609
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions

, , , &
Pages 218-235 | Received 31 May 2022, Accepted 07 Nov 2022, Published online: 02 Jan 2023

References

  • Hans M, Kumar S, Chandel AK, et al. A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation. Process Biochem. 2019;85:125–134.
  • Hans M, Garg S, Pellegrini VO, et al. Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse. J Clean Prod. 2021;281:123922.
  • Arora R, Behera S, Sharma NK, et al. Evaluating the pathway for co-fermentation of glucose and xylose for enhanced bioethanol production using flux balance analysis. Biotechnol Bioprocess Eng. 2019;24(6):924–933.
  • Hernandez-Perez AF, de Arruda PV, Sene L, et al. Xylitol bioproduction: state-of-the-art, industrial paradigm shift and opportunities for integrated biorefineries. Crit Rev Biotechnol. 2019;39(7):924–943.
  • Chandel AK, Gonçalves BCM, Strap JL, et al. Bio-delignification of lignocellulosic substrates: an intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol. 2015;35(3):281–293.
  • Chandel AK, Garlapati VK, Singh AK, et al. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018;264:370–381.
  • da Silva AS, Espinheira RP, Teixeira RSS, et al. Bon, constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnol Biofuels. 2020;13:58.
  • Ioelovich M, Morag E. Study of enzymatic hydrolysis of pretreated biomass at increased solids loading. Bioresources. 2012;7(4):4672–4682.
  • Roberts KM, Lavenson DM, Tozzi EJ, et al. The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose. 2011;18(3):759–773.
  • Kumar R, Wyman CE. Strong cellulase inhibition by mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng. 2014;111(7):1341–1353.
  • Kumar S, Singh SP, Mishra IM, et al. Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol. 2009;32(4):517–526.
  • Singh R, Hans M, Kumar S, et al. Potential feedstock for sustainable biogas production and its supply chain management. In: Balagurusamy N, Chandel AK, editors. Biogas production. Cham: Springer; 2021. p. 147–165.
  • Cao L, Yu IKM, Liu Y, et al. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour Technol. 2018;269:465–475.
  • Wang A, He P, Song H. Lignin valorization. In: Filho EXF, Moreira LRS, editors. Recent advances in bioconversion of lignocellulose to biofuels and value added chemicals within the biorefinery concept. Amsterdam, Netherlands: Elsevier; 2020. p. 133–152.
  • Bhatia L, Garlapati VK, Chandel AK. Scalable technologies for lignocellulosic biomass processing into cellulosic ethanol. In: Ravindra P, editor. Industrial bioprocess engineering. Heidelberg, Germany: Springer Verlag; 2019.
  • Mankar AR, Pandey A, Modak A, et al. Pretreatment of lignocellulosic biomass: a review on recent advances. Bioresour Technol. 2021;334:125235.
  • Qiu J, Tian D, Shen F, et al. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresour Technol. 2018;268:355–362.
  • Wang Z, Hou X, Sun J, et al. Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of eucalyptus for enhancing enzymatic saccharification. Bioresour Technol. 2018;254:145–150.
  • Yang H, Shi Z, Xu G, et al. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresour Technol. 2019;274:261–266.
  • Mithra MG, Jeeva ML, Sajeev MS, et al. Comparison of ethanol yield from pretreated lignocellulo-starch biomass under fed-batch SHF or SSF modes. Heliyon. 2018;4(10):e00885.
  • Wang Z, Ning P, Hu L, et al. Efficient ethanol production from paper mulberry pretreated at high solid loading in fed-nonisothermal-simultaneous saccharification and fermentation. Renew Energy. 2020;160:211–219.
  • Pontes R, Romaní A, Michelin M, et al. l-Lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Ind Crop Prod. 2021;170:113775.
  • Burman NW, Sheridan CM, Harding KG. Lignocellulosic bioethanol production from grasses pre-treated with acid mine drainage: modeling and comparison of SHF and SSF. Bioresour Technol Rep. 2019;7:100299.
