genetic analysis of indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet. 2004;109(5):965–977.
  • Ishimaru K, Kosone M, Sasaki H, et al. Leaf contents differ depending on the position in a rice leaf sheath during sink–source transition. Plant Physiol Biochem. 2004;42(11):855–860.
  • Yang J, Peng S, Zhang Z, et al. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Sci. 2002;42(3):766–772.
  • Ruan B, Shang L, Zhang B, et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol. 2020;227(2):629–640.
  • Dahan Y, Rosenfeld R, Zadiranov V, et al. A proposed conserved role for an avocado fw2. 2-like gene as a negative regulator of fruit cell division. Planta. 2010;232(3):663–676.
  • Monforte AJ, Diaz A, Caño-Delgado A, et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot. 2014;65(16):4625–4637.
  • De Franceschi P, Stegmeir T, Cabrera A, et al. Cell number regulator genes in prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breed. 2013;32:311–326.
  • Guo M, Rupe MA, Dieter JA, et al. Cell number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell. 2010;22(4):1057–1073.
  • Song XJ, Kuroha T, Ayano M, et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci USA. 2015;112(1):76–81.
  • Li X, Wei Y, Li J, et al. Identification of QTL TGW12 responsible for grain weight in rice based on recombinant inbred line population crossed by wild rice (Qryza minuta) introgression line K1561 and indica rice G1025. BMC Genet. 2020;21(1):10–10.
  • Parenicova L, de Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in arabidopsis: new openings to the MADS world. Plant Cell. 2003;15(7):1538–1551.
  • Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics. 2007;8:221–242.
  • Shang F, Chao X, Meng K, et al. Fine mapping of a grain shape gene from a rice landrace longliheinuo-dwarf (Oryza sativa L. ssp. japonica). Agronomy. 2020;10(3):380.
  • Yuan H, Gao P, Hu X, et al. Fine mapping and candidate gene analysis of qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice. Theor Appl Genet. 2022;135(1):51–64.
  • Zuo ZW, Zhang ZH, Huang DR, et al. Control of Thousand-Grain weight by OsMADS56 in rice. Int J Mol Sci. 2021;23(1):125.
  • Raza A, Tabassum J, Kudapa H, et al. Can omics deliver temperature resilient ready-to-grow crops. Crit Rev Biotechnol. 2021;41(8):1209–1232.
  • Khush GS. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed. 2013;132:433–436.
  • Brar DS, Singh K, Khush GS. Frontiers in rice breeding. The future rice strategy for India. Cambridge (MA): Academic Press; 2017. p. 137–160.
  • Cao LY, Zhan XD, Chen SG, et al. Breeding methodology and practice of super rice in China. Rice Sci. 2010;17(2):87–93.
  • Huang X, Yang S, Gong J, et al. Genomic architecture of heterosis for yield traits in rice. Nature. 2016;537(7622):629–633.
  • Brar DS, Khush GS. Alien introgression in rice. Plant Mol Biol. 1997;35(1–2):35–47.
  • Li G, Zhang H, Li J, et al. Genetic control of panicle architecture in rice. Crop J. 2021;9(3):590–597.
  • Salvucci ME, Crafts-Brandner SJ. Mechanism for deactivation of rubisco under moderate heat stress. Physiol Plant. 2004;122(4):513–519.
  • Covshoff S, Hibberd JM. Integrating C4 photosynthesis into C3 crops to increase yield potential. Curr Opin Biotechnol. 2012;23(2):209–214.
  • Thapa R, Bhusal N. Designing rice for the 22nd century: towards a rice with an enhanced productivity and efficient photosynthetic pathway. Turkish JAF Sci.Tech. 2020;8(12):2623–2634.
  • Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327(5967):818–822.
  • Miura K, Ashikari M, Matsuoka M. The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci. 2011;16(6):319–326.
  • Hospital F. Selection in backcross programmes. Philos Trans R Soc Lond B Biol Sci. 2005;360(1459):1503–1511.
  • Bernier J, Kumar A, Venuprasad R, et al. Characterization of the effect of a QTL for drought resistance in rice, qtl12. 1, over a range of environments in the Philippines and Eastern India. Euphytica. 2009;166(2):207–217.
  • Swamy BM, Kumar A. Sustainable rice yield in water short drought prone environments: conventional and molecular approaches. Irrig syst pract challenging environ. Croatia: INTECH Publishers; 2012. p. 149–168.
