706
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Application of biochar on soil bioelectrochemical remediation: behind roles, progress, and potential

ORCID Icon, ORCID Icon, , , , & show all
Pages 120-138 | Received 29 Jul 2021, Accepted 13 Aug 2022, Published online: 22 Sep 2022

References

  • Kaushik A, Singh A. Metal removal and recovery using bioelectrochemical technology: the major determinants and opportunities for synchronic wastewater treatment and energy production. J Environ Manage. 2020;270:110826.
  • Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–232.
  • Shah AV, Srivastava VK, Mohanty SS, et al. Municipal solid waste as a sustainable resource for energy production: state-of-the-art review. J Environ Chem Eng. 2021;9(4):105717.
  • Zhang T, Gannon SM, Nevin KP, et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol. 2010;12(4):1110–1120.
  • Hu B, Ai Y, Jin J, et al. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar. 2020;2(1):47–64.
  • Bhatt P, Bhandari G, Bilal M. Occurrence, toxicity impacts and mitigation of emerging micropollutants in the aquatic environments: recent tendencies and perspectives. J Environ Chem Eng. 2022;10(3):107598.
  • Kumar Yadav K, Gupta N, Kumar A, et al. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng. 2018;120:274–298.
  • Varjani S, Pandey A, Upasani VN. Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium-A microcosm approach. Sci Total Environ. 2020;745:141043.
  • Varjani S, Upasani VN, Pandey A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ. 2020;737:139766.
  • Ghosal D, Ghosh S, Dutta TK, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. 2016;7:1369.
  • Danh LT, Truong P, Mammucari R, et al. Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation. 2009;11(8):664–691.
  • Tieyu W, Yonglong L, Hong Z, et al. Contamination of persistent organic pollutants (POPs) and relevant management in China. Environ Int. 2005;31(6):813–821.
  • Gangola S, Bhatt P, Kumar AJ, et al. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. Chemosphere. 2022;296:133916.
  • Sleutels THJA, Ter Heijne A, Buisman CJN, et al. Bioelectrochemical systems: an outlook for practical applications. ChemSusChem. 2012;5(6):1012–1019.
  • Bhatt P, Sethi K, Gangola S, et al. Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. J Biomol Struct Dyn. 2022;40(7):3285–3295.
  • Mishra B, Varjani S, Kumar G, et al. Microbial approaches for remediation of pollutants: innovations, future outlook, and challenges. Energy Environ. 2021;32(6):0958305X1989678.
  • Mishra B, Varjani S, Agrawal DC, et al. Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ Technol Innov. 2020;20:101063.
  • Lovley DR. The microbe electric: conversion of organic matter to electricity. Curr Opin Biotechnol. 2008;19(6):564–571.
  • Pang S, Lin Z, Li J, et al. Microbial degradation of aldrin and dieldrin: mechanisms and biochemical pathways. Front Microbiol. 2022;13:713375.
  • Zhang X, Li X, Zhao X, et al. Factors affecting the efficiency of a bioelectrochemical system: a review. RSC Adv. 2019;9(34):19748–19761.
  • Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23(6):291–298.
  • Pande V, Pandey SC, Sati D, et al. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front Microbiol. 2022;13(824084):824084.
  • Wang H, Xing L, Zhang H, et al. Key factors to enhance soil remediation by bioelectrochemical systems (BESs): a review. Chem Eng J. 2021;419:129600.
  • Chen P, Guo X, Li S, et al. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. Environ Int. 2021;156:106689.
  • Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2012;337(6095):686–690.
  • Pupkevich V, Karamanev D. Scale-up of a novel bioelectrochemical technology for the conversion of hydrogen to electricity. Int J Hydrogen Energy. 2018;43(42):19305–19314.
  • Zhang Q, Song Y, Wu Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J Clean Prod. 2020;242:118435.
  • Zheng Y, Han X, Li Y, et al. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in northeast China. Sci Rep. 2019;9(1):16531.
  • Wang L, Bolan NS, Tsang DCW, et al. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: effects of pyrolysis temperature and KOH concentration. Sci Total Environ. 2020;720:137584.
