736
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Natural gums and their derivatives based hydrogels: in biomedical, environment, agriculture, and food industry

, &
Pages 275-301 | Received 01 Jul 2022, Accepted 14 Nov 2022, Published online: 22 Jan 2023

References

  • Ahmad S, Ahmad M, Manzoor K, et al. A review on latest innovations in natural gums based hydrogels: preparations & applications. Int J Biol Macromol. 2019;136:870–890.
  • Barak S, Mudgil D, Taneja S. Exudate gums: chemistry, properties and food applications – a review. J Sci Food Agric. 2020;100(7):2828–2835.
  • Samutsri W, Suphantharika M. Effect of salts on pasting, thermal, and rheological properties of rice starch in the presence of non-ionic and ionic hydrocolloids. Carbohydr Polym. 2012;87(2):1559–1568.
  • Andrikopoulos NK, Kaliora AC, Assimopoulou AN, et al. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation. Phytother Res. 2003;17(5):501–507.
  • Choudhary PD, Pawar HA. Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview. J Pharm. 2014;2014(1):1–9.
  • Bhosale R. Natural gums and mucilages: a review on multifaceted excipients in lung delivery of nanoliposomal salbutamol sulphate dry powder for inhalation view project. Pharm Sci Res Artic Int J Pharmacogn Phytochem Res. 2014;6(4):901–912.
  • Towle GA, Whistler RL. Chemical modification of gums. In: Industrial gums: polysaccharides and their derivatives. 3rd ed. San Diego: Elsevier, Academic Press; 1993. p. 9–19.
  • Rana V, Rai P, Tiwary AK, et al. Modified gums: approaches and applications in drug delivery. Carbohydr Polym. 2011;83(3):1031–1047.
  • Veeramachineni AK, Sathasivam T, Paramasivam R, et al. Synthesis and characterization of a novel pH-sensitive aluminum crosslinked carboxymethyl tragacanth beads for extended and enteric drug delivery. J Polym Environ. 2019;27(7):1516–1528.
  • Murthy HN. Chemical constituents and applications of gums, resins, and latexes of plant origin. In: Gums, resins and latexes of plant origin: chemistry, biological activities and uses; 2022. p. 3–23.
  • Ray S, Roy G, Maiti S, et al. Development of smart hydrogels of etherified gum ghatti for sustained oral delivery of ropinirole hydrochloride. Int J Biol Macromol. 2017;103:347–354.
  • Kaity S, Ghosh A. Carboxymethylation of locust bean gum: application in interpenetrating polymer network microspheres for controlled drug delivery. Ind Eng Chem Res. 2013;52(30):10033–10045.
  • Braz L, Grenha A, Corvo MC, et al. Synthesis and characterization of locust bean gum derivatives and their application in the production of nanoparticles. Carbohydr Polym. 2018;181:974–985.
  • Manna PJ, Mitra T, Pramanik N, et al. Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. Int J Biol Macromol. 2015;75:437–446.
  • Lapasin R, Pricl S, Tracanelli P. Rheology of hydroxyethyl guar gum derivatives. Carbohydr Polym. 1991;14(4):411–427.
  • Zhu J, Guo P, Chen D, et al. Fast and excellent healing of hydroxypropyl guar gum/poly(N,N-dimethyl acrylamide) hydrogels. J Polym Sci Part B Polym Phys. 2018;56(3):239–247.
  • Shi HY, Zhang LM. New grafted polysaccharides based on O-carboxymethyl-O-hydroxypropyl guar gum and N-isopropylacrylamide: synthesis and phase transition behavior in aqueous media. Carbohydr Polym. 2007;67(3):337–342.
  • Shenoy MA, D’Melo DJ. Synthesis and characterization of acryloyloxy guar gum. J Appl Polym Sci. 2010;117(1):148–154.
  • Xiao W, Dong L. Novel excellent property film prepared from methacryloyl chloride-graft-guar gum matrixes. In: International Conference on Consumer Electronics, Communications and Networks, CECNet 2011 – Proceedings; 2011. p. 1442–1445.
  • Kazachenko AS, Akman F, Sagaama A, et al. Theoretical and experimental study of guar gum sulfation. J Mol Model. 2021;27(1):5.
