1,113
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production

, , , , , , ORCID Icon, & ORCID Icon show all
Pages 236-254 | Received 31 Aug 2022, Accepted 11 Nov 2022, Published online: 15 Jan 2023

References

  • Xue L, Liu G, Parfitt J, et al. Missing food, missing data? A critical review of global food losses and food waste data. Environ Sci Technol. 2017;51(12):6618–6633.
  • Awasthi MK, Sindhu R, Sirohi R, et al. Agricultural waste biorefinery development towards circular bioeconomy. Renew Sust Ener Rev. 2022;158:112122.
  • Tarafdar A, Gaur VK, Rawat N, et al. Advances in biomaterial production from animal derived waste. Bioengineered. 2021;12(1):8247–8258.
  • Jain A, Sarsaiya S, Awasthi MK, et al. Bioenergy and bio-products from bio-waste and its associated modern circular economy: current research trends, challenges, and future outlooks. Fuel. 2022;307:121859.
  • Salemdeeb R, Ermgassen ZU, Kim EKHJ, et al. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. J Clean Prod. 2017;140:871–880.
  • Commission Regulation (EU) 2017/1017 of 15 June 2017 amending Regulation (EU) No 68/2013 on the Catalogue of feed materials (Text with EEA relevance.). C/2017/3980. OJ L 159, 21.6.2017: 48–119. (BG, ES, CS, DA, DE, ET, EL, EN, FR, HR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV). ELI: http://data.europa.eu/eli/reg/2017/1017/oj.
  • Codex Alimentarius. CCASIA22/meeting prepares to discuss strategic food safety priorities for the region. Available from: https://www.fao.org/fao-who-codexalimentarius/en/.
  • De Clercq D, Wen Z, Gottfried O, et al. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renew Sust Energ Rev. 2017;79:204–221.
  • Gore-Langton L. France’s food waste ban: one year on [WWW Document]. Food Navig; 2017 [cited 2017 Mar 24]. Available from: URL https://www.foodnavigator.com/Article/2017/03/24/France-s-food-waste-ban-One-year-on?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright).
  • Bong CPC, Ho WS, Hashim H, et al. Review on the renewable energy and solid waste management policies towards biogas development in Malaysia. Renew Sust Energ Rev. 2017;70:988–998.
  • Gunders D, Bloom J. Wasted: how America is losing up to 40 percent of its food from farm to fork to landfill. NewYork: Natural Resources Defense Council; 2012.
  • Usmani Z, Sharma M, Gupta P, et al. Ionic liquid-based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol. 2020a;304:123003.
  • Usmani Z, Sharma M, Awasthi AK, et al. Lignocellulosic biorefineries: the current state of challenges and strategies for efficient commercialization. Renew Sust Ener Rev. 2021a;148:111258.
  • Deena SR, Vickram AS, Manikandan S, et al. Enhanced biogas production from food waste and activated sludge using advanced techniques – a review. Bioresour Technol. 2022;355:127234.
  • Duan Y, Tarafdar A, Kumar V, et al. Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value-added materials and future perspectives. Fuel. 2022;325:124846.
  • Usmani Z, Sharma M, Karpichev Y, et al. Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. Renew Sustain Energy Rev. 2020b;131:109965.
  • Sharma M, Usmani Z, Gupta VK, et al. Valorization of fruits and vegetable wastes and byproducts to produce natural pigments. Crit Rev Biotechnol. 2021;41(4):535–563.
  • Singh TA, Sharma M, Sharma M, et al. Valorization of agro-industrial residues for production of commercial biorefinery products. Fuel. 2022;322:124284.
  • Wainaina S, Awasthi MK, Sarsaiya S, et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour Technol. 2020;301:122778.
  • Al-Battashi SH, Annamalai N, Sivakumar N, et al. Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev Environ Sci Biotechnol. 2019;18(1):183–205.
  • Hassan SS, Williams GA, Jaiswal AK. Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol. 2018;262:310–318.
  • Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, et al. Impact of novel microbial secondary metabolites on the pharma – industry. Appl Microbiol Biotechnol. 2022;106(5–6):1855–1878.
  • Usmani Z, Sharma M, Awasthi AK, et al. Minimizing hazardous impact of food waste in a circular economy – advances in resource recovery through green strategies. J Hazard Mater. 2021b;416:126154.
