658
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Applications of synthetic yeast consortia for the production of native and non-native chemicals

ORCID Icon, , , &
Pages 15-30 | Received 03 Jun 2022, Accepted 19 Aug 2022, Published online: 21 Sep 2022

References

  • Celińska E, Ledesma-Amaro R, Larroude M, et al. Golden gate assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microb Biotechnol. 2017;10(2):450–455.
  • Nielsen J, Fussenegger M, Keasling J, et al. Engineering synergy in biotechnology. Nat Chem Biol. 2014;10(5):319–322.
  • Walker RSK, Pretorius IS. Applications of yeast synthetic biology geared towards the production of biopharmaceuticals. Genes (Basel). 2018;9(7):340.
  • Darvishi F, Blenner M, Ledesma-Amaro R. Editorial: synthetic biology of yeasts for the production of non-native chemicals. Front Bioeng Biotechnol. 2021;9:730047.
  • Naseri G, Koffas MAG. Application of combinatorial optimization strategies in synthetic biology. Nat Commun. 2020;11(1):2446.
  • Atkinson MR, Savageau MA, Myers JT, et al. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell. 2003;113(5):597–607.
  • Kramer BP, Viretta AU, Baba MD, et al. An engineered epigenetic transgene switch in mammalian cells. Nat Biotechnol. 2004;22(7):867–870.
  • Ham TS, Lee SK, Keasling JD, et al. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS One. 2008;3(7):e2815–9.
  • Hooshangi S, Thiberge S, Weiss R. Ultrasensitivity and noise propagation in a synthetic transcriptional Cascade. Proc Natl Acad Sci USA. 2005;102(10):3581–3586.
  • Basu S, Mehreja R, Thiberge S, et al. Spatiotemporal control of gene expression with pulse-generating networks. Proc Natl Acad Sci USA. 2004;101(17):6355–6360.
  • Bashor CJ, Helman NC, Yan S, et al. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science. 2008;319(5869):1539–1543.
  • Goh K, Il Kahng B, Cho KH, et al. Sustained oscillations in extended genetic oscillatory systems. Biophys J. 2008;94(11):4270–4276.
  • Stricker J, Cookson S, Bennett MR, et al. A fast, robust and tunable synthetic gene oscillator. Nature. 2008;456(7221):516–519.
  • Tigges M, Marquez-Lago TT, Stelling J, et al. A tunable synthetic mammalian oscillator. Nature. 2009;457(7227):309–312.
  • Basu S, Gerchman Y, Collins CH. FHA& RWA synthetic multicellular system for programmed pattern formation. Nature. 2015;9:1–12.
  • Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science. 2008;322(5900):456–460.
  • Patel GB, Roth LA. Acetic acid and hydrogen metabolism during coculture of an acetic acid producing bacterium with methanogenic bacteria. Can J Microbiol. 1978;24(8):1007–1010.
  • Said B, Or S. D. Synthetic microbial ecology: Engineering habitats for modular consortia. Front Microbiol. 2017;8:1125.
  • Goyal G, Tsai SL, Madan B, et al. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact. 2011;10(1):89.
  • Gutiérrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O, et al. Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol. 2012;87(2):263–270.
  • Jia X, Liu C, Song H, et al. Design, analysis and application of synthetic microbial consortia. Synth Syst Biotechnol. 2016;1(2):109–117.
  • Singh A, Bajar S, Bishnoi NR. Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel. 2014;116:699–702.
  • Zuroff TR, Xiques SB, Curtis WR. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels. 2013;6(1):59.
  • Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol. 2010;76(22):7514–7520.
  • Lyu X, Zhao G, Ng KR, et al. Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol. J Agric Food Chem. 2019;67(19):5596–5606.
  • Katsuyama Y, Miyahisa I, Funa N, et al. One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol. 2007;73(5):1143–1149.
  • Du Y, Yang B, Yi Z, et al. Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids. J Agric Food Chem. 2020;68(7):2146–2154.
  • Zhou K, Qiao K, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015;33(4):377–383.
  • Johns NI, Blazejewski T, Gomes ALC, et al. Principles for designing synthetic microbial communities. Curr Opin Microbiol. 2016;31:146–153.
  • Hennig S, Clemens A, Rödel G, et al. A yeast pheromone-based inter-species communication system. Appl Microbiol Biotechnol. 2015;99(3):1299–1308.