  • Dong C, Tian B. Studies on preparation and emulsifying properties of guar galactomannan ester of palmitic acid. J Appl Polym Sci. 1999;72(5):639–645.
  • Jana S, Maiti S, Jana S, et al. Guar gum in drug delivery applications. In: Natural polysaccharides in drug delivery and biomedical applications. Elsevier, Academic Press; 2019. p. 187–201.
  • Santos MB, dos Santos CHC, de Carvalho MG, et al. Physicochemical, thermal and rheological properties of synthesized carboxymethyl tara gum (Caesalpinia spinosa). Int J Biol Macromol. 2019;134:595–603.
  • Wu Y, Ding W, Jia L, et al. The rheological properties of tara gum (Caesalpinia spinosa). Food Chem. 2015;168:366–371.
  • Goyal P, Kumar V, Sharma P. Carboxymethylation of tamarind kernel powder. Carbohydr Polym. 2007;69(2):251–255.
  • Shukla AK, Bishnoi RS, Kumar M, et al. Applications of tamarind seeds polysaccharide-based copolymers in controlled drug delivery: an overview. Asian J Pharm Pharmacol. 2018;4(1):23–30.
  • Ibrahim NA, Abo-Shosha MH, Allam EA, et al. New thickening agents based on tamarind seed gum and karaya gum polysaccharides. Carbohydr Polym. 2010;81(2):402–408.
  • Badwaik HR, Sakure K, Alexander A, et al. Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. Int J Biol Macromol. 2016;85:361–369.
  • Ngwabebhoh FA, Zandraa O, Patwa R, et al. Self-crosslinked chitosan/dialdehyde xanthan gum blended hypromellose hydrogel for the controlled delivery of ampicillin, minocycline and rifampicin. Int J Biol Macromol. 2021;167:1468–1478.
  • Kalbhare SB, Kumar Redasani V, Bhandwalkar MJ, et al. Role of aminated derivatives of natural gum in release modulating matrix systems of losartan potassium: optimization of formulation using Box-Behnken design. AJPR. 2021;11(2):73–84.
  • Patel J, Maji B, Moorthy NSHN, et al. Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Adv. 2020;10(45):27103–27136.
  • Gangapuram BR, Bandi R, Dadigala R, et al. Facile green synthesis of gold nanoparticles with carboxymethyl gum karaya, selective and sensitive colorimetric detection of copper (II) ions. J Clust Sci. 2017;28(5):2873–2890.
  • Padil VVT, Senan C, Černík M. Dodecenylsuccinic anhydride derivatives of gum karaya (Sterculia urens): preparation, characterization, and their antibacterial properties. J Agric Food Chem. 2015;63(14):3757–3765.
  • Fosso-Kankeu E, Mittal H, Waanders F, et al. Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents. Int J Environ Sci Technol. 2016;13(2):711–724.
  • Raj Sharma B, Kumar V, Soni PL, et al. Carboxymethylation of cassia tora gum. J Appl Polym Sci. 2003;89(12):3216–3219.
  • Shak KPY, Wu TY. Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: treatment efficiencies and flocs characterization. Chem Eng J. 2014;256:293–305.
  • Sharma R, Rana V. Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. Carbohydr Polym. 2017;175:728–738.
  • Samrot AV, Suvedhaa B, Sahithya CS, et al. Purification and utilization of gum from Terminalia catappa L. for synthesis of curcumin loaded nanoparticle and its in vitro bioactivity studies. J Clust Sci. 2018;29(6):989–1002.
  • Mate CJ, Mishra S. Synthesis of borax cross-linked Jhingan gum hydrogel for remediation of Remazol Brilliant Blue R (RBBR) dye from water: adsorption isotherm, kinetic, thermodynamic and biodegradation studies. Int J Biol Macromol. 2020;151:677–690.
  • Qiu L, Shen Y, Fan H, et al. Carboxymethyl fenugreek gum: rheological characterization and as a novel binder for silicon anode of lithium-ion batteries. Int J Biol Macromol. 2018;115:672–679.
  • Bera H, Mothe S, Maiti S, et al. Carboxymethyl fenugreek galactomannan-gellan gum-calcium silicate composite beads for glimepiride delivery. Int J Biol Macromol. 2018;107(Pt A):604–614.
