391
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Photo-assisted microbial fuel cell systems: critical review of scientific rationale and recent advances in system development

, , , , &
Pages 31-46 | Received 17 Sep 2021, Accepted 01 Aug 2022, Published online: 24 Nov 2022

References

  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192.
  • Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25(5):464–482.
  • Miller EL. Photoelectrochemical water splitting. Energy Environ Sci. 2015;8(10):2809–2810.
  • Ding R, Yan W, Wu Y, et al. Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Res. 2018;143:589–598.
  • Ding R, Wu Y, Yang F, et al. Degradation of low-concentration perfluorooctanoic acid via a microbial-based synergistic method: assessment of the feasibility and functional microorganisms. J Hazard Mater. 2021;416:125857.
  • Li Y, Chen L, Tian X, et al. Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: total organic carbon removal of ciprofloxacin. Sci Total Environ. 2021;784:147049.
  • Li DB, Cheng YY, Li LL, et al. Light-driven microbial dissimilatory electron transfer to hematite. Phys Chem Chem Phys. 2014;16(42):23003–23011.
  • Du Y, Zhou X, Qu Y, et al. Enhanced electricity generation and pollutant degradation by hybrid photoelectrochemical and microbial fuel cells. Energy Technol. 2017;5(3):402–405.
  • Pei H, Yang Z, Nie C, et al. Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: mechanisms of organics and ammonium removal. Bioresour Technol. 2018;256:11–16.
  • Shukla M, Kumar S. Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renew Sustain Energy Rev. 2018;82:402–414.
  • Fischer F. Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renew Sustain Energy Rev. 2018;90:16–27.
  • Rosenbaum M, He Z, Angenent LT. Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol. 2010;21(3):259–264.
  • Xiao L, He Z. Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sustain Energy Rev. 2014;37:550–559.
  • Strik D, Hamelers HVM, Buisman CJN. Solar energy powered microbial fuel cell with a single reversible bioelectrode. Environ Sci Technol. 2010;44(1):532–537.
  • Qian F, Wang G, Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode. Nano Lett. 2010;10(11):4686–4691.
  • Sun Z, Cao R, Huang M, et al. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode. J Photochem Photobiol A Chem. 2015;300:38–43.
  • Wang H, Qian F, Wang G, et al. Self-biased solar-microbial device for sustainable hydrogen generation. ACS Nano. 2013;7(10):8728–8735.
  • He YR, Yan FF, Yu HQ, et al. Hydrogen production in a light-driven photoelectrochemical cell. Appl Energy. 2014;113:164–168.
  • Qian F, Wang H, Ling Y, et al. Photoenhanced electrochemical interaction between shewanella and a hematite nanowire photoanode. Nano Lett. 2014;14(6):3688–3693.
  • Wan LL, Li XJ, Zang GL, et al. A solar assisted microbial electrolysis cell for hydrogen production driven by a microbial fuel cell. RSC Adv. 2015;5(100):82276–82281.
  • Liu H, Hu H, Chignell J, et al. Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels. 2010;1(1):129–142.
  • Sogani M, Pankan AO, Dongre A, et al. Augmenting the biodegradation of recalcitrant ethinylestradiol using rhodopseudomonas palustris in a hybrid photo-assisted microbial fuel cell with enhanced bio-hydrogen production. J Hazard Mater. 2021;408:124421.
  • Fu CC, Su CH, Hung TC, et al. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with spirulina platensis. Bioresour Technol. 2009;100(18):4183–4186.
  • Furukawa Y, Moriuchi T, Morishima K. Design principle and prototyping of a direct photosynthetic/metabolic biofuel cell (DPMFC). J Micromech Microeng. 2006;16(9):S220–S225.
  • Gorby YA, Yanina S, McLean JS, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA. 2006;103(30):11358–11363.
  • Tanaka K, Tamamushi R, Ogawa T. Bioelectrochemical fuel‐cells operated by the cyanobacterium, Anabaena variabilis. J Chem Technol Biotechnol. 1985;35(3):191–197.
  • Tanaka K, Kashiwagi N, Ogawa T. Effects of light on the electrical output of bioelectrochemical fuel‐cells containing Anabaena variabilis M‐2: mechanism of the post‐illumination burst. J Chem Technol Biotechnol. 2007;42(3):235–240.
  • Yagishita T, Sawayama S, Tsukahara K, et al. Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using synechocystis sp. PCC6714. J Biosci Bioeng. 1999;88(2):210–214.
  • Yagishita T, Sawayama S, Tsukahara KI, et al. Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge/culture cycles. J Ferment Bioeng. 1998;85(5):546–549.
  • Yagishita T, Sawayama S, Tsukahara K, et al. Behavior of glucose degradation in Synechocystis sp. M-203 in bioelectrochemical fuel cells. Bioelectrochemistry Bioenerg. 1997;43(1):177–180.