  • Bittihn P, Din MO, Tsimring LS, et al. Rational engineering of synthetic microbial systems: from single cells to consortia. Curr Opin Microbiol. 2018;45:92–99.
  • Xia T, Eiteman MA, Altman E. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Fact. 2012;11(1):77.
  • Zhang W, Liu H, Li X, et al. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng Life Sci. 2017;17(9):1021–1029.
  • Jawed K, Yazdani SS, Koffas MA. Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun. 2019;9:e00095.
  • Lindemann SR, Bernstein HC, Song H-S, et al. Engineering microbial consortia for controllable outputs. Isme J. 2016;10(9):2077–2084.
  • Heath BS, Marshall MJ, Laskin J. Engineering and analyzing multicellular systems. New York (NY): Springer; 2014.
  • Kung SH, Lund S, Murarka A, et al. Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front Plant Sci. 2018;9(87):87.
  • Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006;440(7086):940–943.
  • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528–532.
  • Maury J, Asadollahi MA, Møller K, et al. Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol. 2005;100:19–51.
  • Asadollahi MA, Maury J, Schalk M, et al. Enhancement of farnesyl diphosphate Pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnol Bioeng. 2010;106:86–96.
  • Srinivasan P, Smolke CD. Engineering a microbial biosynthesis platform for de novo production of tropane alkaloids. Nat Commun. 2019;10(1):15.
  • Gao S, Lyu Y, Zeng W, et al. Efficient biosynthesis of (2 S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. J Agric Food Chem. 2020;68(4):1015–1021.
  • Fathi Z, Tramontin LRR, Ebrahimipour G, et al. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. FEMS Yeast Res. 2021;21:foaa068.
  • Grewal PS, Modavi C, Russ ZN, et al. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab Eng. 2018;45:180–188.
  • Larroude M, Celinska E, Back A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol Bioeng. 2018;115(2):464–472.
  • Mai J, Li W, Ledesma-Amaro R, et al. Engineering plant sesquiterpene synthesis into yeasts: a review. J Agric Food Chem. 2021;69(33):9498–9510.
  • Darvishi F, Ariana M, Marella ER, et al. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Appl Microbiol Biotechnol. 2018;102(14):5925–5938.
  • Kim J, Hoang Nguyen Tran P, Lee SM. Current challenges and opportunities in non-native chemical production by engineered yeasts. Front Bioeng Biotechnol. 2020;8:1–13.
  • Ji Q, Mai J, Ding Y, et al. Improving the homologous recombination efficiency of Yarrowia lipolytica by grafting heterologous component from Saccharomyces cerevisiae. Metab Eng Commun. 2020;11:e00152.
  • Hou J, Tyo KEJ, Liu Z, et al. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res. 2012;12(5):491–510.
  • Mafakher L, Mirbagheri M, Darvishi F, et al. Isolation of lipase and citric acid producing yeasts from agro-industrial wastewater. N Biotechnol. 2010;27(4):337–340.
  • Nandy SK, Srivastava RK. A review on sustainable yeast biotechnological processes and applications. Microbiol Res. 2018;207:83–90.
  • Gassler T, Sauer M, Gasser B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol. 2020;38(2):210–216.
  • de Sá Magalhães S, Keshavarz-Moore E. Pichia pastoris (Komagataella phaffii) as a cost-effective tool for vaccine production for low- and middle-income countries (LMICs). Bioengineering (Basel). 2021;8:119.
  • Peña DA, Gasser B, Zanghellini J, et al. Metabolic engineering of Pichia pastoris. Metab Eng. 2018;50:2–15.
  • Duman-Özdamar ZE, Binay B. Production of industrial enzymes via Pichia pastoris as a cell factory in bioreactor: Current status and future aspects. Protein J. 2021;40(3):367–376.
  • De Schutter K, Lin Y-C, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol. 2009;27(6):561–566.
  • Liu H, Song Y, Fan X, et al. Yarrowia lipolytica as an oleaginous platform for the production of value-added fatty acid-based bioproducts. Front Microbiol. 2020;11:608662.
  • Ma J, Gu Y, Marsafari M, et al. Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J Ind Microbiol Biotechnol. 2020;47(9–10):845–862.
  • Park YK, Nicaud JM. Metabolic engineering for unusual lipid production in Yarrowia lipolytica. Microorganisms. 2020;8(12):1937.
  • Harzevili FD. Biotechnological applications of the yeast Yarrowia lipolytica. Berlin, Germany: Springer; 2014.
