492
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Advances in pharmacology, biosynthesis, and metabolic engineering of Scutellaria-specialized metabolites

, , , , , , & ORCID Icon show all
Pages 302-318 | Received 22 Aug 2022, Accepted 02 Nov 2022, Published online: 29 Dec 2022

References

  • Shang X, He X, He X, et al. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol. 2010;128(2):279–313.
  • Qi X, Xu H, Zhang P, et al. Investigating the mechanism of Scutellariae barbata Herba in the treatment of colorectal cancer by network pharmacology and molecular docking. Evid Based Complement Alternat Med. 2021;2021:3905367.
  • Li T, Li Z, Yang X, et al. Comparative pharmacokinetics of baicalin and geniposide in juvenile and adult rats after oral administration of Qingkailing Granules. Chin Herb Med. 2020;12(4):446–451.
  • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Beijing (China): China Medical Science Press; 2020.
  • Song JW, Long JY, Xie L, et al. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chin Med. 2020;15:102.
  • Zhao T, Tang H, Xie L, et al. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2019;71(9):1353–1369.
  • Wang ZL, Wang S, Kuang Y, et al. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018;56(1):465–484.
  • Nugraha RV, Ridwansyah H, Ghozali M, et al. Traditional herbal medicine candidates as complementary treatments for COVID-19: a review of their mechanisms, pros and cons. Evid Based Complement Alternat Med. 2020;2020:2560645.
  • Tong T, Wu YQ, Ni WJ, et al. The potential insights of traditional Chinese medicine on treatment of COVID 19. Chin Med. 2020;15:51.
  • Luo L, Jiang J, Wang C, et al. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm Sin B. 2020;10(7):1192–1204.
  • Guo DA. Traditional Chinese medicine played a crucial role in battling COVID-19. Chin Herb Med. 2020;12(3):205–206.
  • Russo M, Moccia S, Spagnuolo C, et al. Roles of flavonoids against coronavirus infection. Chem Biol Interact. 2020;328:109211.
  • Bai C, Yang J, Cao B, et al. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of Scutellaria baicalensis. Ind Crops Prod. 2020;158:112985.
  • Gao RR, Hu YT, Dan Y, et al. Chinese herbal medicine resources: where we stand. Chin Herb Med. 2020;12(1):3–13.
  • Yuan QJ, Zhang ZY, Hu J, et al. Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genet. 2010;11:29.
  • Shen J, Li P, Liu S, et al. Traditional uses, clinical studies, and ten-years research progress in phytochemistry and pharmacology of the genus Scutellaria. J. Ethnopharmacol. 2021;265:113198.
  • Alseekh S, Perez de Souza L, Benina M, et al. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry. 2020;174:112347.
  • Pei T, Yan M, Huang Y, et al. Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis. Front Plant Sci. 2022;13:866282.
  • Askey BC, Liu D, Rubin GM, et al. Metabolite profiling reveals organ-specific flavone accumulation in Scutellaria and identifies a scutellarin isomer isoscutellarein 8-O-β-glucuronopyranoside. Plant Direct. 2021;5(12):e372.
  • Xu Z, Gao R, Pu X, et al. Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis. Genomics Proteomic Bioinform. 2020;18(3):230–240.
  • Wang J, Mao Y, Ma Y, et al. Diterpene synthases from Leonurus japonicus elucidate epoxy-bridge formation of spiro-labdane diterpenoids. Plant Physiol. 2022;189(1):99–111.
  • Chen X, Berim A, Dayan FE, et al. A (-)-kolavenyl diphosphate synthase catalyzes the first step of salvinorin a biosynthesis in Salvia divinorum. J Exp Bot. 2017;68(5):1109–1122.
  • Maleki S, Akaberi T, Emami SA, et al. Diterpenes of Scutellaria spp.: phytochemistry and pharmacology. Phytochemistry. 2022;201:113285.
  • Yuan QQ, Song WB, Wang WQ, et al. Scubatines A-F, new cytotoxic neo-clerodane diterpenoids from Scutellaria barbata D. Don. Fitoterapia. 2017;119:40–44.
  • Thao do T, Phuong do T, Hanh TT, et al. Two new neoclerodane diterpenoids from Scutellaria barbata D. Don growing in Vietnam. J Asian Nat Prod Res. 2014;16(4):364–369.
  • Feng XS, Yan W, Bai LH, et al. neo-Clerodane diterpenoids from the aerial parts of scutellaria barbata with anti-inflammatory activity. Chem Biodivers. 2021;18(12):e2100693.
  • Kurimoto S, Pu JX, Sun HD, et al. Acylated neo-clerodane type diterpenoids from the aerial parts of Scutellaria coleifolia Levl. (Lamiaceae). J Nat Med. 2016;70(2):241–252.