  • Bazdar E, Roshandel R, Yaghmaei S, et al. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour Technol. 2018;261:350–360.
  • Hu X, Liu B, Zhou J, et al. CO2 fixation, lipid production, and power generation by a novel air-lift-type microbial carbon capture cell system. Environ Sci Technol. 2015;49(17):10710–10717.
  • Wang CT, Huang YS, Sangeetha T, et al. Novel bufferless photosynthetic microbial fuel cell (PMFCs) for enhanced electrochemical performance. Bioresour Technol. 2018;255:83–87.
  • Lin CC, Wei CH, Chen CI, et al. Characteristics of the photosynthesis microbial fuel cell with a spirulina platensis biofilm. Bioresour Technol. 2013;135:640–643.
  • Yang Z, Zhang L, Nie C, et al. Multiple anodic chambers sharing an algal raceway pond to establish a photosynthetic microbial fuel cell stack: voltage boosting accompany wastewater treatment. Water Res. 2019;164:114955.
  • Park TJ, Ding W, Cheng S, et al. Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (Rhodopseudomonas sp). AMB Expr. 2014;4(1):1–8.
  • Zheng W, Cai T, Huang M, et al. Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells. J Biosci Bioeng. 2017;124(5):551–558.
  • Qi X, Ren Y, Liang P, et al. New insights in photosynthetic microbial fuel cell using anoxygenic phototrophic bacteria. Bioresour Technol. 2018;258:310–317.
  • Berk RS, Canfield JH. Bioelectrochemical energy conversion. Appl Microbiol. 1964;12:10–12.
  • Gomez MV, Mai G, Greenwood T, et al. The development and maximization of a novel photosynthetic microbial fuel cell using Rhodospirillum rubrum. J Emerg Invest. 2014;3:1–7.
  • Hasan K, Patil SA, Górecki K, et al. Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer. Bioelectrochemistry. 2013;93:30–36.
  • Hasan K, Reddy KVR, Eßmann V, et al. Electrochemical communication between electrodes and Rhodobacter capsulatus grown in different metabolic modes. Electroanalysis. 2015;27(1):118–127.
  • Chandra R, Modestra JA, Mohan SV. Biophotovoltaic cell to harness bioelectricity from acidogenic wastewater associated with microbial community profiling. Fuel. 2015;160:502–512.
  • Lai YC, Liang CM, Hsu SC, et al. Polyphosphate metabolism by purple non-sulfur bacteria and its possible application on photo-microbial fuel cell. J Biosci Bioeng. 2017;123(6):722–730.
  • Sasaki K, Watanabe M, Suda Y, et al. Applications of photosynthetic bacteria for medical fields. J Biosci Bioeng. 2005;100(5):481–488.
  • Rosenbaum M, Schröder U, Scholz F. In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environ Sci Technol. 2005;39(16):6328–6333.
  • Wong MT, Cheng D, Wang R, et al. Modifying the endogenous electron fluxes of Rhodobacter sphaeroides 2.4. 1 for improved electricity generation. Enzyme Microb Technol. 2016;86:45–51.
  • Badalamenti JP, Torres CI, Krajmalnik‐Brown R. Coupling dark metabolism to electricity generation using photosynthetic cocultures. Biotechnol Bioeng. 2014;111(2):223–231.
  • Satake Y, Otani Y, Maeda I. Photosynthetic fuel cell using purple non-sulfur bacteria. In: 2012 International Symposium on Optomechatronic Technologies (ISOT 2012). Paris, France: IEEE; 2012. p. 1–3.
  • Rey FE, Heiniger EK, Harwood CS. Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol. 2007;73(5):1665–1671.
  • Xing D, Zuo Y, Cheng S, et al. Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol. 2008;42(11):4146–4151.
  • Strik DP, Terlouw H, Hamelers HVM, et al. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol. 2008;81(4):659–668.
  • Cho YK, Donohue TJ, Tejedor I, et al. Development of a solar‐powered microbial fuel cell. J Appl Microbiol. 2008;104(3):640–650.
  • Zou Y, Pisciotta J, Billmyre RB, et al. Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng. 2009;104(5):939–946.
  • Inglesby AE, Beatty DA, Fisher AC. Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: demonstration of application in microbial fuel cells. RSC Adv. 2012;2(11):4829–4838.
  • Inglesby AE, Yunus K, Fisher AC. In situ fluorescence and electrochemical monitoring of a photosynthetic microbial fuel cell. Phys Chem Chem Phys. 2013;15(18):6903–6911.
  • Wang LQ, Deng XX, Tian L. A novel photosynthetic bacteria solar cell. AMR. 2013;773:97–100.
  • Luimstra VM, Kennedy SJ, Güttler J, et al. A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. J Appl Phycol. 2014;26(1):15–23.