  • Xiao J-X, Wang L-H, Xu T-C, et al. Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. Int J Biol Macromol. 2019;123:436–445.
  • Wang Y, Xie R, Li Q, et al. A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomater Sci. 2020;8(7):1910–1922.
  • Case SE, Hamann DD. Fracture properties of konjac mannan gel: effect of gel temperature. Food Hydrocoll. 1994;8(2):147–154.
  • Kang J, Guo Q, Cui SW. Other emerging gums: flaxseed gum, yellow mustard gum, and psyllium gums. In: Handbook of hydrocolloids. Sawston,UK: Elsevier; Woodhead Publishing 2021. p. 597–624.
  • Liu W, Zhuohong X, Zhang B, et al. Effects of hydroxypropylation on the functional properties of psyllium. J Agric Food Chem. 2010;58(3):1615–1621.
  • Niu Y, Xie Z, Hao J, et al. Preparation of succinylated derivatives of psyllium and their physicochemical and bile acid-binding properties. Food Chem. 2012;132(2):1025–1032.
  • Niu Y, Xie Z, Zhang H, et al. Effects of structural modifications on physicochemical and bile acid-binding properties of psyllium. J Agric Food Chem. 2013;61(3):596–601.
  • Fischer MH, Yu N, Gray GR, et al. The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res. 2004;339(11):2009–2017.
  • Sajna KV, Gottumukkala LD, Sukumaran RK, et al. White biotechnology in cosmetics. In: Industrial biorefineries & white biotechnology. Amsterdam, The Netherlands: Elsevier; 2015. p. 607–652.
  • Ahuja M, Singh S, Kumar A. Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. Int J Biol Macromol. 2013;53:114–121.
  • Zhang J, Dong Y, Fan L, et al. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydr Polym. 2015;115:694–700.
  • Safdar B, Pang Z, Liu X, et al. Flaxseed gum: extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J Food Biochem. 2020;44(2)
  • Niu J, Li D, Wang L, et al. Synthesis of carboxymethyl flaxseed gum and study of nonlinear rheological properties of its solutions. Int J Food Eng. 2018;14(1):20170185.
  • Liu J, Shim YY, Tse TJ, et al. Flaxseed gum a versatile natural hydrocolloid for food and non-food applications. Trends Food Sci Technol. 2018;75:146–157.
  • Kim S, Biswas A, Boddu V, et al. Solubilization of cashew gum from Anacardium occidentale in aqueous medium. Carbohydr Polym. 2018;199:205–209.
  • Maciel JS, Azevedo S, Correia CR, et al. Oxidized cashew gum scaffolds for tissue engineering. Macromol Mater Eng. 2019;304(3):1–11.
  • Melo AMA, Oliveira MRF, Furtado RF, et al. Preparation and characterization of carboxymethyl cashew gum grafted with immobilized antibody for potential biosensor application. Carbohydr Polym. 2020;228:115408.
  • Ribeiro AJ, De Souza FRL, Bezerra JMNA, et al. Gums’ based delivery systems: review on cashew gum and its derivatives. Carbohydr Polym. 2016;147:188–200.
  • Guilherme MR, Reis AV, Takahashi SH, et al. Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym. 2005;61(4):464–471.
  • Wang L, Liu HM, Zhu CY, et al. Chinese quince seed gum: flow behaviour, thixotropy and viscoelasticity. Carbohydr Polym. 2019;209(2019):230–238.
  • Malandkar M II. Chemical constitution of the gum from Boswellia serrata. J Indian Inst Sci. 1925;8(Part A):221–244.
  • Srivastava A, Gowda DV, Hani U, et al. Fabrication and characterization of carboxymethylated bael fruit gum with potential mucoadhesive applications. RSC Adv. 2015;5(55):44652–44659.
  • Mahammed N, Gowda DV, Deshpande RD, et al. Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier. Arch Pharm Res. 2015;38(1):42–51.
  • Vinod VTP, Sashidhar RB. Solution and conformational properties of gum kondagogu (Cochlospermum gossypium) – a natural product with immense potential as a food additive. Food Chem. 2009;116(3):686–692.
  • Seku K, Gangapuram BR, Pejjai B, et al. Eco-friendly synthesis of gold nanoparticles using carboxymethylated gum Cochlospermum gossypium (CMGK) and their catalytic and antibacterial applications. Chem Pap. 2019;73(7):1695–1704.