  • Narra M, James JP, Balasubramanian V. Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production. Bioresour Technol. 2015;179:331–338.
  • Zanuso E, Ruiz HA, Domingues L, et al. Oscillatory flow bioreactor at high solids loading for enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J. 2022;187:108632.
  • Xu L, Zhang J, Zong Q-J, et al. High-solid ethylenediamine pretreatment to fractionate new lignin streams from lignocellulosic biomass. Chem Eng J. 2022;427:130962.
  • Woiciechowski AL, Neto CJD, Vandenberghe LPS, et al. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance – conventional processing and recent advances. Bioresour Technol. 2020;304:122848.
  • Santo MCE, Cardoso EB, Guimaraes FEG, et al. Multifaceted characterization of sugarcane bagasse under different steam explosion severity conditions leading to distinct enzymatic hydrolysis yields. Ind Crops Prod. 2019;139:111542.
  • Valles A, Miguel JA-H, Capilla M, et al. Fed-batch simultaneous saccharification and fermentation including in-situ recovery for enhanced butanol production from rice straw. Bioresour Technol. 2021;342:126020.
  • Yuan X, Chen X, Shen G, et al. Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production. Renew Energy. 2022;182:377–389.
  • Yoo CG, Meng X, Pu Y, et al. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour Technol. 2020;301:122784.
  • Liu C-G, Xiao Y, Xia XX, et al. Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv. 2019;37(3):491–504.
  • Ma C, Liu J, Ye M, et al. Towards utmost bioenergy conversion efficiency of food waste: pretreatment, co-digestion, and reactor type. Renew Sust Energy Rev. 2018;90:700–709.
  • Kim JS, Lee Y, Kim TH. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol. 2016;199:42–48.
  • Zhang K, Pei Z, Wang D. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol. 2016;199:21–33.
  • Mbous YP, Hayyan M, Hayyan A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol Adv. 2017;35(2):105–134.
  • Wang W, Lee D-J. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: a review. Bioresour Technol. 2021;339:125587.
  • Yiin CL, Yap KL, Ku AZE, et al. Recent advances in green solvents for lignocellulosic biomass pretreatment: potential of choline chloride (ChCl) based solvents. Bioresour Technol. 2021;333:125195.
  • Alam A, Wang Y, Liu F, et al. Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus. Renew Energy. 2020;159:1128–1138.
  • Gao H, Wang Y, Yang Q, et al. Combined steam explosion and optimized green-liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renew Energy. 2021;175:1069–1079.
  • Liu D, Yan X, Zhuo S, et al. Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization. Bioresour Technol. 2018;257:62–68.
  • Silveira MHL, Chandel AK, Vanelli BA, et al. Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: pilot scale study. Bioresour Technol Rep. 2018;3:138–146.
  • Gundupalli MP, Sahithi STA, Jayex EP, et al. Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency. Bioresour Technol Rep. 2022;17:100986.
  • Selvakumar P, Adane AA, Zelalem T, et al. Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol. Fuel. 2022;321:124060.
  • Behera S, Arora R, Nandhagopal N, et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energy Rev. 2014;36:91–106.
  • Chandel AK, Silva SS, Singh OV. Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering towards white biotechnology. Bioenergy Res. 2013;6(1):388–401.
  • Jonsson LJ, Martin C. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112.
  • Soltanian S, Aghbashlo M, Almasi F, et al. A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag. 2020;212:112792.
  • Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020;300:122724.
  • Sharma S, Swain MR, Mishra A, et al. High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost. Renew Energy. 2021;179:1915–1924.
  • Liu ZH, Chen HZ. Biomass–water interaction and its correlations with enzymatic hydrolysis of steam-exploded corn stover. ACS Sustain Chem Eng. 2016;4(3):1274–1285.
  • Tatiane SB, Florencio C, Garcia RHS, et al. Time domain NMR spectroscopy as a fast method for probing the efficiency of biomass pretreatments for second generation ethanol production. Biomass Bioenergy. 2020;142:105734.