  • Awasthi MK, Tarafdar A, Gaur VK, et al. Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. Int J Food Microbiol. 2022;368:109610.
  • Mirmohamadsadeghi S, Karimi K, Azarbaijani R, et al. Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sust Ener Rev. 2021;135:110173.
  • Reshmy R, Philip E, Madhavan A, et al. Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites. Fuel. 2022;311:122575.
  • Fallahi A, Farzad S, Mohtasebi SS, et al. Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation. Renew Sust Ener Rev. 2021;147:111214.
  • Awasthi MK, Harirchi S, Sar T, et al. Myco-biorefinery approaches for food waste valorization: present status and future prospects. Bioresour Technol. 2022;360:127592.
  • Sun S, Sun S, Cao X, et al. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol. 2016;199:49–58.
  • Awasthi MK, Paul A, Kumar V, et al. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value-added bioproducts: a review. Bioresour Technol. 2022;344(Pt A):126193.
  • Jonsson LJ, Martín C. Pretreatment of lignocellulose: formation of inhibitory byproducts and strategies for minimizing their effects. Bioresour Technol. 2016;199:103–112.
  • Barrett A. The History and Most Important Innovations of Bioplastics– Bioplastics News n.d. 2021. https://bioplasticsnews.com/2018/07/05/history-of-bioplastics/. [Accessed March 17, 2021].
  • Fabunmi O, Tabil L, Panigrahi S, et al. Developing biodegradable plastics from starch. St. Joseph, MI: American Society of Agricultural and Biological Engineers; 2007. https://doi.org/10.13031/2013.24179
  • Make Shaper. How much does 3D printer filament cost? | MakeShaper; 2021 [cited 2021 Mar 17]. Available from: https://www.makeshaper.com/3d-printer-filament-price-cost.
  • Tsang YF, Kumar V, Samadar P, et al. Production of bioplastic through food waste valorization. Environ Int. 2019;127:625–644.
  • Cavalheiro JMBT, De Almeida MCMD, Grandfils C, et al. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009;44(5):509–515.
  • Salehizadeh H, Van Loosdrecht MCM. Production of polyhy-droxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv. 2004;22(3):261–279.
  • Bugnicourt E, Cinelli P, Lazzeri A, et al. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett. 2014;8(11):791–808.
  • Desroches M, Escouvois M, Auvergne R, et al. From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polym Rev. 2012;52(1):38–79.
  • Valentino F, Riccardi C, Campanari S, et al. Fate of β‑hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage poly-hydroxyalkanoates (PHA) production process from cheese whey. Bioresour Technol. 2015;192:304–311.
  • Kalmykova Y, Sadagopan M, Rosado L. Circular economy–from review of theories and practices to development of implementation tools. Resour Conserv Recycl. 2018;135:190–201.
  • Mohan SV, Dahiya S, Amulya K, et al. Can circular bioeconomy be fueled by waste biorefineries-A closer look. Bioresour Technol Rep. 2019;7:100277.
  • FAO. Crop production and natural resource use [cited 2020 Dec 29]. http://www.fao.org/3/y4252e/y4252e06.htm.
  • Mohan SV, Nikhil GN, Chiranjeevi P, et al. Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol. 2016;215:2–12.
  • Revel M, Châtel A, Mouneyrac C. Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health. 2018;1:17–23.
  • Galloway TS, Cole M, Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol. 2017;1(5):116.
  • Liu E, He W, Yan C. White revolution’to ‘white pollution’—agricultural plastic film mulch in China. Environ Res Lett. 2014;9(9):091001.
  • Smith M, Love DC, Rochman CM, et al. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 2018;5(3):375–386.
  • European Commission Press Release Data Base. Circular Economy: New rules will make EU the global front-runner in waste management and recycling. Brussels, Belgium; 2018. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_18_3846
  • Report-European Bioplastics (REB). Bioplastic market data; 2017. Berlin. Available from: http://www.european-bioplastics.org/market/.
  • Rosato D. Bioplastics trends and drivers for greener plastics. Available from: https://exclusive.multibriefs.com/content/bioplastics-trends-and-drivers-for-greenerplastics/engineering. 2014.
  • European Commission Press Release Date Base. Plastic Waste: a European strategy to protect the planet, defend our citizens and empower our industries. Strasbourg, France; 2018. Available from: https://ec.europa.eu/commission/presscorner/detail/en/IP_18_5
  • US Department of Energy (USDE). The billion-ton bioeconomy initiative overview [cited 2020 Dec 31]. Available from: https://www.energy.gov/sites/prod/files/2017/03/f34/day_3_plenary_goss_eng_billion-ton_bioeconomy_overview.pdf.