  • Zhao B, O’Connor D, Shen Z, et al. Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: an accelerated simulation of long-term aging effects. Environ Pollut. 2020;264:114687.
  • Zhong Y, Igalavithana AD, Zhang M, et al. Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. Environ Sci Process Impacts. 2020;22(9):1790–1808.
  • Wang J, Wang S. Preparation, modification and environmental application of biochar: a review. J Clean Prod. 2019;227:1002–1022.
  • Varjani S, Shah AV, Vyas S, et al. Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: a systematic review. Chemosphere. 2021;282:130954.
  • Zhu X, Chen B, Zhu L, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut. 2017;227:98–115.
  • Weber K, Quicker P. Properties of biochar. Fuel. 2018;217:240–261.
  • Mukherjee S, Weihermüller L, Tappe W, et al. Sorption-desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems. Sci Total Environ. 2016;559:63–73.
  • Martin SM, Kookana RS, Van Zwieten L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil. J Hazard Mater. 2012;231–232:70–78.
  • Bornemann LC, Kookana RS, Welp G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere. 2007;67(5):1033–1042.
  • Portet C, Yushin G, Gogotsi Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon N Y. 2007;45(13):2511–2518.
  • Liu Y, Wang M, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron. 2005;21(6):984–988.
  • Klüpfel L, Keiluweit M, Kleber M, et al. Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2014;48(10):5601–5611.
  • Amonette JE, Joseph S. Characteristics of biochar: microchemical properties. In: J. Lehmann and S. Joseph, editors, Biochar for environmental management: science and technology. London: Earthscan, pp. 33–52.
  • Sathishkumar K, Li Y, Sanganyado E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer. Chem Eng J. 2020;395(5):125077.
  • Ma Y, Yao D, Liang H, et al. Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochim Acta. 2020;352:136452.
  • Xu Z, Xu X, Zhang Y, et al. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(VI) reduction. J Hazard Mater. 2020;388:121794.
  • Zhang Y, Xu X, Zhang P, et al. Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar. Chemosphere. 2019;232:273–280.
  • Liu K, Li F, Cui J, et al. Simultaneous removal of cd(II) and as(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: synergistic effects and mechanisms. J Hazard Mater. 2020;395:122623.
  • Liu K, Li F, Zhao X, et al. The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: surface area versus electrochemical property. Chem Eng J. 2021;406:126851.
  • Kappler A, Wuestner ML, Ruecker A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett. 2014;1(8):339–344.
  • Yu L, Yuan Y, Tang J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep. 2015;5:16221.
  • Xu X, Huang H, Zhang Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption. Environ Pollut. 2019;244:423–430.
  • Hassanpour B, Riazi SF, Menzies Pluer EG, et al. Biochar acting as an electron acceptor reduces nitrate removal in woodchip denitrifying bioreactors. Ecol Eng. 2020;149:105724.
  • Li X, Li Y, Zhang X, et al. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci Total Environ. 2019;651(Pt 1):796–806.
  • Sun T, Levin BDA, Guzman JJL, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat Commun. 2017;8:14873.
  • Klinghoffer NB, Castaldi MJ, Nzihou A. Catalyst properties and catalytic performance of char from biomass gasification. Ind Eng Chem Res. 2012;51(40):13113–13122.
  • Ahmad M, Lee SS, Dou X, et al. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol. 2012;118:536–544.
  • Chen Y, Yang H, Wang X, et al. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresour Technol. 2012;107:411–418.
  • Angin D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol. 2013;128:593–597.
  • Zhao X, Ouyang W, Hao F, et al. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine. Bioresour Technol. 2013;147:338–344.
  • Inyang M, Gao B, Yao Y, et al. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol. 2012;110:50–56.
  • Yang X, Chen Z, Wu Q, et al. Enhanced phenanthrene degradation in river sediments using a combination of biochar and nitrate. Sci Total Environ. 2018;619–620:600–605.
  • Karer J, Wimmer B, Zehetner F, et al. Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. AFSci. 2013;22(4):390–403.
  • Case SDC, McNamara NP, Reay DS, et al. The effect of biochar addition on N2O and CO 2 emissions from a sandy loam soil-The role of soil aeration. Soil Biol Biochem. 2012;51:125–134.