  • Cipriano DF, Chinelatto LS Jr., Nascimento SA, et al. Potential and limitations of 13C CP/MAS NMR spectroscopy to determine the lignin content of lignocellulosic feedstock. Biomass Bioenergy. 2020;142:105792.
  • Liu ZH, Chen HZ. Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass Bioenergy. 2016;93:13–24.
  • Weiss ND, Felby C, Thygesen LG. Enzymatic hydrolysis is limited by biomass–water interactions at high-solids: improved performance through substrate modifications. Biotechnol Biofuels. 2019;12:3–13.
  • Felby C, Thygesen LG, Kristensen JB, et al. Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose. 2008;15(5):703–710.
  • Sui W, Chen H. Effects of water states on steam explosion of lignocellulosic biomass. Bioresour Technol. 2016;199:155–163.
  • Tsuchida JE, Rezende CA, Oliveira-Silva RD, et al. Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnol Biofuels. 2014;7(1):127.
  • dos Santos-Rocha MSR, Pratto B, Correa LJ, et al. Assessment of different biomass feeding strategies for improving the enzymatic hydrolysis of sugarcane straw. Ind Crops Prod. 2018;125:293–302.
  • Mukasekuru MR, Hu J, Zhao X, et al. Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulase loading. ACS Sustain Chem Eng. 2018;6(10):12787–12796.
  • Xu C, Zhang J, Zhang Y, et al. Enhancement of highs solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Bioresour Technol. 2019;292:121993.
  • Hernandez-Beltran JU, Hernandez-Escoto H. Enzymatic hydrolysis of biomass at high-solids loadings through fed-batch operation. Biomass Bioenergy. 2018;119:191–197.
  • Jung YH, Park HM, Kim DH, et al. Fed-batch enzymatic saccharification of high solids pretreated lignocellulose for obtaining high titers and high yields of glucose. Appl Biochem Biotechnol. 2017;182(3):1108–1120.
  • Raj K, Krishnan C. Improved high solid loading enzymatic hydrolysis of low-temperature aqueous ammonia soaked sugarcane bagasse using laccase-mediator system and high concentration ethanol production. Ind Crops Prod. 2019;131:32–40.
  • Gao Y, Xu J, Yuan Z, et al. Optimization of fed-batch enzymatic hydrolysis from alkali-pretreated sugarcane bagasse for high-concentration sugar production. Bioresour Technol. 2014;167:41–45.
  • Cardona MJ, Tozzi EJ, Karuna N, et al. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass. Bioresour Technol. 2015;198:488–496.
  • Bhagia S, Dhir R, Kumar R, et al. Deactivation of cellulase at the air–liquid interface is the main cause of incomplete cellulose conversion at low enzyme loadings. Sci Rep. 2018;8(1):1–12.
  • Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air–liquid interface on cellulose conversions at low enzyme loadings. Biotechnol Biofuels. 2019;12(1):15.
  • Chandra RP, Au-Yeung K, Chanis C, et al. The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover. Biotechnol Prog. 2011;27(1):77–85.
  • Agrawal R, Bhadana B, Mathur AS, et al. Improved enzymatic hydrolysis of pilot scale pretreated rice straw at high total solids loading. Front Energy Res. 2018;6:1–12.
  • Cai X, Hu C-H, Wang J, et al. Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode. Bioresour Technol. 2021;326:124768.
  • Du J, Cao Y, Liu G, et al. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresour Technol. 2017;229:88–95.
  • Zhang J, Chu D, Huang J, et al. Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng. 2010;105(4):718–728.
  • Ramos LP, da Silva L, Ballem AC, et al. Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol. 2015;175:195–202.
  • Wojtusik M, Zurita M, Villar JC, et al. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: effect of mass transfer rate. Bioresour Technol. 2016;216:28–35.
  • Ganesh K, Joshi JB, Sawant SB. Cellulase deactivation in a stirred reactor. Biochem Eng J. 2000;4(2):137–141.