  • Lu H, Li F, Sánchez BJ, et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat Commun. 2019;10(1):13.
  • Darvishi F. Synthetic biology of yeasts. Berlin, Germany: Springer International Publishing; 2022.
  • Horinouchi S. Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr Opin Chem Biol. 2009;13(2):197–204.
  • Bader J, Mast-Gerlach E, Popović MK, et al. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol. 2010;109(2):371–387.
  • Jones JA, Vernacchio VR, Collins SM, et al. Complete biosynthesis of anthocyanins using E. coli polycultures. MBio. 2017;8(3):e00621–17.
  • Kim BG, Joe EJ, Ahn JH. Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnol Lett. 2010;32(4):579–584.
  • Honjo H, Iwasaki K, Soma Y, et al. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production. Metab Eng. 2019;55:268–275.
  • Minami H, Kim J-S, Ikezawa N, et al. Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA. 2008;105(21):7393–7398. 2008/05/20
  • Zhang Q, He J, Tian M, et al. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol. 2011;102(19):8899–8906.
  • Chen MT, Weiss R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat Biotechnol. 2005;23(12):1551–1555.
  • Balagaddé FK, Song H, Ozaki J, et al. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol. 2008;4(1):187–188.
  • Karig D, Martini KM, Lu T, et al. Stochastic turing patterns in a synthetic bacterial population. Proc Natl Acad Sci USA. 2018;115(26):6572–6577.
  • Chen Y, Kim JK, Hirning AJ, et al. Synthetic biology. Emergent genetic oscillations in a synthetic microbial consortium. Science. 2015;349(6251):986–989.
  • Baumgart L, Mather W, Hasty J. Synchronized DNA cycling across a bacterial population. Nat Genet. 2017;49(8):1282–1285.
  • Khakhar A, Bolten NJ, Nemhauser J, et al. Cell-cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors. ACS Synth Biol. 2016;5(4):279–286.
  • Gross A, Rödel G, Ostermann K. Application of the yeast pheromone system for controlled cell-cell communication and signal amplification. Lett Appl Microbiol. 2011;52(5):521–526.
  • Mee MT, Wang HH. Engineering ecosystems and synthetic ecologies. Mol Biosyst. 2012;8(10):2470–2483.
  • Shou W, Ram S, Vilar JMG. Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci USA. 2007;104(6):1877–1882.
  • Campbell K, Vowinckel J, Mülleder M, et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. Elife. 2015;4:e09943.
  • Barber JN, Sezmis AL, Woods LC, et al. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 2021;15(3):746–761.
  • Kavšček M, Stražar M, Curk T, et al. Yeast as a cell factory: current state and perspectives. Microb Cell Fact. 2015;14:94.
  • Liu Z, Ho S-H, Sasaki K, et al. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production. Sci Rep. 2016;6:24550.
  • Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol. 2014;5:174.
  • De Bari I, Cuna D, Di Matteo V, et al. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. N Biotechnol. 2014;31(2):185–195.
  • Tsai SL, DaSilva NA, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol. 2013;2(1):14–21.
  • Soong YHV, Zhao L, Liu N, et al. Microbial synthesis of wax esters. Metab Eng. 2021;67:428–442.
  • Lan H, Wen S, Hong YY, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system. Appl Energy. 2015;158:26–34.
  • Turkish AR, Henneberry AL, Cromley D, et al. Identification of two novel human acyl-CoA wax alcohol acyltransferases: Members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem. 2005;280(15):14755–14764.
  • Shi S, Valle-Rodríguez JO, Siewers V, et al. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng. 2014;111(9):1740–1747.
  • Gao Q, Yang JL, Zhao XR, et al. Yarrowia lipolytica as a metabolic engineering platform for the production of very-long-chain wax esters. J Agric Food Chem. 2020;68(39):10730–10740.
  • Yu A, Zhao Y, Li J, et al. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiologyopen. 2020;9(7):e1051.
  • Sheng H, Sun X, Yan Y, et al. Metabolic engineering of microorganisms for the production of flavonoids. Front Bioeng Biotechnol. 2020;8:1–15.
  • Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol. 2021;30(3):321–340.
  • Kopustinskiene DM, Jakstas V, Savickas A, et al. Flavonoids as anticancer agents. Nutrients. 2020;12(2):424–457.