  • The White House (TWH). National Bioeconomy Blueprint. 2012. Available from: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/national_bioeconomy_blueprint_april_2012.pdf
  • Golden JS, Handfield R. The emergent industrial bioeconomy. Ind Biotechno. 2014;10(6):371–375.
  • USDA. USDA biopreferred; 2020 [cited 2021 Jun 1]. Available from: https://biopreferred.gov/BioPreferred/.
  • Aeschelmann F, Carus M. Biobased building blocks and polymers in the world: capacities, production, and applications – status quo and trends towards 2020. Ind Biotechnol. 2015;11(3):154–159.
  • OECD. Policies for bioplastics in the context of a bioeconomy. OECD science, technology and industry policy papers 10. Paris: OECD Publishing; 2013. http://doi.org/10.1787/5k3xpf9rrw6d-en
  • Mol A, Liu Y. Institutionalising cleaner production in China: the cleaner production promotion law. IJESD. 2005;4(3):227.
  • Mirasol F. Japanese bioplastics advance: Japan pushes for renewable, ICIS Chem. Bus; 2010. [cited 2021 Jun 1]. Available from: www.icis.com/Articles/2010/10/18/9401980/japanese-bioplastics-advance.html.
  • National Innovation Agency (NIA). National Innovation Agency as Thailand’s bioplastics focal point; 2012 [cited 2021 Jun 1]. Available from: www.bio-based.eu/iBIB.
  • Wellenreuther C, Wolf A, Zander N. Cost competitiveness of sustainable bioplastic feedstocks – a monte carlo analysis for polylactic acid. Clean Eng Technol. 2022;6:100411.
  • Abrha H, Cabrera J, Dai Y, et al. Bio-Based plastics production, impact and end of life: a literature review and content analysis. Sustainability. 2022;14(8):4855.
  • Chandel AK, Garlapati VK, Singh AK, et al. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018;264:370–381.
  • Bishop G, Styles D, Lens PNL. Environmental performance of bioplastic packaging on fresh food produce: a consequential life cycle assessment. J Clean Prod. 2021;317:128377.
  • European Bioplastics. Bioplastics market data [WWW Document]; 2020 [cited 2021 Jul 4]. Available from: https://www.european-bioplastics.org/market/.
  • Zheng JJ, Suh S. Strategies to reduce the global carbon footprint of plastics. Nat Clim Chang. 2019;9:10.
  • Piemonte V, Gironi F. Land-use change emissions: how green are the bioplastics? Environ Prog Sustainable Energy. 2011;30(4):685–691.
  • Kawai S, Murata K. Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci. 2016;17(2):145.
  • Cheali P, Vivion A, Gernacy K, et al. 25th European Symposium on computer aided process engineering. Copenhagen: Elsevier; 2015. p. 2600.
  • Shahzad K, Narodoslawsky M, Sagir M, et al. Techno-economic feasibility of waste biorefinery: using slaughtering waste streams as starting material for biopolyester production. Waste Manag. 2017;67:73–85.
  • Pavan FA, Junqueira TL, Watanabe MDB, et al. Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery. Biochem Eng J. 2019;146:97–104.
  • Pérez V, Mota CR, Muñoz R, et al. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: assessing the potential impacts on economy, environment and society. Chemosphere. 2020;255:126929.
  • Thompson TM, Young BR, Baroutian S. Advances in the pretreatment of brown macroalgae for biogas production. Fuel Process Technol. 2019;195:106151.
  • Passos F, Ortega V, Donoso-Bravo A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation. Bioresour Technol. 2017;227:239–246.
  • Yang B, Tao L, Wyman CE. Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels, Bioprod Bioref. 2018;12(1):125–138.
  • Baral NR, Shah A. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour Technol. 2017;232:331–343.
  • Agbor VB, Cicek N, Sparling R, et al. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 2011;29(6):675–685.
  • Elbeshbishy E, Hafez H, Dhar B, et al. Single and combined effect of various pretreatment methods for biohydrogen production from food waste. Int. J Hydrogen Energ. 2011;36(17):11379–11387.
  • Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol. 2016;199:76–82.