  • Ghadge RS, Patwardhan AW, Sawant SB, et al. Effect of flow pattern on cellulase deactivation in stirred tank bioreactors. Chem Eng Sci. 2005;60(4):1067–1083.
  • Battista F, Gomez Almendros M, Rousset R, et al. Enzymatic hydrolysis at high lignocellulosic content: optimization of the mixing system geometry and of a fed-batch strategy to increase glucose concentration. Renew Energy. 2019;131:152–158.
  • Caspeta L, Caro-Bermudez MA, Ponce-Noyola T, et al. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy. 2014;113:277–286.
  • Roche CM, Dibble CJ, Stickel JJ. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuels. 2009;2(1):28.
  • Jorgensen H, Vibe-Pedersen J, Larsen J, et al. Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng. 2007;96(5):862–870.
  • Battista F, Gomez Almendros M, Rousset R, et al. Enzymatic hydrolysis at high dry matter content: the influence of the substrates’ physical properties and of loading strategies on mixing and energetic consumption. Bioresour Technol. 2018;250:191–196.
  • Andric P, Meyer AS, Jensen PA, et al. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis. II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv. 2010;28(3):407–425.
  • Hsieh CC, Cannella D, Jorgensen H, et al. Cellulase inhibition by high concentrations of monosaccharides. J Agric Food Chem. 2014;62(17):3800–3805.
  • Kim DH, Park HM, Jung YH, et al. Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresour Technol. 2019;284:391–397.
  • Silva AS, Souza MF, Ballesteros I, et al. High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochem. 2016;51(10):1561–1567.
  • Kim JK, Yang J, Park SY, et al. Cellulase recycling in high-solids enzymatic hydrolysis of pretreated empty fruit bunches. Biotechnol Biofuels. 2019;12(1):1–9.
  • Kim D. Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules. 2018;23(2):309.
  • Xue S, Uppugundla N, Bowman MJ, et al. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis. Biotechnol Biofuels. 2015;8(1):1–14.
  • Zhai R, Hu J, Saddler JN. The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresour Technol. 2018;258:79–87.
  • Ko JK, Um Y, Park YC, et al. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol. 2015;99(10):4201–4212.
  • Mhlongo SI, den Haan R, Viljoen-Bloom M, et al. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulose performance. Enzyme Microb Technol. 2015;81:16–22.
  • Qin L, Li WC, Liu L, et al. Inhibition of lignin-derived phenolic compounds to cellulose. Biotechnol Biofuels. 2016;9(1):1–10.
  • Kont R, Kurasin M, Teugjas H, et al. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnol Biofuels. 2013;6(1):135.
  • Qing Q, Yang B, Wyman CE. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol. 2010;101(24):9624–9630.
  • Hildebrand A, Bennett Addison J, Kasuga T, et al. Fan, cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase. Biochem Eng J. 2016;109:236–242.
  • Peng S, Cao Q, Qin Y, et al. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of β-glucosidase during lignocellulose biodegradation. Appl Microbiol Biotechnol. 2017;101(9):3627–3636.
  • Devle AH, Ekeberg D, Horn SJ, et al. Characterization of pseudo-lignin from steam exploded birch. ACS Omega. 2018;3(5):4924–4931.
  • Shinde SD, Meng X, Kumar R, et al. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018;20(10):2192–2205.
  • Hu J, Chandra R, Arantes V, et al. The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings. Bioresour Technol. 2015;186:149–153.
  • Hodge DB, Karim MN, Schell DJ, et al. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol. 2008;99(18):8940–8948.
  • Reyes-Ortiz V, Heins RA, Cheng G, et al. Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnol Biofuels. 2013;6(1):93.
  • Claes A, Deparis Q, Foulquie-Moreno MR, et al. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab Eng. 2020;59:131–141.
  • Gilmore SP, Lillington SP, Haitjema CH, et al. Designing chimeric enzymes inspired by fungal cellulosomes. Synth Syst Biotechnol. 2020;5(1):23–32.