  • Bushnaf KM, Puricelli S, Saponaro S, et al. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J Contam Hydrol. 2011;126(3–4):208–215.
  • Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J. 2006;70(5):1719–1730.
  • Jaafar NM, Clode PL, Abbott LK. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J Integr Agric. 2014;13(3):483–490.
  • Liao N, Li Q, Zhang W, et al. Effects of biochar on soil microbial community composition and activity in drip-irrigated desert soil. Eur J Soil Biol. 2016;72:27–34.
  • Schnee LS, Knauth S, Hapca S, et al. Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat. Plant Soil. 2016;408(1–2):357–368.
  • Jośko I, Oleszczuk P, Pranagal J, et al. Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol Eng. 2013;60:50–59.
  • Partovinia A, Rasekh B. Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Crit Rev Environ Sci Technol. 2018;48(1):1–38.
  • Chen B, Yuan M, Qian L. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments. 2012;12(9):1350–1359.
  • Galitskaya P, Akhmetzyanova L, Selivanovskaya S. Biochar-carrying hydrocarbon decomposers promote degradation during the early stage of bioremediation. Biogeosciences. 2016;13(20):5739–5752.
  • Warnock DD, Lehmann J, Kuyper TW, et al. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil. 2007;300(1–2):9–20.
  • Makoto K, Tamai Y, Kim YS, et al. Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil. 2010;327(1–2):143–152.
  • Lehmann J, Rillig MC, Thies J, et al. Biochar effects on soil biota – a review. Soil Biol Biochem. 2011;43(9):1812–1836.
  • Kong L, Gao Y, Zhou Q, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J Hazard Mater. 2018;343:276–284.
  • Zimmerman AR. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol. 2010;44(4):1295–1301.
  • Ameloot N, Graber ER, Verheijen FGA, et al. Interactions between biochar stability and soil organisms: review and research needs. Eur J Soil Sci. 2013;64(4):379–390.
  • Brodowski S, John B, Flessa H, et al. Aggregate-occluded black carbon in soil. Eur J Soil Sci. 2006;57(4):539–546.
  • Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garca MA, et al. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol. 2001;76(12):1209–1215.
  • Samonin VV, Elikova EE. A study of the adsorption of bacterial cells on porous materials. Microbiology. 2004;73(6):696–701.
  • Wang B, Zhang H, Yang Y, et al. Diffusion and filamentous bacteria jointly govern the spatiotemporal process of sulfide removal in sediment microbial fuel cells. Chem Eng J. 2021;405:126680.
  • Karhu K, Mattila T, Bergström I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agric Ecosyst Environ. 2011;140(1–2):309–313.
  • Tryon EH. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr. 1948;18(1):81–115.
  • Leng L, Huang H. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour Technol. 2018;270:627–642.
  • Uchimiya M, Orlov A, Ramakrishnan G, et al. In situ and ex situ spectroscopic monitoring of biochar’s surface functional groups. J Anal Appl Pyrolysis. 2013;102:53–59.
  • Kim WK, Shim T, Kim YS, et al. Characterization of cadmium removal from aqueous solution by biochar produced from a giant miscanthus at different pyrolytic temperatures. Bioresour Technol. 2013;138:266–270.
  • Suliman W, Harsh JB, Abu-lail NI, et al. Biomass and bioenergy influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy. 2016;84:37–48.
  • Hassan M, Liu Y, Naidu R, et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci Total Environ. 2020;744:140714.
  • Leng L, Xu S, Liu R, et al. Nitrogen containing functional groups of biochar: an overview. Bioresour Technol. 2020;298(122286):122286.
  • Wan Z, Li K. Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption. Chemosphere. 2018;194:370–380.
  • Shen W, Fan W. Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A. 2013;1(4):999–1013.
  • Chen T, Zhang Y, Wang H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol. 2014;164:47–54.
  • Budaeva AD, Zoltoev EV. Porous structure and sorption properties of nitrogen-containing activated carbon. Fuel. 2010;89(9):2623–2627.
  • Yang F, Sun L, Xie W, et al. Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: an efficient adsorbent for atrazine removal. Sci Total Environ. 2017;607–608:1391–1399.