  • Tomizawa S, Chuah JA, Matsumoto K, et al. Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustainable Chem Eng. 2014;2(5):1106–1113.
  • Sandhya M, Aravind J, Kanmani P. Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. Int J Environ Sci Technol. 2013;10(1):47–54.
  • Xia Q, Chen C, Yao Y, et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat Sustain. 2021;4(7):627–635.
  • Kourmentza C, Economou CN, Tsafrakidou P, et al. Spent coffee grounds make much more than waste: exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. J Clean Prod. 2018b;172:980–992.
  • Vega-Castro O, Contreras-Calderon J, León E, et al. Characterization of a polyhydroxyalkanoate obtained from pine apple peel waste using Ralsthonia eutropha. J Biotechnol. 2016;231:232–238.
  • Tyagi P, Saxena NK, Sharma A. Production of polyhydroxyalkanoates (PHA) from an on lignocellulosic component of sugarcane bagasse: fueling a biobased economy. Biofuels, Bioprod Bioref. 2018;12(4):536–541.
  • Valentino F, Gottardo M, Micolucci F, et al. Organic fraction of municipal solid waste recovery by conversion into added-value polyhydroxyalkanoates and biogas. ACS Sustainable Chem Eng. 2018;6(12):16375–16385.
  • Azieyanti NA, Amirul A, Othman SZ, et al. Mechanical and morphology studies of bioplastic-based banana peels. J Phys Conf Ser. 2020;1529:1–6.
  • Perotto G, Ceseracciu L, Simonutti R, et al. Bioplastics from vegetable waste via an eco-friendly water-based process. Green Chem. 2018;20(4):894–902.
  • Melikoğlu AY, Bilek SE, Cesur S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr Polym. 2019;215:330–337.
  • Wan C, Zhou Y, Li Y. Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol. 2011;102(10):6254–6259.
  • Rebocho AT, Pereira JR, Neves LA, et al. Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste. Bioengineering. 2020;7(2):34.
  • Kulkarni SO, Kanekar PP, Jog JP, et al. Production of copolymer, poly (hydroxybutyrate-co-hydroxyvalerate) by Halomonas campisalis MCM B-1027 using agro-wastes. Int J Biol Macromol. 2015;72:784–789.
  • Follonier S, Goyder MS, Silvestri AC, et al. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int J Biol Macromol. 2014;71:42–52.
  • Sukruansuwan V, Napathorn SC. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Cupriavidus necator strain A-04. Biotechnol Biofuels. 2018;11:202.
  • Searcy E, Flynn P, Ghafoori E, et al. The relative cost of biomass energy transport. Appl Biochem Biotechnol. 2007;137:639–652.
  • Rocha-Martín J, Martinez-Bernal C, Perez-Cobas Y, et al. Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. Bioresour Technol. 2017;244(Pt 1):48–56.
  • Leggio LL, Simmons TJ, Poulsen JC, et al. Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun. 2015;6:5961.
  • Zhang Y, Sun W, Wang H, et al. Polyhydroxybutyrate production from oil palm empty fruit bunchusing Bacillus megaterium R11. Bioresour Technol. 2013;147:307–314.
  • Radhika D, Murugesan AG. Bioproduction, statistical optimization and characterization of microbial plastic (poly 3-hydroxy butyrate) employing various hydrolysates of water hyacinth (Eichhornia crassipes) as sole carbon source. Bioresour Technol. 2012;121:83–92.
  • Ramadas NV, Soccol CR, Pandey A. A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. Appl Biochem Biotechnol. 2010;162(4):996–1007.
  • Kovalcik A, Pernicova I, Obruca S, et al. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food Bioprod Process. 2020;124:1–10.
  • Ali I, Jamil N. Enhanced biosynthesis of poly(3- hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter. Prep Biochem Biotechnol. 2014;44(8):822–833.
  • Heng KS, Hatti-Kaul R, Adam F, et al. Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). J Chem Technol Biotechnol. 2017;92(1):100–108.
  • Lin CSK, Pfaltzgraff LA, Davila LH, et al. Food waste as a valuable resource for the production of chemicals, materials and fuels current situation and global perspective. Energy Environ Sci. 2013;6(2):426–464.
  • Di Donatoa P, Finorea I, Anzelmoa G, et al. Biomass and biopolymer production using vegetable wastes as cheap substrates for extremophiles. Chem Eng. 2014;38:163–168.