  • Imai I, Kimball JA, Conway B, et al. Validation of yield-enhancing quantitative trait loci from a low-yielding wild ancestor of rice. Mol Breeding. 2013;32(1):101–120.
  • Dixit S, Yadaw RB, Mishra KK, et al. Marker-assisted breeding to develop the drought-tolerant version of sabitri, a popular variety from Nepal. Euphytica. 2017;213(8):1–16.
  • Wang SS, Chen RK, Chen KY, et al. Genetic mapping of the qSBN7 locus, a QTL controlling secondary branch number per panicle in rice. Breed Sci. 2017;67:340–347.
  • Singh N, Singh B, Rai V, et al. Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice. Front Plant Sci. 2017;8:972.
  • Ando T, Yamamoto T, Shimizu T, et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor Appl Genet. 2008;116(6):881–890.
  • Ohsumi A, Takai T, Ida M, et al. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number. F Crop Res. 2011;120(1):68–75.
  • Zong G, Wang A, Wang L, et al. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J Genet Genomics. 2012;39(7):335–350.
  • Yano K, Ookawa T, Aya K, et al. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism. Mol Plant. 2015;8(2):303–314.
  • Anyaoha CO, Fofana M, Gracen V, et al. Introgression of two drought QTLs into FUNAABOR-2 early generation backcross progenies under drought stress at reproductive stage. Rice Sci. 2019;26(1):32–41.
  • Shamsudin NAA, Swamy BP, Ratnam W, et al. Pyramiding of drought yield QTLs into a high quality malaysian rice cultivar MRQ74 improves yield under reproductive stage drought. Rice. 2016;9(1):13.
  • Kumar GR, Sakthivel K, Sundaram RM, et al. Allele mining in crops: prospects and potentials. Biotechnol Adv. 2010;28(4):451–461.
  • Takano-Kai N, Jiang H, Powell A, et al. Multiple and independent origins of short seeded alleles of GS3 in rice. Breed Sci. 2013;63(1):77–85.
  • Wang J, Xu H, Li N, et al. Artificial selection of Gn1a plays an important role in improving rice yields across different ecological regions. Rice. 2015;8(1):1–10.
  • Gull S, Haider Z, Gu H, et al. InDel marker based estimation of multi-gene allele contribution and genetic variations for grain size and weight in rice (Oryza sativa L.). Int J Mol Sci. 2019;20(19):4824.
  • Zhang L, Ma B, Bian Z, et al. Grain size selection using novel functional markers targeting 14 genes in rice. Rice. 2020;13(1):16.
  • Niu Y, Chen T, Wang C, et al. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genomics. 2021;22(1):14.
  • Dixit N, Dokku P, Amitha Mithra SV, et al. Haplotype structure in grain weight gene GW2 and its association with grain characteristics in rice. Euphytica. 2013;192(1):55–61.
  • Abbai R, Singh VK, Nachimuthu VV, et al. Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor‐made rice with enhanced genetic gains. Plant Biotechnol J. 2019;17(8):1612–1622.
  • Frouin J, Labeyrie A, Boisnard A, et al. Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS One. 2019;14(6):e0217516.
  • Cui Y, Li R, Li G, et al. Hybrid breeding of rice via genomic selection. Plant Biotechnol J. 2020;18(1):57–67.
  • Datta SK, Peterhans A, Datta K, et al. Genetically engineered fertile indica-rice recovered from protoplasts. Biotechnology. 1990;8:736–740.
  • Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T‐DNA. Plant J. 1994;6(2):271–282.
  • Kathuria H, Giri J, Tyagi H, et al. Advances in transgenic rice biotechnology. CRC Crit Rev Plant Sci. 2007;26(2):65–103.
  • Moghissi AA, Pei S, Liu Y. Golden rice: scientific, regulatory and public information processes of a genetically modified organism. Crit Rev Biotechnol. 2016;36(3):535–541.
  • Chen J, Gao H, Zheng XM, et al. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant J. 2015;83(3):427–438.
  • Khandagale KS, Chavhan R, Nadaf AB. RNAi-mediated down regulation of BADH2 gene for expression of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 (Oryza sativa L.). 3 Biotech. 2020;10(4):1–9.
  • Bao A, Burritt DJ, Chen H, et al. The CRISPR/Cas9 system and its applications in crop genome editing. Crit Rev Biotechnol. 2019;39(3):321–336.
  • Zhang Y, Massel K, Godwin ID, et al. Applications and potential of genome editing in crop improvement. Genome Biol. 2018;19(1):1–11.
  • Achary V, Reddy MK. CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Sci Rep. 2021;11(1):1–13.
