197
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Iridoid glycosides from Picrorhiza genus endemic to the Himalayan region: phytochemistry, biosynthesis, pharmacological potential and biotechnological intercessions to boost production

, , ORCID Icon &
Pages 47-62 | Received 14 Sep 2021, Accepted 19 Aug 2022, Published online: 02 Oct 2022

References

  • Joshi RK, Satyal P, Setzer WN. Himalayan aromatic medicinal plants: a review of their ethnopharmacology, volatile phytochemistry, and biological activities. Medicines. 2016;3(1):6.
  • Ved DK, Mudappa A, Shanker D. Regulating export of endangered medicinal plant species-need for scientific vigour. Curr Sci. 1998;75:341–344.
  • Uniyal SK, Awasthi A, Rawat GS. (2002). current status and distribution of commercially exploited medicinal and aromatic plants in upper gori valley, Kumaon Himalaya, Uttaranchal. Curr Sci. 2002;82:1246–1252.
  • Kala CP. Status and conservation of rare and endangered medicinal plants in the Indian trans-Himalaya. Biol Conserv. 2000;93(3):371–379.
  • Dinda B, Debnath S, Harigaya Y. Naturally occurring iridoids. A review, part 1. Chem Pharm Bull. 2007;55(2):159–222.
  • Viljoen A, Mncwangi N, Vermaak I. Anti-inflammatory iridoids of botanical origin. Curr Med Chem. 2012;19(14):2104–2127.
  • Ghisalberti EL. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine. 1998;5(2):147–163.
  • Wang C, Gong X, Bo A, et al. Iridoids: research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules. 2020;25(2):287.
  • Gonçalves GA, Eifler-Lima VL, von Poser GL. Revisiting nature: a review of iridoids as a potential antileishmanial class. Phytochem Rev. 2021;21:101–126.
  • Hussain H, Green IR, Saleem M, et al. Therapeutic potential of iridoid derivatives: patent review. Inventions. 2019;4(2):29.
  • Kumar V, Chauhan RS, Tandon C. Biosynthesis and therapeutic implications of iridoid glycosides from Picrorhiza genus: the road ahead. J Plant Biochem Biotechnol. 2017;26(1):1–3.
  • Smit HF, Kroes BH, Van den Berg AJ, et al. Immunomodulatory and anti-inflammatory activity of Picrorhiza scrophulariiflora. J Ethnopharmacol. 2000;73(1–2):101–109.
  • Skinder BM, Ganai BA, Wani AH. Scientific study of Gentiana Kurroo Royle. Medicines. 2017;4(4):74.
  • Kelayeh TP, Abedinzade M, Ghorbani A. A review on biological effects of Lamium album (white dead nettle) and its components. J Herbmed Pharmacol. 2019;8(3):185–193.
  • Kumar N, Singh B, Kaul VK, et al. Chemical and biological aspects of iridoid bearing plants of temperate region. Stud Nat Prod Chem. 2005;32:247–302.
  • Mulas M. Traditional uses of Labiatae in the Mediterranean area. Acta Hortic. 2006;723:25–32.
  • Nickavar B, Mojab F, Bamasian S. Volatile components from aerial parts of Lamium amplexicaule from Iran. J Essent Oil-Bear Plants. 2008;11(1):36–40.
  • Panchal MA, Murti K, Lambole V. Pharmacological properties of Verbascum Thapsus—a review. Int J Pharm Sci Rev Res. 2010;5(2):73–77.
  • Kubica P, Szopa A, Dominiak J, et al. Verbena officinalis (common vervain)–a review on the investigations of this medicinally important plant species. Planta Med. 2020;86(17):1241–1257.
  • Vishwanathan AS, Basavaraju RA, review on Vitex negundo L. A medicinally important plant. Eur J Biol Sci. 2010;3(1):30–42.
  • Daniele C, Coon JT, Pittler MH, et al. Vitex agnus castus. Drug Saf. 2005;28(4):319–332.
  • Samuelsen AB. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. Ethnopharmacol. 2000;71(1–2):1–21.
