658
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Glycosylation of cellulase: a novel strategy for improving cellulase

ORCID Icon, , , & ORCID Icon
Pages 191-201 | Received 18 Jun 2022, Accepted 22 Oct 2022, Published online: 02 Jan 2023

References

  • Octave S, Thomas D. Biorefinery: toward an industrial metabolism. Biochimie. 2009;91(6):659–664.
  • Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref. 2007;1(2):119–134.
  • Ragauskas AJ, Williams CK, Davison BH, et al. The path forward for biofuels and biomaterials. Science. 2006;311(5760):484–489.
  • Kamm B, Kamm M. Principles of biorefineries. Appl Microbiol Biotechnol. 2004;64(2):137–145.
  • Wang M, Ma Y, Li L, et al. The diversity of glycosylation of cellobiohydrolase I from Trichoderma reesei determined with mass spectrometry. Biochem Biophys Res Commun. 2019;508(3):818–824.
  • Meng QS, Liu CG, Zhao XQ, et al. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J Biotechnol. 2018;285(June):56–63.
  • Ryu DDY, Mandels M. Cellulases: biosynthesis and applications. Enzyme Microb Technol. 1980;2(2):91–102.
  • Ahamed A, Vermette P. Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour Technol. 2009;100(23):5979–5987.
  • Greene ER, Himmel ME, Beckham GT, et al. Glycosylation of cellulases: engineering better enzymes for biofuels. In: Advances in carbohydrate chemistry and biochemistry. Vol. 72, 1st ed. New York (NY): Elsevier Inc.; 2015. pp. 63–112.
  • Beckham GT, Dai Z, Matthews JF, et al. Harnessing glycosylation to improve cellulase activity. Curr Opin Biotechnol. 2012;23(3):338–345.
  • Adney WS, Jeoh T, Beckham GT, et al. Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose. 2009;16(4):699–709.
  • Jeoh T, Michener W, Himmel ME, et al. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels. 2008;1(1):10.
  • Boraston AB, Sandercock LE, Warren RAJ, et al. O-glycosylation of a recombinant carbohydrate-binding module mutant secreted by Pichia pastoris. J Mol Microbiol Biotechnol. 2003;5(1):29–36.
  • Stals I, Sandra K, Geysens S, et al. Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O- and N-glycosylation pattern of Ce17A. Glycobiology. 2004;14(8):713–724.
  • Qi F, Zhang W, Zhang F, et al. Deciphering the effect of the different N-glycosylation sites on the secretion, activity, and stability of cellobiohydrolase I from Trichoderma reesei. Appl Environ Microbiol. 2014;80(13):3962–3971.
  • Amore A, Knott BC, Supekar NT, et al. Distinct roles of N- and O-glycans in cellulase activity and stability. Proc Natl Acad Sci USA. 2017;114(52):13667–13672.
  • Taylor CB, Talib MF, McCabe C, et al. Computational investigation of glycosylation effects on a family 1 carbohydrate-binding module. J Biol Chem. 2012;287(5):3147–3155.
  • Payne CM, Resch MG, Chen L, et al. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose. Proc Natl Acad Sci USA. 2013;110(36):14646–14651.
  • Seidle HF, Marten I, Shoseyov O, et al. Physical and kinetic properties of the family 3 beta-glucosidase from Aspergillus niger which is important for cellulose breakdown. Protein J. 2004;23(1):11–23.
  • Deshpande N, Wilkins MR, Packer N, et al. Protein glycosylation pathways in filamentous fungi. Glycobiology. 2008;18(8):626–637.
  • Morelle W, Bernard M, Debeaupuis JP, et al. Galactomannoproteins of Aspergillus fumigatus. Eukaryot Cell. 2005;4(7):1308–1316.
  • Yang M, Yu XW, Zheng H, et al. Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb Cell Fact. 2015;14:40.
  • Bobrowicz P, Davidson RC, Li H, et al. Engineering of an artificial glycosylation pathway blocked in core oligo-saccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology. 2004;14(9):757–766.
  • Hamilton SR, Bobrowicz P, Bobrowicz B, et al. Production of complex human glycoproteins in yeast. Science. 2003;301(5637):1244–1246.
  • Hamilton SR, Davidson RC, Sethuraman N, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science. 2006;313(5792):1441–1443.
  • Strahl-Bolsinger S, Gentzsch M, Tanner W. Protein O-mannosylation. Biochim Biophys Acta. 1999;1426(2):297–307.
  • Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem. 2007;71(6):1415–1427.
  • Pazur JH, Tominaga Y, Forsberg LS, et al. Glycoenzymes: an unusual type of glycoprotein structure for a glucoamylase. Carbohydr Res. 1980;84(1):103–114.
  • Neustroev KN, Golubev AM, Firsov LM, et al. Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett. 1993;316(2):157–160.
  • Ashwood C, Abrahams JL, Nevalainen H, et al. Enhancing structural characterisation of glucuronidated O-linked glycans using negative mode ion trap higher energy collision-induced dissociation mass spectrometry. Rapid Commun Mass Spectrom. 2017;31(10):851–858.