  • Geng W, Jin Y, Jameel H, et al. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. Bioresour Technol. 2015;187:43–48.
  • Palmqvist B, Kadic A, Hagglund K, et al. Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions. Biomass Convers Bioref. 2016;6(2):173–180.
  • Zhang Y, Wang R, Yang J, et al. Enzymatic formulation strategies unlock highly-efficient saccharification of distinct pretreated corncobs. Ind Crop Prod. 2022;187:115320.
  • Qin Z, Wang D, Li T, et al. Construction of an enzymatic shuttling compartment based on reverse micellar for bamboo biomass hydrolysis in ionic liquids. Bioresour Technol. 2022;355:127257.
  • Espinheira RP, Rocha AL, Guimaraes TM, et al. Aspergillus awamori endoglucanase-rich supernatant enhances lignocellulosic biomass liquefaction in high-solids enzymatic hydrolysis. Biochem Eng J. 2022;183:108448.
  • Wang Y, Yang H, Zhang B, et al. Continuous enzymatic saccharification and its rheology profiling under high solids loading of lignocellulosic biomass. Biochem Eng J. 2022;186:108543.
  • Kadhum HJ, Murthy GS. Novel system design for high solid lignocellulosic biomass conversion. Bioresour Technol. 2022;350:126897.
  • Gao W, Li Z, Liu T, et al. Production of high-concentration fermentable sugars from lignocellulosic biomass by using high solids fed-batch enzymatic hydrolysis. Biochem Eng J. 2021;176:108186.
  • Rocha VAL, Maeda RN, Pereira N, et al. Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnol Prog. 2016;32(2):327–336.
  • Tejirian A, Xu F. Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol. 2011;48(3):239–247.
  • Zhou H, Lou H, Yang D, et al. Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: role of molecular weight and substrate lignin. Ind Eng Chem Res. 2013;52(25):8464–8470.
  • Chen YA, Zhou Y, Liu D, et al. Evaluation of the action of tween 20 non-ionic surfactant during enzymatic hydrolysis of lignocellulose: pretreatment, hydrolysis conditions and lignin structure. Bioresour Technol. 2018;269:329–338.
  • Oladi S, Aita GM. Interactive effect of enzymes and surfactant on the cellulose digestibility of un-washed and washed dilute ammonia pretreated energy cane bagasse. Biomass Bioenergy. 2018;109:221–230.
  • Cannella D, Jorgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng. 2014;111(1):59–68.
  • Vaaje-Kolstad G, Westereng B, Horn SJ, et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330(6001):219–222.
  • Moon M, Lee J-P, Park GW, et al. Lytic polysaccharide monooxygenase (LPMO)-derived saccharification of lignocellulosic biomass. Bioresour Technol. 2022;359:127501.
  • Guo X, An Y, Chai C, et al. Construction of the R17L mutant of MtC1LPMO for improved lignocellulosic biomass conversion by rational point mutation and investigation of the mechanism by molecular dynamics simulations. Bioresour Technol. 2020;317:124024.
  • Ogunyewo OA, Randhawa A, Gupta M, et al. Synergistic action of a lytic polysaccharide monooxygenase and a cellobiohydrolase from Penicillium funiculosum in cellulose saccharification under high-level substrate loading. Appl Environ Microbiol. 2020;86(23):e01769-20.
  • Zhou X, Xu Z, He J, et al. A myxobacterial LPMO10 has oxidizing cellulase activity for promoting biomass enzymatic saccharification of agricultural crop straws. Bioresour Technol. 2020;318:124217.
  • Russo DA, Zedler JAZ, Wittmann DN, et al. Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnol Biofuels. 2019;12:74.
  • Munzone A, El Kerdi B, Fanuel M, et al. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. FEBS J. 2020;287(15):3298–3314.
  • Li F, Ma F, Zhao H, et al. A lytic polysaccharide monooxygenase from a white-rot fungus drives the degradation of lignin by a versatile peroxidase. Appl Environ Microbiol. 2019;85(9):e02803-18.