  • Wegener T, Kraft K. Plantain (Plantago lanceolata L.): anti-inflammatory action in upper respiratory tract infections. Wien Med Wochenschr Suppl. 1999;149(8–10):211–216.
  • Zhao D, Hamilton JP, Pham GM, et al. De novo genome assembly of camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. Gigascience. 2017;6(9):1–7.
  • Rafael M, Barros L, Carvalho AM, et al. Topical anti-inflammatory plant species: bioactivity of bryonia dioica, Tamus communis and lonicera periclymenum fruits. Ind Crops Prod. 2011;34(3):1447–1454.
  • Lamichhane J, Chhetri SB, Bhandari M, et al. Ethnopharmacological survey, phytochemical screening and antibacterial activity measurements of high altitude medicinal plants of Nepal: a bioprospecting approach. Indian J Traditional Knowledge. 2014;13(3):496–507.
  • Ghosal S, Singh AA, Biswas K. New 6-aryl-2-pyrones from Gentiana pedicellata. Planta Med. 1983;49(12):240–243.
  • Prakash V, Kumari A, Kaur H, et al. Chemical constituents and biological activities of genus picrorhiza: an update. Indian J Pharm Sci. 2020;10(4):562–577.
  • Nayar MP, Sastri ARK. 1990. Red data plants of India. New Delhi: CSIR Publication. p 271.
  • Bantawa P, Saha-Roy O, Ghosh SK, et al. In vitro regeneration of an endangered medicinal plant picrorhiza scrophulariiflora. Biologia Plant. 2011;55(1):169–172.
  • Masood M, Arshad M, Qureshi R, et al. Picrorhiza kurroa: an ethnopharmacologically important plant species of himalayan region. PAB. 2015;4(3):407–417.
  • Royle JF. Illustrations of the botany and other branches of the natural history of the Himalayan mountains, and of the flora of cashmere. Volume plates. Reprint 1970, New Delhi: Today & Tomorrow’s Printers & Publishers; 1970. 71:1835–1940a.
  • Bentham G. 1927. Scrophularineae indicae. London: James Ridgway and Sons, p. 47.
  • Pennell FW. 1943. The Scrophulariaceae of the Western Himalayas. In: The academy of natural sciences of philadelphia monographs, number 5. Lancaster, Pennsylvania: Wickersham Printing company
  • Hong DY. Taxonomy and evolution of the veroniceae (Scrophulariaceae) with special reference to palynology. Opera Bot. 1984;75:1–60.
  • Kumar R, Bhandari P, Singh B, et al. Evaluation of Picrorhiza kurroa accessions for growth and quality in North Western Himalayas. J Med Plants Res. 2020;6:2660–2665.
  • Bantawa P, Ghosh SK, Bhandari P, et al. Micropropagation of an elite line of Picrorhiza Scrophulariiflora, Pennell, an endangered high valued medicinal plant of the Indo-China Himalayan region. Med Aromat Plant Sci Biotechnol. 2010;4:1–7.
  • Sah JN, Varshney VK. Chemical constituents of picrorhiza genus. Am J Essent Oil. 2013;1(2):22–37.
  • Win NN, Kodama T, Lae KZ, et al. Bis-iridoid and iridoid glycosides: viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia. 2019;134:101–107.
  • Morikawa T, Nakanishi Y, Inoue N, et al. Acylated iridoid glycosides with hyaluronidase inhibitory activity from the rhizomes of picrorhiza kurroa royle ex benth. Phytochemistry. 2020;169:112185.
  • Singh H, Gahlan P, Dutt S, et al. Why uproot Picrorhiza kurrooa, an endangered medicinal herb? Curr Sci. 2011;100:1055–1059.
  • Rokaya MB, Parajuli B, Bhatta KP, et al. Neopicrorhiza scrophulariiflora (Pennell) Hong: a comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. J Ethnopharmacol. 2020;247:112250.
  • Stuppner H, Wagner H. Minor iridoids and phenyl glycosides of Picrorhiza kurrooa. Planta Med. 1989;55(5):467–469.
  • Stuppner H, Müller EP, Wagner H. Cucurbitacins from Picrorhiza kurrooa. Phytochemistry. 1991;30(1):305–310.