  • Hu JP, Lanthier P, White TC, et al. Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl. 2001;752(2):349–368.
  • Christiansen MN, Kolarich D, Nevalainen H, et al. Challenges of determining O-glycopeptide heterogeneity: a fungal glucanase model system. Anal Chem. 2010;82(9):3500–3509.
  • Wang M, Li Z, Fang X, et al. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. Adv Biochem Eng Biotechnol. 2012;128:1–24.
  • Salovuori I, Makarow M, Rauvala H, et al. Low molecular weight high–mannose type glycans in a secreted protein of the filamentous fungus. Bio/Technology. 1987;5(2):152–156.
  • Eriksson T, Stals I, Collén A, et al. Heterogeneity of homologously expressed Hypocrea jecorina (Trichoderma reesei) Cel7B catalytic module. Eur J Biochem. 2004;271(7):1266–1276.
  • García R, Cremata JA, Quintero O, et al. Characterization of protein glycoforms with N-linked neutral and phosphorylated oligosaccharides: studies on the glycosylation of endoglucanase 1 (Cel7B) from Trichoderma reesei. Biotechnol Appl Biochem. 2001;33(2):141–152.
  • Gao L, Gao F, Wang L, et al. N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and synergism of nonhydrolytic glycoform in cellulose degradation. J Biol Chem. 2012;287(19):15906–15915.
  • Harrison MJ, Nouwens AS, Jardine DR, et al. Moditied glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem. 1998;256(1):119–127.
  • Receveur V, Czjzek M, Schülein M, et al. Dimension, shape, and conformational flexibility of a two-domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem. 2002;277(43):40887–40892.
  • Wong CH. Protein glycosylation: new challenges and opportunities. J Org Chem. 2005;70(11):4219–4225.
  • Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70(2):283–295.
  • Wang L, Zhang Y, Gao P, et al. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng. 2006;93(3):443–456.
  • Wang LS, Zhang YZ, Gao PJ. A novel function for the cellulose binding module of cellobiohydrolase I. Sci China C Life Sci. 2008;51(7):620–629.
  • Boraston AB, Warren RAJ, Kilburn DG. Glycosylation by Pichia pastoris decreases the affinity of a family 2a carbohydrate-binding module from Cellulomonas fimi: a functional and mutational analysis. Society. 2001;430:423–430.
  • Wu G, Wei L, Liu W, et al. Asn64-glycosylation affects Hypocrea jecorina (syn. Trichoderma reesei) cellobiohydrolase Cel7A activity expressed in Pichia pastoris. World J Microbiol Biotechnol. 2010;26(2):323–328.
  • Zhou F, Olman V, Xu Y. Large-scale analyses of glycosylation in cellulases. Genomics, Proteomics Bioinforma. 2009;7(4):194–199.
  • Medzihradszky KF. Characterization of protein N-glycosylation. Methods Enzymol. 2005;405(05):116–138.
  • Clowers BH, Dodds ED, Seipert RR, et al. Site determination of protein glycosylation based on digestion with immobilized nonspecific proteases and Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res. 2007;6(10):4032–4040.
  • Kar B, Verma P, den Haan R, et al. Effect of N-linked glycosylation on the activity and stability of a β-glucosidase from Putranjiva roxburghii. Int J Biol Macromol. 2018;112:490–498.
  • Goedegebuur F, Dankmeyer L, Gualfetti P, et al. Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution. J Biol Chem. 2017;292(42):17418–17430.
  • Han C, Liu Y, Liu M, et al. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol. 2020;164:3361–3368. Internet
  • Rubio MV, Terrasan CRF, Contesini FJ, et al. Redesigning N-glycosylation sites in a GH3 β-xylosidase improves the enzymatic efficiency. Biotechnol Biofuels. 2019;12(1):1–14.
  • Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem. 2004;73:1019–1049.
  • Wiseman RL, Powers ET, Buxbaum JN, et al. An adaptable standard for protein export from the endoplasmic reticulum. Cell. 2007;131(4):809–821.
  • Hanson SR, Culyba EK, Hsu TL, et al. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci USA. 2009;106(9):3131–3136.
  • Wei W, Chen L, Zou G, et al. N-Glycosylation affects the proper folding, enzymatic characteristics and production of a fungal β-glucosidase. Biotechnol Bioeng. 2013;110(12):3075–3084.
  • Chen L, Drake MR, Resch MG, et al. Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of family 1 carbohydrate-binding modules. Proc Natl Acad Sci USA. 2014;111(21):7612–7617.
  • Williamson G, Belshaw NJ, Williamson MP. O-glycosylation in Aspergillus glucoamylase. Conformation and role in binding. Biochem J. 1992;282(2):423–428.
  • Beckham GT, Bomble YJ, Bayer EA, et al. Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol. 2011;22(2):231–238.
  • Beckham GT, Bomble YJ, Matthews JF, et al. The O-glycosylated linker from the Trichoderma reesei family 7 cellulase is a flexible, disordered protein. Biophys J. 2010;99(11):3773–3781.