  • Wang L, Yan W, He C, et al. Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18. Appl Surf Sci. 2018;433:222–231.
  • Wang H, Guo W, Liu B, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: an electron transfer mechanism. Water Res. 2019;160:405–414.
  • Zhu S, Huang X, Ma F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environ Sci Technol. 2018;52(15):8649–8658.
  • Fan Y, Wang H, Deng L, et al. Enhanced adsorption of Pb(II) by nitrogen and phosphorus co-doped biochar derived from Camellia oleifera shells. Environ Res. 2020;191:110030.
  • Yu W, Lian F, Cui G, et al. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere. 2018;193:8–16.
  • Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol. 2011;102(3):3488–3497.
  • Banik C, Lawrinenko M, Bakshi S, et al. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J Environ Qual. 2018;47(3):452–461.
  • Yuan JH, Xu RK. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Res. 2012;50(7):570–578.
  • Zhang H, Yue X, Li F, et al. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups. Sci Total Environ. 2018;631–632:795–802.
  • Dong CD, Chen CW, Nguyen TB, et al. Degradation of phthalate esters in marine sediments by persulfate over Fe–Ce/biochar composites. Chem Eng J. 2020;384:123301.
  • Que W, Zhou Y, Liu Y, et al. Appraising the effect of in-situ remediation of heavy metal contaminated sediment by biochar and activated carbon on Cu immobilization and microbial community. Ecol Eng. 2019;127:519–526.
  • Liu S j, Liu Y g, Tan X F, et al. The effect of several activated biochars on cd immobilization and microbial community composition during in-situ remediation of heavy metal contaminated sediment. Chemosphere. 2018;208:655–664.
  • Yang Y, Ye S, Zhang C, et al. Application of biochar for the remediation of polluted sediments. J Hazard Mater. 2021;404(Pt A):124052.
  • Bandara T, Franks A, Xu J, et al. Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Crit Rev Environ Sci Technol. 2020;50(9):903–978.
  • Li H, Dong X, da Silva EB, et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere. 2017;178:466–478.
  • Wei J, Tu C, Yuan G, et al. Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environ Pollut. 2019;251:56–65.
  • Shu R, Wang Y, Zhong H. Biochar amendment reduced methylmercury accumulation in rice plants. J Hazard Mater. 2016;313:1–8.
  • Chen D, Wang X, Wang X, et al. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci Total Environ. 2020;714:136550.
  • Zhang H, Shao J, Zhang S, et al. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J Hazard Mater. 2020;390:121349.
  • Fan J, Cai C, Chi H, et al. Remediation of cadmium and lead polluted soil using thiol-modified biochar. J Hazard Mater. 2020;388:122037.
  • Varjani S, Kumar G, Rene ER. Developments in biochar application for pesticide remediation: current knowledge and future research directions. J Environ Manage. 2019;232:505–513.
  • Zhang P, Sheng G, Feng Y, et al. Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environ Sci Technol. 2005;39(14):5442–5448.
  • Zheng W, Guo M, Chow T, et al. Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater. 2010;181(1–3):121–126.
  • Sheng G, Yang Y, Huang M, et al. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Environ Pollut. 2005;134(3):457–463.
  • Cheng D, Ngo HH, Guo W, et al. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci Total Environ. 2020;720:137662.
  • Yue Y, Shen C, Ge Y. Biochar accelerates the removal of tetracyclines and their intermediates by altering soil properties. J Hazard Mater. 2019;380:120821.
  • Yang F, Zhang Q, Jian H, et al. Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. J Hazard Mater. 2020;396:122598.
  • Kuśmierz M, Oleszczuk P, Kraska P, et al. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere. 2016;146:272–279.
  • Sigmund G, Poyntner C, Piñar G, et al. Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. J Hazard Mater. 2018;345:107–113.
  • Zhao L, Xiao D, Liu Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater. Water Res. 2020;172:115494.
  • Sophia Ayyappan C, Bhalambaal VM, Kumar S. Effect of biochar on bio-electrochemical dye degradation and energy production. Bioresour Technol. 2018;251:165–170.