  • Dimou C, Kopsahelis N, Papadaki A, et al. Wine lees valorization: biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Res Int. 2015;73:81–87.
  • Martinez GA, Rebecchi S, Decorti D, et al. Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chem. 2016;18(1):261–270.
  • Sato S, Maruyama H, Fujiki T, et al. Regulation of 3-hydroxyhexanoate composition in PHBH synthesized by recombinant Cupriavidus necator H16 from plant oil by using butyrate as a co-substrate. J Biosci Bioeng. 2015;120(3):246–251.
  • Mendez Arias J, Modesto LF, Polikarpov I, et al. Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: optimization and synergism studies. Biotechnol Prog. 2016;32(5):1222–1229.
  • Sanford K, Chotani G, Danielson N, et al. Scaling up of renewable chemicals. Curr Opin Biotechnol. 2016;38:112–122.
  • Junqueira TL, Cavalett O, Bonomi A. The virtual sugarcane biorefinery—a simulation tool to support public policies formulation in bioenergy. Ind Biotechnol. 2016;12(1):62–67.
  • Morone PG, Tartiu VE, Falcone P. Assessing the potential of biowaste for bioplastics production through social network analysis. J Clean Prod. 2015;90:43–54.
  • Kumar M, Rathour R, Singh R, et al. Bacterial polyhydroxyalkanoates: opportunities, challenges, and prospects. J Clean Prod. 2020;263:121500.
  • Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. Euro Biotech J. 2018;2:89–103.
  • Plastics Technology; 2017 [cited 2017 May 26]. Available from: http://www.ptonline.com/articles/prices-bottom-out-forpolyolefins-pet-ps-pvc-move-up.
  • Moshood TD, Nawanir G, Mahmud F, et al. Sustainability of biodegradable plastics: new problem or solution to solve the global plastic pollution? Curr Res Green Sust Chem. 2022;5:100273.
  • Ramadhan MO, Handayani MN. The potential of food waste as bioplastic material to promote environmental sustainability: a review. IOP Conference Series of Material Science Engineering. Banjarbaru, Indonesia: IOP Publishing; 2020. p. 12082. Available from: https://iopscience.iop.org/issue/1757-899X/980/1
  • Jabeen N, Majid I, Nayik GA. Bioplastics and food packaging: a review. Cogent Food Agric. 2015;1(1):1117749.
  • Bastioli C. Global status of the production of biobased packaging materials. Starch/Stärke. 2001;53(8):351.
  • Almenar E, Samsudin H, Auras R, et al. Consumer acceptance of fresh blueberries in bio-based packages. J Sci Food Agric. 2010;90(7):1121–1128.
  • Haugaard VK, Weber CJ, Danielsen B, et al. Quality changes in orange juice packed in materials based on polylactate. Eur Food Res Technol. 2002;214(5):423–428.
  • Levkane V, Muizniece-Brasava S, Dukalska L. Pasteurization effect to quality of salad with meat and mayonnaise. Food Balt. 2008;:69–73. Available from: https://llufb.llu.lv/conference/foodbalt/2008/Foodbalt-Proceedings-2008-69-73.pdf
  • Haugaard VK, Danielsen B, Bertelsen G. Impact of polylactate and poly(hydroxybutyrate) on food quality. Eur Food Res Technol. 2003;216(3):233–240.
  • Popa M, Belc N. Packaging. Food Safety. 2007;1:68–87.
  • Bassani A, Montes S, Jubete E, et al. Incorporation of waste orange peels extracts into PLA films. Chem Eng Trans. 2019;74:1063–1068.
  • Wang LF, Rhim JW. Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: effect of type of polymer matrix. LWT- Food Sci Technol. 2016;74:338–345.
  • Urbina L, Eceiza A, Gabilondo N, et al. Tailoring the in situ confirmation of bacterial cellulose-graphene oxide spherical nanocarriers. Int J Biol Macromol. 2020;163:1249–1260.
  • Val Siqueira L, Arias CILF, Maniglia BC, et al. Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Curr Opin Food Sci. 2021;38:122–130.
  • Merino D, Gutiérrez TJ, Mansilla AY, et al. Critical evaluation of starch-based antibacterial nanocomposites as agricultural mulch films: study on their interactions with water and light. ACS Sustainable Chem Eng. 2018;6(11):15662–15672.
  • Singh A, Dhiman N, Kar AK, et al. Advances in controlled release pesticide formulations: prospects to safer integrated pest management and sustainable agriculture. J Hazard Mater. 2020;385:121525.