  • Laurent CVFP, Sun P, Scheiblbrandner S, et al. Influence of lytic polysaccharide monooxygenase active site segments on activity and affinity. Int J Mol Sci. 2019;20(24):6219.
  • Padella M, O’Connell A, Prussi M. What is still limiting the deployment of cellulosic ethanol? Analysis of the current status of the sector. Appl Sci. 2019;9(21):4523.
  • Raj T, Chandrasekhar K, Kumar AN, et al. Recent advances in commercial biorefineries for lignocellulosic ethanol production: current status, challenges and future perspectives. Bioresour Technol. 2022;344(Pt B):126292.
  • Agrawal R, Verma A, Singhania RR, et al. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour Technol. 2021;332:125042.
  • Leonel LV, Arruda PV, Chandel AK, et al. Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Crit Rev Biotechnol. 2021;41(8):1131–1152.
  • da Rosa AV, Ordonez JC. Biomass. In: da Rosa AV, Ordonez JC, editors. Fundamentals of renewable energy processes. Oxford, Academic Press; 2022. p. 577–628.
  • Zhang J, Zhang X, Yang M, et al. Transforming lignocellulosic biomass into biofuels into biofuels enabled by ionic liquid pretreatment. Bioresour Technol. 2021;322:124522.
  • Jin X, Ma J, Song J, et al. Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw. Energy. 2021;226:120353.
  • Siriwong T, Laimeheriwa B, Aini UN, et al. Cold hydrolysis of cassava pulp and its use in simultaneous saccharification and fermentation (SSF) process for ethanol fermentation. J Biotechnol. 2019;292:57–63.
  • Liu Y, Xu J, Zhang Y, et al. Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy. 2015;90:1199–1205.
  • Yuan H-W, Tan L, Kida K, et al. Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol and biogas. J Biosci Bioeng. 2021;131(5):461–468.
  • Moodley P, Sewsynker-Sukai Y, Kana EBG. Progress in the development of alkali and metal salt catalyzed lignocellulosic pretreatment regimes: potential for bioethanol production. Bioresour Technol. 2020;310:123372.
  • Cassells B, Karhumaa K, Sànchez I, Nogué V, et al. Hybrid SSF/SHF processing of SO2 pretreated wheat straw-tuning co-fermentation by yeast inoculum size and hydrolysis time. Appl Biochem Biotechnol. 2017;181(2):536–547.
  • Dhiman SS, Haw J-R, Kalyani D, et al. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresour Technol. 2015;179:50–57.
  • Pandiyan K, Singh A, Singh S, et al. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew Energy. 2019;132:723–741.
  • Ibrahim MF, Kim SW, Abd-Aziz A. Advanced bioprocessing strategies for biobutanol production from biomass. Renew Sust Energy Rev. 2018;91:1192–1204.
  • Balch ML, Holwerda EK, Davis MF, et al. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling. Energy Environ Sci. 2017;10(5):1252–1261.
  • Liu Y-J, Li B, Feng Y, et al. Consolidated bio-saccharification: leading lignocellulose bioconversion into the real world. Biotechnol Adv. 2020;40:107535.
  • Liu S, Liu Y-J, Feng Y, et al. Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization. Biotechnol Biofuels. 2019;12:35.
  • Pino MS, Rodriguez-Jasso RM, Michelin M, et al. Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydr Polym. 2019;211:349–359.
  • Sarangi PK, Singh TA, Singh NJ, et al. Sustainable utilization of pineapple wastes for production of bioenergy, biochemicals and value-added products: a review. Bioresour Technol. 2022;351:127085.
  • Pattnaik B, Sarangi PK, Jena PK, et al. Production of phenolic flavouring compounds from sugarcane bagasse by Lactobacillus acidophilus MTCC 10307. Arch Microbiol. 2021;204(1):23.
  • Yadav S, Singh D, Mohanty MP, et al. Biochemical and thermochemical routes of H2 production from food waste: a comparative review. Chem Eng Technol. 2021.