  • Kurimoto SI, Pu JX, Sun HD, et al. Acylated neo-clerodanes and 19-nor-neo-clerodanes from the aerial parts of Scutellaria coleifolia (Lamiaceae). Phytochemistry. 2015;116:298–304.
  • Ezer N, Akcos Y, Rodrguez B. Neo-clerodane diterpenoids from Scutellaria orientalis subsp. sintenisii. Phytochemistry. 1998;49(6):1825–1827.
  • Raccuglia RA, Bellone G, Loziene K, et al. Hastifolins A-G, antifeedant neo-clerodane diterpenoids from Scutellaria hastifolia. Phytochemistry. 2010;71(17–18):2087–2091.
  • Wang M, Chen Y, Hu P, et al. Neoclerodane diterpenoids from Scutellaria barbata with cytotoxic activities. Nat Prod Res. 2020;34(10):1345–1351.
  • Li R, Morris-Natschke SL, Lee KH. Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep. 2016;33(10):1166–1226.
  • Chu DKW, Pan Y, Cheng SMS, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 2020;66(4):549–555.
  • Mody V, Ho J, Wills S, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol. 2021;4(1):93.
  • Zhu D, Su H, Ke C, et al. Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method. J Pharm Biomed Anal. 2022;209:114538.
  • Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021;36(1):497–503.
  • Jo S, Kim S, Kim DY, et al. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J Enzyme Inhib Med Chem. 2020;35(1):1539–1544.
  • Leonova GN, Shutikova AL, Lubova VA, et al. Inhibitory activity of Scutellaria baicalensis flavonoids against Tick-Borne encephalitis virus. Bull Exp Biol Med. 2020;168(5):665–668.
  • Seong RK, Kim JA, Shin OS. Wogonin, a flavonoid isolated from Scutellaria baicalensis, has anti-viral activities against influenza infection via modulation of AMPK pathways. Acta Virol. 2018;62(1):78–85.
  • Li K, Liang Y, Cheng A, et al. Antiviral properties of baicalin: a concise review. Rev Bras Farmacogn. 2021;31(4):408–419.
  • Xu X, Chen F, Zhang L, et al. Exploring the mechanisms of anti-ovarian cancer of Hedyotis diffusa Willd and Scutellaria barbata D. Don through focal adhesion pathway. J Ethnopharmacol. 2021;279:114343.
  • Ma TT, Zhang GL, Dai CF, et al. Scutellaria barbata and Hedyotis diffusa herb pair for breast cancer treatment: potential mechanism based on network pharmacology. J Ethnopharmacol. 2020;259:112929.
  • Klawitter J, Klawitter J, Gurshtein J, et al. Bezielle (BZL101)-induced oxidative stress damage followed by redistribution of metabolic fluxes in breast cancer cells: a combined proteomic and metabolomic study. Int J Cancer. 2011;129(12):2945–2957.
  • Chen V, Staub RE, Baggett S, et al. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle. PLoS One. 2012;7(1):e30107.
  • Xu T, Wang Q, Liu M. A network pharmacology approach to explore the potential mechanisms of Huangqin-Baishao herb pair in treatment of cancer. Med Sci Monit. 2020;26:e923199.
  • Zeng S, Chen L, Sun Q, et al. Scutellarin ameliorates colitis-associated colorectal cancer by suppressing Wnt/β-catenin signaling Cascade. Eur J Pharmacol. 2021;906:174253.
  • Zhao F, Zhao Z, Han Y, et al. Baicalin suppresses lung cancer growth phenotypes via miR-340-5p/NET1 axis. Bioengineered. 2021;12(1):1699–1707.
  • Park HJ, Park SH, Choi YH, et al. The root extract of Scutellaria baicalensis induces apoptosis in EGFR TKI-resistant human lung cancer cells by inactivation of STAT3. IJMS. 2021;22(10):5181.
  • Pan L, Cho KS, Yi I, et al. Baicalein, Baicalin, and Wogonin: protective effects against ischemia-induced neurodegeneration in the brain and retina. Oxid Med Cell Longev. 2021;2021:8377362.
  • Chang H, Meng HY, Bai WF, et al. A metabolomic approach to elucidate the inhibitory effects of baicalin in pulmonary fibrosis. Pharm Biol. 2021;59(1):1016–1025.
  • Liau PR, Wu MS, Lee CK. Inhibitory effects of Scutellaria baicalensis root extract on linoleic acid hydroperoxide-induced lung mitochondrial lipid peroxidation and antioxidant activities. Molecules. 2019;24(11):2143.
  • Tu B, Li RR, Liu ZJ, et al. Structure-activity relationship study between baicalein and wogonin by spectrometry, molecular docking and microcalorimetry. Food Chem. 2016;208:192–198.
  • Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–787.
  • Smith KB, Smith MS. Obesity statistics. Prim Care. 2016;43(1):121–135, ix.
  • Dai J, Liang K, Zhao S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis. Proc Natl Acad Sci U S A. 2018;115(26):E5896–E5905.
  • Hirai T, Nomura K, Ikai R, et al. Baicalein stimulates fibroblast growth factor 21 expression by up-regulating retinoic acid receptor-related orphan receptor α in C2C12 myotubes. Biomed Pharmacother. 2019;109:503–510.
  • Li H, Tang S. Baicalin attenuates diet-induced obesity partially through promoting thermogenesis in adipose tissue. Obes Res Clin Pract. 2021;15(5):485–490.
  • Gao T, Xu Z, Song X, et al. Hybrid sequencing of full-Length cDNA transcripts of the medicinal plant Scutellaria baicalensis. IJMS. 2019;20(18):4426.
  • Xu Z, Peters RJ, Weirather J, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. Plant J. 2015;82(6):951–961.
  • Zhao Q, Yang J, Cui MY, et al. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of Wogonin biosynthesis. Mol Plant. 2019;12(7):935–950.
  • Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. 2017;18(7):411–424.
  • Van de Peer Y, Ashman TL, Soltis PS, et al. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell. 2021;33(1):11–26.
  • Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms. Mol Plant. 2020;13(1):59–71.
  • Paton A. A global taxonomic investigation of Scutellaria (Labiatae). Kew Bull. 1990;45(3):399–450.
  • Salimov RA, Parolly G, Borsch T. Overall phylogenetic relationships of Scutellaria (lamiaceae) shed light on the origin of the predominantly Caucasian and Irano-Turanian S. orientalis group. Willdenowia. 2021;51(3):395–427.
  • Guo J, Xu W, Hu Y, et al. Phylotranscriptomics in Cucurbitaceae reveal multiple Whole-Genome duplications and key morphological and molecular innovations. Mol Plant. 2020;13(8):1117–1133.
  • Mint Evolutionary Genomics Consortium. Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol Plant. 2018;11(8):1084–1096.
  • Zhao Y, Zhang R, Jiang KW, et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen- fixing symbiosis in Fabaceae. Mol Plant. 2021;14(5):748–773.
  • One thousand plant transcriptomes initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574(7780):679–685.
  • Zhao Q, Zhang Y, Wang G, et al. A specialized flavone biosynthetic pathway has evolved in the medicinal plant. Sci Adv. 2016;2(4):e1501780.
  • Zhao Q, Cui MY, Levsh O, et al. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of Root-Specific 40-Deoxyflavones in Scutellaria baicalensis. Mol Plant. 2018;11(1):135–148.
  • Pei T, Yan M, Li T, et al. Characterization of UDP-glycosyltransferase family members reveals how major flavonoid glycoside accumulates in the roots of Scutellaria baicalensis. BMC Genomics. 2022;23(1):169.
  • Cui MY, Lu AR, Li JX, et al. Two types of O-methyl transferase are involved in biosynthesis of anticancer methoxylated 40-deoxyflavones in Scutellaria baicalensis Georgi. Plant Biotechnol J. 2022;20(1):129–142.
  • Liu W, Feng Y, Yu S, et al. The flavonoid biosynthesis network in plants. IJMS. 2021;22(23):12824.
  • Zhang X, Abrahan C, Colquhoun TA, et al. A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in arabidopsis. Plant Cell. 2017;29(5):1157–1174.
  • Liu X, Cheng J, Zhang G, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun. 2018;9(1):448.
  • Wen W, Alseekh S, Fernie AR. Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol. 2020;55:100–108.
  • Gao R, Lou Q, Hao L, et al. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. Plant J. 2022;109(5):1305–1318.
  • Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29(12):1305–1312.
  • Kumar R, Das S, Mishra M, et al. Emerging roles of NAC transcription factor in medicinal plants: progress and prospects. 3 Biotech. 2021;11(10):425.
  • Cao Y, Li K, Li Y, et al. MYB transcription factors as regulators of secondary metabolism in plants. Biology (Basel). 2020;9(3):61.
  • Park CH, Xu H, Yeo HJ, et al. Enhancement of the flavone contents of Scutellaria baicalensis hairy roots via metabolic engineering using maize Lc and Arabidopsis PAP1 transcription factors. Metab Eng. 2021;64:64–73.
  • Yuan Y, Qi L, Yang J, et al. A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell. 2014;120(3):961–972.
  • Yuan Y, Wu C, Liu Y, et al. The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. PLoS One. 2013;8(10):e77275.