  • Thiery W, Visser AJ, Fischer EM, et al. Warming of hot extremes alleviated by expanding irrigation. Nat Commun. 2020;11(1):290.
  • Easter KW. Irrigation investment, technology, and management strategies for development. Taylor & Francis, London, 2019.
  • Olad A, Doustdar F, Gharekhani H. Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf A Physicochem Eng Asp. 2020;601:124962.
  • Kondraju TT, Rajan KS. Excessive fertilizer usage drives agriculture growth but depletes water quality. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. 2019;IV-3/W1(W1):17–23.
  • Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44(9):842–852.
  • Mortain L, Dez I, Madec PJ. Development of new composites materials, carriers of active agents, from biodegradable polymers and wood. Comptes Rendus Chim. 2004;7(6–7):635–640.
  • Karan H, Funk C, Grabert M, et al. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 2019;24(3):237–249.
  • Narancic T, Cerrone F, Beagan N, et al. Recent advances in bioplastics: application and biodegradation. Polymers (Basel. 2020;12(4):920.
  • Parisi OI, Scrivano L, Candamano S, et al. Molecularly imprinted microrods via mesophase polymerization. Molecules. 2017;23(1):63.
  • Vieira S, Castelli M, Falconi J, et al. Role of 13-(di) phenyl alkyl berberine derivatives in the modulation of the activity of human topoisomerase IB. Int J Biol Macromol. 2015;77:68–75.
  • Choi SM, Rao KM, Zo SM, et al. Bacterial cellulose and its applications. Polymers. 2022;14(6):1080.
  • Li J, Wan Y, Li L, et al. Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C. 2009;29(5):1635–1642.
  • Gumrah Dumanli A. Nanocellulose and its composites for biomedical applications. Curr Med Chem. 2017;24(5):512–528.
  • Rodriguez-Contreras A. Recent advances in the use of polyhydroyalkanoates in biomedicine. Bioengineering. 2019;6(3):82.
  • Urimi D, Agrawal AK, Kushwah V, et al. Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS Pharm Sci Tech. 2019;20:131.
  • Codreanu A, Balta C, Herman H, et al. Bacterial Cellulose-Modified polyhydroxyalkanoates scaffolds promotes bone formation in critical size calvarial defects in mice. Mater Basel. 2020;13(6):1433.
  • Doi Y, Steinbüchel A. Biopolymers, applications and commercial Products-Polyesters III. Weiheim: Wiley-VCH; 2002.
  • Henton DE, Gruber P, Lunt J, et al. Polylactic acid technology. Vol. 16. In: Mohanty AK, Misra M, Drzal LT, editors. Natural fibers biopolymers and biocomposites. Boca Raton: CRC Press; 2005. p. 527–577.
  • Zhang Q, Mochalin VN, Neitzel I, et al. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32(1):87–94.
  • Iwasa J, Engebretsen L, Shima Y, et al. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2009;17(6):561–577.
  • Michaelis M, Matousek J, Vogel JU, et al. Bovine seminal ribonuclease attached to nanoparticles made of polylactic acid kills leukemia and lymphoma cell lines in vitro. Anticancer Drugs. 2000;11(5):369–376.
  • Lv G, He F, Wang X, et al. Novel nanocomposite of nano Fe3O4 and poly- lactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir. 2008;24(5):2151–2156.
  • Singapore’s battle with disposable plastic addiction | News | Eco-Business | Asia Pacific; n.d. [cited 2020 Apr 29]. https://www.eco-business.com/news/singapores-battle-with-disposable-plastic.addiction.
  • Taebi B, Safari A. On effectiveness and legitimacy of ‘shaming’ as a strategy for combatting climate change. Sci Eng Ethics. 2017;23(5):1289–1306.
  • Taufik D, Reinders MJ, Molenveld K, et al. The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Sci Total Environ. 2020;705:135820.
  • Jiang T, Duan Q, Zhu J, et al. Starch-based biodegradable materials: challenges and opportunities. Adv Ind Eng Polym Res. 2020;3(1):8–18.
  • Bhatia SK, Jagtap SS, Bedekar AA, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol. 2020;300:122724.
  • Werten MWT, Eggink G, Cohen Stuart MA, et al. Production of protein- based polymers in Pichia pastoris. Biotechnol Adv. 2019;37(5):642–666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.