  • Li M, Li X, Zhou Z, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci. 2016;7:377.
  • Yuyu C, Aike Z, Pao X, et al. Effects of GS3 and GL3. 1 for grain size editing by CRISPR/Cas9 in rice. Rice Sci. 2020;27(5):405–413.
  • Wang G, Wang C, Lu G, et al. Knockouts of a late flowering gene via CRISPR–Cas9 confer early maturity in rice at multiple field locations. Plant Mol Biol. 2020;104(1-2):137–150.
  • Lu Y, Wang J, Chen B, et al. A donor-DNA-free CRISPR/cas-based approach to gene knock-up in rice. Nat Plants. 2021;7(11):1445–1452.
  • Kurakawa T, Ueda N, Maekawa M, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature. 2007;445(7128):652–655.
  • Li M, Tang D, Wang K, et al. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol J. 2011;9(9):1002–1013.
  • Kobayashi K, Maekawa M, Miyao A, et al. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol. 2010;51(1):47–57.
  • Tabuchi H, Zhang Y, Hattori S, et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell. 2011;23(9):3276–3287.
  • Ikeda-Kawakatsu K, Maekawa M, Izawa T, et al. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1. Plant J. 2012;69(1):168–180.
  • Ma X, Cheng Z, Qin R, et al. O s ARG encodes an arginase that plays critical roles in panicle development and grain production in rice. Plant J. 2013;73(2):190–200.
  • Li F, Liu W, Tang J, et al. Rice DENSE aND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res. 2010;20(7):838–849.
  • Hong Z, Ueguchi-Tanaka M, Fujioka S, et al. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell. 2005;17(8):2243–2254.
  • Wang A, Hou Q, Si L, et al. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiol. 2019;180(4):2077–2090.
  • Zhang Z, Sun X, Ma X, et al. GNP6, a novel allele of MOC1, regulates panicle and tiller development in rice. Crop J. 2021;9(1):57–67.
  • Yan P, Zhu Y, Wang Y, et al. A new RING finger protein, PLANT ARCHITECTURE and GRAIN NUMBER 1, affects plant architecture and grain yield in rice. Int J Mol Sci. 2022;23(2):824.
  • Liu J, Yu L, Ma X, et al. Identification of the major quantitative trait locus cluster qGNPS4. 1 for grain number and panicle structure in rice (Oryza sativa). Plant Breed. 2022;141:223–235.
  • Heang D, Sassa H. Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice. PLoS One. 2012;7(2):e31325.
  • Yu J, Xiong H, Zhu X, et al. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol. 2017;15(1):1–18.
  • Liu Q, Han R, Wu K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun. 2018;9(1):1–12.
  • Wan X, Weng J, Zhai H, et al. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics. 2008;179(4):2239–2252.
  • Li J, Chu H, Zhang Y, et al. The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS One. 2012;7(3):e34231.
  • Heang D, Sassa H. An atypical bHLH protein encoded by POSITIVE REGULATOR oF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci. 2012;62(2):133–141.
  • Kitagawa K, Kurinami S, Oki K, et al. A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol. 2010;51(8):1315–1329.
  • Huang K, Wang D, Duan P, et al. WIDE aND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J. 2017;91(5):849–860.
  • Nakagawa H, Tanaka A, Tanabata T, et al. Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol. 2012;158(3):1208–1219.
  • Segami S, Kono I, Ando T, et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice. 2012;5(1):4–10.
  • Fang N, Xu R, Huang L, et al. SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice. 2016;9(1):1–11.
  • Du Z, Huang Z, Li J, et al. qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theor Appl Genet. 2021;134(9):2767–2776.
  • Lu L, Yan W, Xue W, et al. Evolution and association analysis of Ghd7 in rice. PLoS One. 2012;7(5):e34021.
  • Hirose T, Kadoya S, Hashida Y, et al. Mutation of the SP1 gene is responsible for the small-panicle trait in the rice cultivar tachisuzuka, but not necessarily for high sugar content in the stem. Plant Prod Sci. 2017;20(1):90–94.
  • Choi BS, Kim YJ, Markkandan K, et al. GW2 functions as an E3 ubiquitin ligase for rice expansin-like 1. Int J Mol Sci. 2018;19(7):1904.
  • Mori M, Nomura T, Ooka H, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 2002;130(3):1152–1161.
  • Xu C, Liu Y, Li Y, et al. Differential expression of GS5 regulates grain size in rice. J Exp Bot. 2015;66(9):2611–2623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.