  • del Campo AG, Perez JF, Cañizares P, et al. Characterization of light/dark cycle and long-term performance test in a photosynthetic microbial fuel cell. Fuel. 2015;140:209–216.
  • Kaushik S, Sarma MK, Goswami P. FRET-guided surging of cyanobacterial photosystems improves and stabilizes current in photosynthetic microbial fuel cell. J Mater Chem A. 2017;5(17):7885–7895.
  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37–38.
  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–349.
  • Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 2005;44(12):8269–8285.
  • Li K, Xu Y, He Y, et al. Photocatalytic fuel cell (PFC) and dye self-photosensitization photocatalytic fuel cell (DSPFC) with BiOCl/Ti photoanode under UV and visible light irradiation. Environ Sci Technol. 2013;47(7):3490–3497.
  • Chen SH, Jiang YS, Lin H. Easy synthesis of BiVO4 for photocatalytic overall water splitting. ACS Omega. 2020;5(15):8927–8933.
  • Shi Y, Li H, Wang L, et al. Novel α-Fe2O3/CdS cornlike nanorods with enhanced photocatalytic performance. ACS Appl Mater Interfaces. 2012;4(9):4800–4806.
  • Han F, Kambala VSR, Srinivasan M, et al. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen. 2009;359(1-2):25–40.
  • Akpan UG, Hameed BH. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A Gen. 2010;375(1):1–11.
  • Zhang S, Peng B, Yang S, et al. Non-noble metal copper nanoparticles-decorated TiO2 nanotube arrays with plasmon-enhanced photocatalytic hydrogen evolution under visible light. Int J Hydrogen Energy. 2015;40(1):303–310.
  • Yang J, Liao W, Liu Y, et al. Degradation of rhodamine B using a visible-light driven photocatalytic fuel cell. Electrochim Acta. 2014;144:7–15.
  • Liu Y, Zhou H, Li J, et al. Enhanced photoelectrochemical properties of Cu2O-loaded short TiO2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2010;2(4):277–284.
  • Guerrero-Araque D, Acevedo-Peña P, Ramírez-Ortega D, et al. Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2–TiO2 materials. Int J Hydrogen Energy. 2017;42(15):9744–9753.
  • Khan ME, Khan MM, Min BK, et al. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci Rep. 2018;8(1):12.
  • Yuan SJ, Sheng GP, Li WW, et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ Sci Technol. 2010;44(14):5575–5580.
  • Chen Q, Bai J, Li J, et al. Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution. Chem Eng J. 2014;252:89–94.
  • Liang Y, Feng H, Shen D, et al. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction. J Power Sources. 2016;324:26–32.
  • Bai J, Wang R, Li Y, et al. A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J Hazard Mater. 2016;311:51–62.
  • Xie S, Ouyang K, Shao Y. A solar responsive photocatalytic fuel cell with a heterostructured ZnFe2O4/TiO2-NTs photoanode and an air-breathing cathode. Int J Hydrogen Energy. 2017;42(49):29201–29209.
  • Kim H, Lee K, Razzaq A, et al. Photocoupled bioanode: a new approach for improved microbial fuel cell performance. Energy Technol. 2018;6(2):257–262.
  • Feng H, Tang C, Wang Q, et al. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems. Chemosphere. 2018;196:476–481.
  • Lee SH, Lee KS, Sorcar S, et al. Wastewater treatment and electricity generation from a sunlight-powered single chamber microbial fuel cell. J Photochem Photobiol A Chem. 2018;358:432–440.
  • Ren G, Sun Y, Lu A, et al. Boosting electricity generation and Cr (VI) reduction based on a novel silicon solar cell coupled double-anode (photoanode/bioanode) microbial fuel cell. J Power Sources. 2018;408:46–50.
  • Ammar SH, Shafi RF, Ali AD. A novel airlift photocatalytic fuel cell (APFC) with immobilized CdS coated zerovalent iron (Fe@CdS) and g-C3N4 photocatalysts film as photoanode for power generation and organics degradation. Colloids Surfaces A Physicochem Eng Asp. 2020;602:125164.
  • Pophali A, Singh S, Verma N. A dual photoelectrode-based double-chambered microbial fuel cell applied for simultaneous COD and Cr(VI) reduction in wastewater. Int J Hydrogen Energy. 2021;46(4):3160–3170.
  • Baudler A, Schmidt I, Langner M, et al. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ Sci. 2015;8(7):2048–2055.
  • Ouyang K, Xie S, Wang P, et al. A novel visible-light responsive photocatalytic fuel cell with a highly efficient BiVO4/WO3 inverse opal photoanode and a MnO2/graphene oxide nanocomposite modified cathode. Int J Hydrogen Energy. 2019;44(14):7288–7299.