  • Gupta PP. Picroliv: hepatoprotectant, immunomodulator. Drugs Fut. 2001;26(1):25–31.
  • Wang DQ, Zheng HED, Feng BS, et al. Chemical constituents from Picrorhiza scrophulariiflora. Acta Bot Yunnanica. 1993;15:83–88.
  • Weinges K, Kloss P, Henkels WD. Natural products from medicinal plants. XVII. Picroside-II, a new 6-Vanilloylcatapol from Picrorhiza kurrooa royle and benth. Justus Liebigs Ann Chem. 1972;759:173–182.
  • Tiwari SS, Pandey MM, Srivastava S, et al. TLC densitometric quantification of picrosides (picroside-I and picroside-II) in picrorhiza kurroa and its substitute picrorhiza scrophulariiflora and their antioxidant studies. Biomed Chromatogr. 2012;26(1):61–68.
  • Rastogi R, Saksena S, Garg NK, et al. Effect of picroliv on antioxidant –system in liver of rats, after partial hepatectomy. Phytother Res. 1995;9(5):364–367.
  • Wang H, Wu FH, Xiong F, et al. Iridoids from neopicrorhiza scrophulariiflora and their hepatoprotective activities in vitro. Chem Pharm Bull. 2006;54(8):1144–1149.
  • Rastogi R, Srivastava AK, Rastogi K. Long term effect of vaflatoxin B1 on lipid peroxidation in rat liver and kidney: effect of picroliv and silymarin. Phytother Res. 2001;15(4):307–310.
  • Saraswat B, Visen PK, Patnaik GK, et al. Anticholestatic effect of picroliv, active hepatoprotective principle of Picrorhiza kurrooa, against carbon tetrachloride induced cholestasis. Indian J Exp Biol. 1993;31(4):316–318.
  • Nandave M, Ojha SK, Kumari S, et al. Cardioprotective effect of Ropot extract of Picrorhiza kurroa (royle ex benth) against isoproterenol-induced cardiotoxicity in rats. Indian J Exp Biol. 2013;51:694–701.
  • Guo ZJ, Hou FF, Liu SX, et al. Picrorhiza scrophulariiflora improves accelerated atherosclerosis through inhibition of redox-sensitive inflammation. Int J Cardiol. 2009;136(3):315–324.
  • Husain GM, Singh PN, Kumar V. Antidiabetic activity of standardized extract of Picrorhiza kurroa in rat model of NIDDM. Drug Discov Ther. 2009;3:88–92.
  • Manandhar N, Rokeya B, Amatya S. Antidiabetic effect of Neopicrorrhiza scrophulariflora on type 2 diabetes model rats. J Ints Med. 2012;33:53–57.
  • Li P, Matsunaga K, Ohizumi Y. Enhancement of the nerve growth factor-mediated neurite outgrowth from PC12D cells by Chinese and Paraguayan medicinal plants. Biol Pharm Bull. 1999;22(7):752–755.
  • Li P, Matsunaga K, Yamakuni T, et al. Potentiation of nerve growth factor-action by picrosides I and II, natural iridoids, in PC12D cells. Eu J Pharmacol. 2000;406(2):203–208.
  • Najar IA, Sachin BS, Sharma SC, et al. Modulation of P-glycoprotein ATPase activity by some phytoconstituents. Phytother Res. 2010;24(3):454–458.
  • Rathee D, Rathee P, Rathee S, et al. Phytochemical screening and antimicro-bial activity of picrorhiza kurroa, an Indian traditional plant used to treat chronicdiarrhea. Arab. J. Chem. 2012;9:1307–1313.
  • Van den Worm E, Beukelman CJ, Van den Berg AJ, et al. Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur J Pharmacol. 2001;433(2–3):225–230.
  • Simonyi A, Serfozo P, Lehmidi TM, et al. The neuroprotective effects of apocynin. Front Biosci. 2012;4(6):2183–2193.
  • Stuppner H, Wagner H. New cucurbitacin glycosides from picrorhiza kurrooa. Planta Med. 1989;55(6):559–563.