  • Prado A, Berenguer R, Esteve-Núñez A. Electroactive biochar outperforms highly conductive carbon materials for biodegrading pollutants by enhancing microbial extracellular electron transfer. Carbon N Y. 2019;146:597–609.
  • Cai X, Yuan Y, Yu L, et al. Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer. J Hazard Mater. 2020;391:122213.
  • Chen S, Tang J, Fu L, et al. Biochar improves sediment microbial fuel cell performance in low conductivity freshwater sediment. J Soils Sediments. 2016;16(9):2326–2334.
  • Xu W, Pignatello JJ, Mitch WA. Role of black carbon electrical conductivity in mediating hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation on carbon surfaces by sulfides. Environ Sci Technol. 2013;47(13):7129–7136.
  • Chakraborty I, Das S, Dubey BK, et al. Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells. Mater Chem Phys. 2020;239:122025.
  • Allam F, Elnouby M, El-Khatib KM, et al. Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell. Int J Hydrogen Energy. 2020;45(10):5911–5927.
  • Chang HC, Gustave W, Yuan ZF, et al. One-step fabrication of binder-free air cathode for microbial fuel cells by using balsa wood biochar. Environ Technol Innov. 2020;18:100615.
  • Chaijak P, Sato C, Lertworapreecha M, et al. Potential of biochar-anode in a ceramic-separator microbial fuel cell (CMFC) with a laccase-based air cathode. Pol J Environ Stud. 2019;29(1):499–503.
  • Hemalatha M, Sravan JS, Min B, et al. Concomitant use of azolla derived bioelectrode as anode and hydrolysate as substrate for microbial fuel cell and electro-fermentation applications. Sci Total Environ. 2020;707:135851.
  • Li M, Zhang H, Xiao T, et al. Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta. 2018;283:780–788.
  • Yang W, Li J, Ye D, et al. Bamboo charcoal as a cost-effective catalyst for an air-cathode of microbial fuel cells. Electrochim Acta. 2017;224:585–592.
  • Zhong K, Li M, Yang Y, et al. Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells. Appl Energy. 2019;242:516–525.
  • Yuan Y, Yuan T, Wang D, et al. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresour Technol. 2013;144:115–120.
  • Pepè Sciarria T, de Oliveira MAC, Mecheri B, et al. Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sources. 2020;462:228183.
  • Zhang B, Zhang L, Zhang X. Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv. 2019;9(60):35304–35311.
  • Aziz S, Ali MI, Farooq U, et al. Enhanced bioremediation of diesel range hydrocarbons in soil using biochar made from organic wastes. Environ Monit Assess. 2020;192(9):1–4.
  • Li X, Song Y, Wang F, et al. Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: a mechanistic study. J Hazard Mater. 2019;364:325–331.
  • Li X, Wang X, Ren ZJ, et al. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere. 2015;141:62–70.
  • Li X, Wang X, Zhao Q, et al. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens Bioelectron. 2016;85:135–141.
  • Domínguez-Garay A, Berná A, Ortiz-Bernad I, et al. Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. Environ Sci Technol. 2013;47(4):2117–2122.
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol. 2009;7(5):375–381.
  • Wang G, Gao X, Li Q, et al. Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer. J Hazard Mater. 2020;390:121726.
  • Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci. 2008;1(4):417–429.
  • Guo K, Prévoteau A, Patil SA, et al. Engineering electrodes for microbial electrocatalysis. Curr Opin Biotechnol. 2015;33:149–156.
  • Lu L, Huggins T, Jin S, et al. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol. 2014;48(7):4021–4029.
  • Costa de Oliveira MA, Mecheri B, D’Epifanio A, et al. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. J Power Sources. 2017;356:381–388.
  • Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol. 2015;10(5):444–452.
  • Banham D, Ye S, Pei K, et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J Power Sources. 2015;285:334–348.
  • Lin Z, Pang S, Zhou Z, et al. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. J Hazard Mater. 2022;426:127841.
  • Zhang W, Li J, Zhang Y, et al. Characterization of a novel glyphosate-degrading bacterial species, Chryseobacterium sp. Y16C, and evaluation of its effects on microbial communities in glyphosate-contaminated soil. J Hazard Mater. 2022;432:128689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.