  • Birchfield AS, McIntosh CA. Metabolic engineering and synthetic biology of plant natural products – a minireview. Curr Plant Biol. 2020;24:100163.
  • Shah FLA, Ramzi AB, Baharum SN, et al. Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids. Mol Biol Rep. 2019;46(6):6647–6659.
  • Lyu X, Ng KR, Lee JL, et al. Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of Saccharomyces cerevisiae. J Agric Food Chem. 2017;65(31):6638–6646.
  • Dudnik A, Gaspar P, Neves AR, et al. Engineering of microbial cell factories for the production of plant polyphenols with health-beneficial properties. Curr Pharm Des. 2018;24(19):2208–2225.
  • Gruchattka E, Hädicke O, Klamt S, et al. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Fact. 2013;12:84.
  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33(8):1582–1614.
  • Sun H, Liu Z, Zhao H, et al. Recent advances in combinatorial biosynthesis for drug discovery. Drug Des Devel Ther. 2015;9:823–833.
  • Urui M, Yamada Y, Ikeda Y, et al. Establishment of a co-culture system using Escherichia coli and Pichia pastoris (Komagataella phaffii) for valuable alkaloid production. Microb Cell Fact. 2021;20(1):200.
  • Farrar MC, Jacobs TF. Paclitaxel. Treasure Island (FL): StatPearls Publishing; 2021.
  • Barbuti AM, Chen ZS. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel). 2015;7(4):2360–2371.
  • Gianchecchi E, Fierabracci A. Insights on the effects of resveratrol and some of its derivatives in cancer and autoimmunity: a molecule with a dual activity. Antioxidants (Basel, Switzerland. 2020;9(2):91.
  • Sáez-Sáez J, Wang G, Marella ER, et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metab Eng. 2020;62:51–61.
  • Park JY, Lim JH, Ahn JH, et al. Biosynthesis of resveratrol using metabolically engineered Escherichia coli. Appl Biol Chem. 2021;64(1):20.
  • Yuan SF, Yi X, Johnston TG, et al. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microb Cell Fact. 2020;19(1):143.
  • Madigan MT, Martinko JM, Bender KS, et al. Brock biology of microorganisms. London: Pearson; 2014.
  • Reen FJ, Romano S, Dobson ADW, et al. The sound of silence: activating silent biosynthetic gene clusters in marine microorganisms. Mar Drugs. 2015;13(8):4754–4783.
  • Tomm HA, Ucciferri L, Ross AC. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. J Ind Microbiol Biotechnol. 2019;46(9–10):1381–1400.
  • Netzker T, Fischer J, Weber J, et al. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 2015;6:299.
  • Sabra W, Dietz D, Tjahjasari D, et al. Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng. Life Sci. 2010;10(5):407–421.
  • Johnson DR, Goldschmidt F, Lilja EE, et al. Metabolic specialization and the assembly of microbial communities. ISME J. 2012;6(11):1985–1991.
  • Minty JJ, Singer ME, Scholz SA, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA. 2013;110(36):14592–14597.
  • Arora N, Patel A, Mehtani J, et al. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. Environ Sci Pollut Res Int. 2019;26(17):16952–16973.
  • Shu CH, Tsai CC, Chen KY, et al. Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of chlorella sp. and Saccharomyces cerevisiae. J Taiwan Inst Chem Eng. 2013;44(6):936–942.
  • Ganesan V, Li Z, Wang X, et al. Heterologous biosynthesis of natural product naringenin by co-culture engineering. Synth Syst Biotechnol. 2017;2(3):236–242.
  • Park EY, Naruse K, Kato T. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol Biofuels. 2012;5(1):64.
  • Hay ME, Parker JD, Burkepile DE, et al. Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annu Rev Ecol Evol Syst. 2004;35(1):175–197.
  • Hanly TJ, Henson MA. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng. 2011;108(2):376–385.
  • Solé RV, Macia J. Expanding the landscape of biological computation with synthetic multicellular consortia. Nat Comput. 2013;12(4):485–497.
  • McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 2019;37(2):181–197.
  • Li X, Rizik L, Kravchik V, et al. Synthetic neural-like computing in microbial consortia for pattern recognition. Nat Commun. 2021;12(1):3139.
  • Kylilis N, Tuza ZA, Stan GB, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat Commun. 2018;9(1):2677.
  • Harcombe WR, Riehl WJ, Dukovski I, et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 2014;7(4):1104–1115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.