  • Wang H, Sun Y, Ye WC, et al. Antioxidative phenylethanoid and phenolic glycosides from Picrorhiza scrophulariiflora. Chem Pharm Bull. 2004;52(5):615–617.
  • Gahlan P, Singh H, Shankar R, et al. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genom. 2012;13:126.
  • Shitiz K, Sharma N, Pal T, et al. NGS transcriptomes and enzyme inhibitors unravel complexity of picrosides biosynthesis in Picrorhiza kurroa Royle Ex. Benth. PLOS One. 2015;10(12):e0144546.
  • Wise ML, Croteau R. 1998. Monoterpene biosynthesis in comprehensive natural products chemistry. Volume 2. Edited by: Cane DE. Oxford: Pergamon Press
  • Hampel D, Mosandl A, Wust M. Biosynthesis of Mono- and sesquiterpenes in strawberry fruits and foliage: 2H labeling studies. J Agric Food Chem. 2006;54(4):1473–1478.
  • Barsain BL, Purohit A, Kumar A, et al. PkGPPS.SSU interacts with two PkGGPPS to form heteromeric GPPS in picrorhiza kurrooa: molecular insights into the picroside biosynthetic pathway. Plant Physiol Biochem. 2020;154:115–128.
  • Kawoosa T, Singh H, Kumar A, et al. Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct Integr Genomics. 2010;10(3):393–404.
  • Kawoosa T, Gahlan P, Devi AS, et al. The GATA and SORLIP motifs in the 3-hydroxy-3-methyl-glutaryl-CoA reductase promoter of Picrorhiza kurrooa for the control of light mediated expression. Funct Integr Genomics. 2014;14(1):191–203.
  • Kumar V, Sood H, Sharma M, et al. A proposed biosynthetic pathway of picrosides linked through the detection of biochemical intermediates in the endangered medicinal herb Picrorhiza kurroa. Phytochem Anal. 2013;24(6):598–602.
  • Singh H, Gahlan P, Kumar S. Cloning and expression analysis of ten genes associated with picrosides biosynthesis in picrorhiza kurrooa. Gene. 2013;515(2):320–328.
  • Pandit S, Shitiz K, Sood H, et al. Expression pattern of fifteen genes of non-mevalonate (MEP) and mevalonate (MVA) pathways in different tissues of endangered medicinal herb Picrorhiza kurroa with respect to picrosides content. Mol Biol Rep. 2013;40(2):1053–1063.
  • Bhat WW, Dhar N, Razdan S, et al. (2013). molecular characterization of UGT94F2 and UGT86C4, two glycosyltransferases from Picrorhiza kurrooa: comparative structural insight and evaluation of substrate recognition. PLOS One. 2013;8(9):e73804.
  • Sharma T, Kawoosa T, Gahlan P, et al. Two light responsive WRKY genes exhibit positive and negative correlation with picroside content in Picrorhiza kurrooa royle ex benth, an endangered medicinal herb. 3 Biotech. 2020;10(6):255.
  • Singh N, Gupta AP, Singh B, et al. Quantitation of picroside-I and picroside-II in Picrorhiza kurroa by HPTLC. J Liq Chromatogr Relat Technol. 2005;28(11):1679–1691.
  • Katoch M, Fazli IS, Suri KA, et al. Effect of altitude on picroside content in core collections of Picrorhiza kurrooa from the North Western Himalayas. J Nat Med. 2011;65(3-4):578–582.
  • Pandit S, Shitiz K, Sood H, et al. Differential biosynthesis and accumulation of picrosides in an endangered medicinal herb Picrorhiza kurroa. J Plant Biochem Biotechnol. 2013;22(3):335–342.
  • Yang CQ, Fang X, Wu XM, et al. Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol. 2012;54(10):703–712.
  • Sood H, Chauhan R. Biosynthesis and accumulation of a medicinal compound, picroside-I, in cultures of Picrorhiza kurroa royle ex benth. Plant Cell Tiss Organ Cult. 2010;100(1):113–117.
  • Ghimire SK, McKey D, Aumeeruddy-Thomas Y. Conservation of Himalayan medicinal plants: harvesting patterns and ecology of two threatened species, Nardostachys grandiflora DC. and Neopicrorhiza scrophulariiflora (pennell) hong. Biol Conserv. 2005;124(4):463–475.