  • Yella A, Lee HW, Tsao HN, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science. 2011;334(6056):629–634.
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269–271.
  • Khan MM, Ansari SA, Amal MI, et al. Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale. 2013;5(10):4427–4435.
  • Tao J, Luttrell T, Batzill M. A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem. 2011;3(4):296–300.
  • Khan MM, Ansari SA, Pradhan D, et al. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A. 2014;2(3):637–644.
  • Hou C, Liu H, Li Y. The preparation of three-dimensional flower-like TiO2/TiOF2 photocatalyst and its efficient degradation of tetracycline hydrochloride. RSC Adv. 2021;11(25):14957–14969.
  • Tahir MB. Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation. Int J Hydrogen Energy. 2019;44(32):17316–17322.
  • Hou C, Liu H, Mohammad FB. Preparation of ordered mesoporous F–H2Ti3O7 nanosheets using orthorhombic HTiOF3 as a precursor and their highly efficient degradation of tetracycline hydrochloride under simulated sunlight. J Solid State Chem. 2021;300:122288.
  • Bhowmick GD, Noori MT, Das I, et al. Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell. Int J Hydrogen Energy. 2018;43(15):7501–7510.
  • Yang L, Leung WW. Application of a bilayer TiO2 nanofiber photoanode for optimization of dye‐sensitized solar cells. Adv Mater. 2011;23(39):4559–4562.
  • Du P, Song L, Xiong J, et al. Coaxial electrospun TiO2/ZnO core–sheath nanofibers film: novel structure for photoanode of dye-sensitized solar cells. Electrochim Acta. 2012;78:392–397.
  • Wang X, He G, Fong H, et al. Electron transport and recombination in photoanode of electrospun TiO2 nanotubes for dye-sensitized solar cells. J Phys Chem C. 2013;117(4):1641–1646.
  • Mohamed IMA, Dao VD, Liu C, et al. Synthesis of electrospun 1D-photoanode nanocomposite based on electrospinning followed by hydrothermal treatment for highly efficient liquid-junction photovoltaic devices. J Sol-Gel Sci Technol. 2019;91(2):342–352.
  • Zheng F, Zhu Z. Preparation of the Au@TiO2 nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells. Mater Chem Phys. 2018;208:35–40.
  • Mahmoud MS, Akhtar MS, Mohamed IMA, et al. Demonstrated photons to electron activity of S-doped TiO2 nanofibers as photoanode in the DSSC. Mater Lett. 2018;225:77–81.
  • Wang X, Xi M, Zheng F, et al. Reduction of crack formation in TiO2 mesoporous films prepared from binder-free nanoparticle pastes via incorporation of electrospun SiO2 or TiO2 nanofibers for dye-sensitized solar cells. Nano Energy. 2015;12:794–800.
  • Cao Y, Dong YJ, Feng HL, et al. Electrospun TiO2 nanofiber based hierarchical photoanode for efficient dye-sensitized solar cells. Electrochim Acta. 2016;189:259–264.
  • Panneerselvam P, Murugadoss V, Elayappan V, et al. Influence of anti-reflecting nature of MgF2 embedded electrospun TiO2 nanofibers based photoanode to improve the photoconversion efficiency of DSSC. ES Energy Environ. 2018;1:99–105.
  • Chen Q, Li J, Li X, et al. Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environ Sci Technol. 2012;46(20):11451–11458.
  • Liao Q, Li L, Chen R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode. Int J Hydrogen Energy. 2015;40(46):16547–16555.
  • Long X, Wang H, Wang C, et al. Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode. J Power Sources. 2019;415:145–153.
  • Jia Y, Zhang D, You H, et al. Benthic microbial fuel cell equipped with a photocatalytic Cu2O-coated cathode. J Nanoparticle Res. 2019;21:1–10.
  • Shan Y, Cui J, Liu Y, et al. TiO2 anchored on MoS2 nanosheets based on molybdenite exfoliation as an efficient cathode for enhanced Cr (VI) reduction in microbial fuel cell. Environ Res. 2020;190:110010.
  • Lui G, Jiang G, Fowler M, et al. A high performance wastewater-fed flow-photocatalytic fuel cell. J Power Sources. 2019;425:69–75.
  • Salam Z, Vijayakumar E, Subramania A. Influence of Al2O3 nanoparticles embedded-TiO2 nanofibers based photoanodes on photovoltaic performance of a dye sensitized solar cell. RSC Adv. 2014;4(95):52871–52877.
  • Salam Z, Vijayakumar E, Subramania A, et al. Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Sol Energy Mater Sol Cells. 2015;143:250–259.
  • Dworschak D, Brunnhofer C, Valtiner M. Photocorrosion of ZnO single crystals during electrochemical water splitting. ACS Appl Mater Interfaces. 2020;12(46):51530–51536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.