  • Chen MH, Wang Z, Dien BS, et al. Economic analysis of cellulosic ethanol production from sugarcane bagasse using a sequential deacetylation, hot water and disk‑refining pretreatment. Processes. 2019;7(10):642.
  • Larnaudie V, Ferrari MD, Lareo C. Enzymatic hydrolysis of liquid hot water-pretreated switchgrass at high solid content. Energy Fuels. 2019;33(5):4361–4368.
  • Pinheiro T, Coelho E, Romani A, et al. Intensifying ethanol production from brewer’s spent grain waste: use of whole slurry at high solid loadings. N Biotechnol. 2019;53:1–8.
  • Zhu J-Q, Zong Q-J, Li W-C, et al. Temperature profiled simultaneous saccharification and co-fermentation of corn stover increases ethanol production at high solid loading. Energy Convers Manag. 2020;205:112344.
  • Liu K, Zhang J, Bao J. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications. Bioresour Technol. 2015;196:716–720.
  • Gatt E, Khatri V, Bley J, et al. Enzymatic hydrolysis of corn crop residues with high solid loadings: new insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresour Technol. 2019;282:398–406.
  • Rochon E, Cabrera MN, Scutari V, et al. Co-production of bioethanol and xylosaccharides from steam-exploded eucalyptus sawdust using high solid loads in enzymatic hydrolysis: effect of alkaline impregnation. Ind Crops Prod. 2022;175:114253.
  • Ying W, Zhu J, Xu Y, et al. High solid loading enzymatic hydrolysis of acetic acid-peroxide/acetic acid pretreated poplar and cellulase recycling. Bioresour Technol. 2021;340:125624.
  • Sui W, Liu X, Sun H, et al. Improved high-solid loading enzymatic hydrolysis of steam exploded corn stalk using rapid room temperature γ-valerolactone delignification. Ind Crops Prod. 2021;165:113389.
  • Vignesh N, Chandraraj K. Improved high solids loading enzymatic hydrolysis and fermentation of cotton microdust by surfactant addition and optimization of pretreatment. Process Biochem. 2021;106:60–69.
  • Ayodele BV, Alsaffar MA, Mustapa SI. An overview of integration opportunities for sustainable bioethanol production from first- and second generation sugar-based feedstocks. J Clean Prod. 2020;245:118857.
  • de Oliveira RA, de Barros R, Ferreira LV, et al. Energy supply design for the integrated production of 1G + 2G ethanol from sugarcane. Renew Energy Focus. 2020;35:171–177.
  • Martinez-Jimenez FD, Pereira IO, Ribeiro MPA, et al. Integration of first- and second-generation ethanol production: evaluation of a mathematical model to describe sucrose and xylose co-fermentation by recombinant Saccharomyces cerevisiae. Renew Energy. 2022;192:326–339.
  • Mupondwa E, Li X, Tabil L. Integrated bioethanol production from triticale grain and lignocellulosic straw in Western Canada. Ind Crop Prod. 2018;117:75–87.
  • Yu J, Xu Z, Liu L, et al. Process integration for ethanol production from corn and corn stover as mixed substrates. Bioresour Technol. 2019;279:10–16.
  • Adarme OFH, Baeta BEL, Gurgel LVA, et al. Is anaerobic co-digestion the missing link to integrate sugarcane biorefinery? Renew Energy. 2022;195:488–496.
  • Volpi MPC, Fuess LT, Moraes BS. Anaerobic co-digestion of residues in 1G2G sugarcane biorefineries for enhanced electricity and biomethane production. Bioresour Technol. 2021;330:124999.
  • Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: the future of chemical production. Science. 2017;355(6320):aag0804.
  • Banerjee D, Eng T, Lau AK, et al. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat Commun. 2020;11(1):5385.
  • Lutze P, Gani R, Woodley JM. Process intensification: a perspective on process synthesis. Chem Eng Process Process Intensif. 2010;49(6):547–558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.