  • Vasil IK, Vasil V. 1980. Clonal propagation. In Perspectives in plant cell and tissue culture. (ed: Vasil, I.K.), pp. 145–173. Int. Rev. Cytol., Suppl. 11A. New York: Acad. Press.
  • Lal N, Ahuja PS, Kukreja AK, et al. Clonal propagation of Picrorhiza kurroa royle ex benth. by shoot tip culture. Plant Cell Rep. 1988;7(3):202–205.
  • Sood H, Chauhan RS. High frequency callus induction and plantlet regeneration from different explants of Picrorhiza kurroa medicinal herb of Himalayas. Afr J Biotech. 2009;8:1965–1972.
  • Patial V, Devi K, Sharma M, et al. Propagation of Picrorhiza kurroa royle ex benth: an important medicinal plant of Western Himalaya. J Med Plant Res. 2014;6:4848–4860.
  • Patial V, Bhattacharya A. TDZ plays key role in shoot regeneration from different explants of Picrorhiza kurroa: an endangered medicinal herb of Western Himalayas. CJAST. 2019;33:1–9.
  • Jan A, Thomas G, Shawl AS, et al. Improved micropropagation protocol of an endangered medicinal plant- Picrorhiza kurrooa royle ex benth. promptly through auxin treatments. Chiang Mai J Sci. 2010;37:304–313.
  • Helena DS, Kannojia G, Gaur AK. In vitro regeneration of Picrorhiza kurroa royal ex benth for ex situ conservation and sustainable utilization. Ann Biol Res. 2015;6:7–14.
  • Nyende AB, Schittenhelm S, Wagner GM, et al. Production, storability, and regeneration of shoot tips of potato (Solanum tuberosum L.) encapsulated in calcium alginate hollow beads. In Vitro Cell Dev Biol – Plant. 2003;39(5):540–544.
  • Mishra J, Singh M, Palni LMS, et al. Assessment of genetic fidelity of encapsulated microshoots of Picrorhiza kurrooa. Plant Cell Tiss Organ Cult. 2011;104(2):181–186.
  • Sharma N, Sharma B. Cryopreservation of shoot tips of Picrorhiza kurroa royle ex benth., an indigenous endangered medicinal plant through vitrification. Cryo-Lett. 2003;24:181–190.
  • Deavours BE, Dixon RA. Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 2005;138(4):2245–2259.
  • Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol. 2009;60:335–355.
  • Mishra J, Bhandari H, Singh M, et al. Hairy root culture of Picrorhiza kurrooa royle ex benth.: a promising approach for the production of picrotin and picrotoxinin. Acta Physiol Plant. 2011;33(5):1841–1846.
  • Verma PC, Rahman L, Negi AS, et al. Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa royle ex benth: establishment and selection of superior hairy root clone. Plant Biotechnol Rep. 2007;1(3):169–174.
  • Bhat WW, Lattoo SK, Rana S, et al. Efficient plant regeneration via direct organogenesis and agrobacterium tumefaciens-mediated genetic transformation of Picrorhiza kurroa: an endangered medicinal herb of the alpine himalayas. In Vitro Cell Dev Biol-Plant. 2012;48:1–9.
  • Morozova O, Hirst M, Marra MA. Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet. 2009;10:135–151.
  • Seki M, Narusaka M, Kamiya A, et al. Functional annotation of a full length arabidopsis cDNA collection. Science. 2002;296(5565):141–145.
  • Eveland AL, McCarty DR, Koch KE. Transcript profiling by 3’-untranslated region sequencing resolves expression of gene families. Plant Physiol. 2008;146(1):32–44.
  • Ruyter-Spira CP, de Koning DJ, van der Poel JJ, et al. Developing microsatellite markers from cDNA: a tool for adding expressed sequence tags to the genetic linkage map of the chicken. Anim Genet. 1998;29(2):85–90.