  • Zhang C, Wang W, Wang D, et al. Genome-wide identification and characterization of the WRKY gene family in Scutellaria baicalensis Georgi under diverse abiotic stress. IJMS. 2022;23(8):4225.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504.
  • Qi F, Liu Y, Luo Y, et al. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. Hortic Res. 2022;9:uhac071.
  • Elomaa P, Uimari A, Mehto M, et al. Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant Physiol. 2003;133(4):1831–1842.
  • Mehrtens F, Kranz H, Bednarek P, et al. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005;138(2):1083–1096.
  • Czemmel S, Stracke R, Weisshaar B, et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol. 2009;151(3):1513–1530.
  • Luo J, Butelli E, Hill L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol. Plant J. 2008;56(2):316–326.
  • Wu J, Zhang X, Zhou J, et al. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering Central metabolic pathways with a pH-shift control strategy. Bioresour Technol. 2016;218:999–1007.
  • Wu J, Du G, Chen J, et al. Enhancing flavonoid production by systematically tuning the Central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep. 2015;5:13477.
  • Zhou S, Lyu Y, Li H, et al. Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol Bioeng. 2019;116(6):1392–1404.
  • Lv Y, Marsafari M, Koffas M, et al. Optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synth Biol. 2019;8(11):2514–2523.
  • Palmer CM, Miller KK, Nguyen A, et al. Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a βoxidation mediated strategy. Metab Eng. 2020;57:174–181.
  • Gao S, Lyu Y, Zeng W, et al. Efficient biosynthesis of (2S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. J Agric Food Chem. 2020;68(4):1015–1021.
  • Liu X, Cheng J, Zhu X, et al. De Novo biosynthesis of multiple pinocembrin derivatives in Saccharomyces cerevisiae. ACS Synth Biol. 2020;9(11):3042–3051.
  • Lee H, Kim BG, Kim M, et al. Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli. J Microbiol Biotechnol. 2015;25(9):1442–1448.
  • Barbuto Ferraiuolo S, Restaino OF, Gutiérrez-Del-Río I, et al. Optimization of Pre-Inoculum, fermentation process parameters and precursor supplementation conditions to enhance apigenin production by a recombinant Streptomyces albus strain. Fermentation. 2021;7(3):161.
  • Li J, Tian C, Xia Y, et al. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab Eng. 2019;52:124–133.
  • Ji D, Li J, Xu F, et al. Improve the biosynthesis of Baicalein and Scutellarein via manufacturing self-assembly enzyme reactor in vivo. ACS Synth Biol. 2021;10(5):1087–1094.
  • Ji D, Li J, Ren Y, et al. Rational engineering in Escherichia coli for high-titer production of baicalein based on genome-scale target identification. Biotechnol Bioeng. 2022;119(7):1916–1925.
  • Qian Z, Yu J, Chen X, et al. De Novo production of plant 4'-deoxyflavones Baicalein and oroxylin a from ethanol in Crabtree-Negative yeast. ACS Synth Biol. 2022;11(4):1600–1612.
  • Wang H, Yang Y, Lin L, et al. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb Cell Fact. 2016;15(1):134.
  • He B, Bai X, Tan Y, et al. Glycosyltransferases: mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth Syst Biotechnol. 2022;7(1):602–620.
  • Kytidou K, Artola M, Overkleeft HS, et al. Plant glycosides and glycosidases: a Treasure-Trove for therapeutics. Front Plant Sci. 2020;110:357.
  • Cheon S, Zhang J, Park C. Is phylotranscriptomics as reliable as phylogenomics? Mol Biol Evol. 2020;37(12):3672–3683.
  • Li HT, Luo Y, Gan L, et al. Plastid phylogenomic insights into relationships of all flowering plant families. BMC Biol. 2021;19(1):232.
  • Guo L, Yao H, Chen W, et al. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. Hortic Res. 2022;uhac223.
  • Sun W, Xu Z, Song C, et al. Herbgenomics: Decipher molecular genetics of medicinal plants. Innovation (Camb). 2022;3(6):100322.
  • Colinas M, Goossens A. Combinatorial transcriptional control of plant specialized metabolism. Trends Plant Sci. 2018;23(4):324–336.
  • Alqudah AM, Sallam A, Stephen Baenziger P, et al. GWAS: fast-forwarding gene identification and characterization in temperate cereals: lessons from Barley – a review. J Adv Res. 2020;22:119–135.
  • Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531–551.
  • Khan SU, Saeed S, Khan MHU, et al. Advances and challenges for QTL analysis and GWAS in the plant-breeding of high-yielding: a focus on rapeseed. Biomolecules. 2021;11(10):1516.
  • Sun J, Sun W, Zhang G, et al. High efficient production of plant flavonoids by microbial cell factories: challenges and opportunities. Metab Eng. 2022;70:143–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.