  • Langsford ML, Gilkes NR, Singh B, et al. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett. 1987;225(1–2):163–167.
  • Scott BR, St-Pierre P, Lavigine J, et al. Construction of lignin-resistant Trichoderma reesei cellulase variants with modified linker peptides for use in cellulose hydrolysis. PCT Int. 2010; Appl. WO2010096931 A1 20100902.
  • Klarskov K, Piens K, Ståhlberg J, et al. Cellobiohydrolase I from Trichoderma reesei: identification of an active-site nucleophile and additional information on sequence including the glycosylation pattern of the core protein. Carbohydr Res. 1997;304(2):143–154.
  • Eneyskaya EV, Kulminskaya AA, Savel’ev AN, et al. α-Mannosidase from Trichoderma reesei participates in the postsecretory deglycosylation of glycoproteins. Biochem Biophys Res Commun. 1998;245(1):43–49.
  • Maras M, Callewaert N, Piens K, et al. Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-α-d-mannosidase. J Biotechnol. 2000;77(2–3):255–263.
  • Guillemette T, van Peij NNME, Goosen T, et al. Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics. 2007;8(1):158.
  • Naggert J, Witkowski A, Mikkelsen J, et al. Molecular cloning and sequencing of a cDNA encoding the thioesterase domain of the rat fatty acid synthetase. J Biol Chem. 1988;263(3):1146–1150.
  • Choi BK, Bobrowicz P, Davidson RC, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA. 2003;100(9):5022–5027.
  • Ma B, Tsai C-J, Haliloğlu T, et al. Dynamic allostery: linkers are not merely flexible. Structure. 2011;19(7):907–917.
  • Zhou J, Wang YH, Chu J, et al. Identification and purification of the main components of cellulases from a mutant strain of Trichoderma viride T 100-14. Bioresour Technol. 2008;99(15):6826–6833.
  • Van Eerde A, Várnai A, Jameson JK, et al. In-depth characterization of Trichoderma reesei cellobiohydrolase TrCel7A produced in Nicotiana benthamiana reveals limitations of cellulase production in plants by host-specific post-translational modifications. Plant Biotechnol J. 2020;18(3):631–643.
  • Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol. 2005;3(2):119–128.
  • Suzuki H, Imaeda T, Kitagawa T, et al. Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. J Biotechnol. 2012;157(1):64–70.
  • Xu L, Yu S, Hou J, et al. Promotion of extracellular activity of cellobiohydrolase I from Trichoderma reesei by protein glycosylation engineering in Saccharomyces cerevisiae. Curr Synthetic Sys Biol. 2014;2:111.
  • Dai Z, Aryal UK, Shukla A, et al. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genet Biol. 2013;61:120–132.
  • Wang TY, Huang CJ, Chen HL, et al. Systematic screening of glycosylation and trafficking associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion. BMC Biotechnol. 2013;13(4):71–71.
  • Jin C. Protein glycosylation in Aspergillus fumigatus is essential for cell wall synthesis and serves as a promising model of multicellular eukaryotic development. Int J Microbiol. 2012;2012:654251–654251.
  • De Pourcq K, De Schutter K, Callewaert N. Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol. 2010;87(5):1617–1631.
  • Kainz E, Gallmetzer A, Hatzl C, et al. N-glycan modification in Aspergillus species. Appl Environ Microbiol. 2008;74(4):1076–1086.
  • Akao T, Yamaguchi M, Yahara A, et al. Cloning and expression of 1,2-α-mannosidase gene (fmanIB) from filamentous fungus Aspergillus oryzae: in vivo visualization of the FmanIBp-GFP fusion protein. Biosci Biotechnol Biochem. 2006;70(2):471–479.
  • Anyaogu DC, Hansen AH, Hoof JB, et al. Glycoengineering of Aspergillus nidulans to produce precursors for humanized N-glycan structures. Metab Eng. 2021;67:153–163.
  • Gerlach JQ, Kilcoyne M, Farrell MP, et al. Differential release of high mannose structural isoforms by fungal and bacterial endo-β-N-acetylglucosaminidases. Mol Biosyst. 2012;8(5):1472–1481.
  • Dubey MK, Ubhayasekera W, Sandgren M, et al. Disruption of the Eng18b ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability. PLoS One. 2012;7(5):e36152–11.
  • Todd AE, Orengo CA, Thornton JM. Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol. 2001;307(4):1113–1143.
  • Stals I, Sandra K, Devreese B, et al. Factors influencing glycosylation of Trichoderma reesei cellulases. II: n-glycosylation of Ce17A core protein isolated from different strains. Glycobiology. 2004;14(8):725–737.
  • Voutilainen SP, Puranen T, Siika-Aho M, et al. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng. 2008;101(3):515–528.
  • Tuohy MG, Walsh DJ, Murray PG, et al. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta – Protein Struct Mol Enzymol. 2002;1596(2):366–380.
  • Grassick A, Murray PG, Thompson R, et al. Three-dimensional structure of a thermostable native cellobiohydrolase, CBHIB, and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem. 2004;271(22):4495–4506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.