  • Vashisht I, Pal T, Sood H, et al. Comparative transcriptome analysis in different tissues of a medicinal herb, Picrorhiza kurroa pinpoints transcription factors regulating picrosides biosynthesis. Mol Biol Rep. 2016;43(12):1395–1409.
  • Kellner F, Kim J, Clavijo BJ, et al. Genome-guided investigation of plant natural product biosynthesis. Plant J. 2015;82(4):680–692.
  • Hoopes GM, Hamilton JP, Kim J, et al. Genome assembly and annotation of the medicinal plant Calotropis gigantea, a producer of anticancer and antimalarial cardenolides. G3. G3 (Bethesda). 2018;8(2):385–391.
  • Liu Y, Tang Q, Cheng P, et al. Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharm Sin B. 2020;10(2):374–382.
  • Sharma T, Sharma NK, Kumar P, et al. The first draft genome of Picrorhiza kurrooa, an endangered medicinal herb from Himalayas. Sci Rep. 2021;11(1):14944.
  • Zhang G, Tian Y, Zhang J, et al. Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza bunge). Gigascience. 2015;4:62.
  • Zhang Y, Zheng L, Zheng Y, et al. Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Front Plant Sci. 2019;10:1274.
  • Xia M, Han X, He H, et al. Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or Luo-Han-Guo. Gigascience. 2018;7(6):1–9.
  • Krishnan NM, Jain P, Gupta S, et al. An improved genome assembly of Azadirachta indica A. Juss. G3 (Bethesda). 2016;6(7):1835–1840.
  • Upadhyay AK, Chacko AR, Gandhimathi A, et al. Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol. 2015;15:212.
  • Chakraborty P. Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochim Open. 2018;6:9–16.
  • Jin D, Wang Y, Zhao Y, et al. Micro RNAs and their crosstalks in plant development. J Genet Genomics. 2013;40(4):161–170.
  • Liu J, Yuan Y, Wang Y, et al. Regulation of fatty acid and flavonoid biosynthesis by miRNAs in lonicera japonica. RSC Adv. 2017;7(56):35426–35437.
  • Sunkar R, Li YF, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17(4):196–203.
  • Pantaleo V, Szittya G, Moxon S, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;62(6):960–976.
  • Pelaez P, Trejo MS, Iniguez LP, et al. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genom. 2012;13:83.
  • Badola HK, Pal M. Endangered medicinal plants in Himachal Pradesh. Curr Sci. 2002;83:797–798.
  • Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. Front Plant Sci. 2014;5:6.
  • Bryant L, Flatley B, Patole C, et al. Proteomic analysis of Artemisia annua towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin. BMC Plant Biol. 2015;15:175.
  • Bhattacharyya D, Sinha R, Ghanta S, et al. Proteins differentially expressed in elicited cell suspension culture of podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci. 2012;10(1):34.
  • Kiirika LM, Schmitz U, Colditz F. The alternative Medicago truncatula defense proteome of ROS-defective transgenic roots during early microbial infection. Front Plant Sci. 2014;5:341.
  • Corchete P, Bru R. Proteome alterations monitored by DIGE analysis in silybum marianum cell cultures elicited with methyl jasmonate and methyl B cyclodextrin. J Proteomics. 2013;85:99–108.
  • Parkash J, Kashyap S, Kalita PJ, et al. Differential proteomics of picrorhiza kurrooa royle ex benth. in response to dark stress. Mol Biol Rep. 2014;41(9):6051–6062.
  • Kumar R, Joshi R, Kumari M, et al. Elevated CO2 and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in picrorhiza kurroa. J Proteomics. 2020;219:103755.
  • Gong F, Hu X, Wang W. Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research? Front Plant Sci. 2015;6:418.
  • DellaPenna D. Plant metabolic engineering. Plant Physiol. 2001;125(1):160–163.
  • Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 2001;127(3):1256–1265.
  • Chun JH, Adhikari PB, Park SB, et al. Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47. Plant Cell Rep. 2015;34(9):1551–1560.
  • Kumar V, Sharma N, Sood H, et al. Exogenous feeding of immediate precursors reveals synergistic effect on picroside-I biosynthesis in shoot cultures of picrorhiza kurroa royle ex benth. Sci Rep. 2016;6:29750.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.