  • Rathore HS, Sarubala M, Ramanathan G, et al. Fabrication of biomimetic porous novel sponge from gum kondagogu for wound dressing. Mater Lett. 2016;177:108–111.
  • Zhang Q, Gao Y, Zhai YA, et al. Synthesis of sesbania gum supported dithiocarbamate chelating resin and studies on its adsorption performance for metal ions. Carbohydr Polym. 2008;73(2):359–363.
  • Verma S, Ahuja M. Carboxymethyl sesbania gum: synthesis, characterization and evaluation for drug delivery. Int J Biol Macromol. 2017;98:75–83.
  • Tang H, Liu Y, Li Y, et al. Hydroxypropylation of cross-linked sesbania gum, characterization and properties. Int J Biol Macromol. 2020;152:1010–1019.
  • Verma S, Ahuja M. Thiol functionalization of sesbania gum and its evaluation for mucoadhesive sustained drug delivery. Actapharm. 2021;59(1):581–602.
  • Li R, Jia X, Wang Y, et al. The effects of extrusion processing on rheological and physicochemical properties of sesbania gum. Food Hydrocoll. 2019;90:35–40.
  • Jorge Corzo-Rios L, Drago SR, Gallegos-Tintor David Betancur-Ancona S, et al. Study of the interaction of phaseolus lunatus hydrolysed proteins and Delonix regia carboxymethylated gum using capillary electrophoresis. Chiang Mai J Sci. 2018;45(1):308–317.
  • Okoye EI, Edochie C, Adegbemi JO. Preliminary evaluation of Delonix regia seed gum as a suspending agent in a liquid oral dosage form. Int J Pharm Sci Drug Res. 2014;6(2):114–119.
  • Ahuja M, Abhishek . Evaluation of carboxymethyl moringa gum as nanometric carrier. Carbohydr Polym. 2017;174:896–903.
  • Ahmad S, Manzoor K, Purwar R, et al. Morphological and swelling potential evaluation of Moringa oleifera gum/poly(vinyl alcohol) hydrogels as a superabsorbent. ACS Omega. 2020;5(29):17955–17961.
  • Patra S, Bala NN, Nandi G. Synthesis, characterization and fabrication of sodium carboxymethyl-okra-gum-grafted-polymethacrylamide into sustained release tablet matrix. Int J Biol Macromol. 2020;164:3885–3900.
  • Roy A, Shrivastava SL, Mandal SM. Functional properties of okra Abelmoschus esculentus L. (Moench): traditional claims and scientific evidences. Plant Sci Today. 2014;1(3):121–130.
  • Malviya R, Sharma PK, Dubey SK. Stability facilitation of nanoparticles prepared by ultrasound assisted solvent-antisolvent method: effect of neem gum, acrylamide grafted neem gum and carboxymethylated neem gum over size, morphology and drug release. Mater Sci Eng C Mater Biol Appl. 2018;91:772–784.
  • Chen H, Chen F, Xiao Q, et al. Structure and physicochemical properties of amphiphilic agar modified with octenyl succinic anhydride. Carbohydr Polym. 2021;251:117031.
  • Kulkarni V, Butte K, Rathod S. Natural polymers – a comprehensive review. Int J Res Pharm Biomed Sci. 2012;3(4):1597–1613.
  • Kaur S, Jindal R, Kaur Bhatia J. Synthesis and RSM-CCD optimization of microwave-induced green interpenetrating network hydrogel adsorbent based on gum copal for selective removal of malachite green from waste water. Polym Eng Sci. 2018;58(12):2293–2303.
  • Masuelli M, Slatvustky A, Ochoa A, et al. Physicochemical parameters for brea gum exudate from Cercidium praecox tree. Colloids and Interfaces. 2018;2(4):72.
  • Slavutsky AM, Bertuzzi MA. Formulation and characterization of hydrogel based on pectin and brea gum. Int J Biol Macromol. 2019;123:784–791.
  • Hasan Fathinejad J. Synthesis and comparison of hydrogels based on Pistacia atlantica gum. Int J Biosci. 2014;5(1):185–189.
  • Yu M, Song A, Xu G, et al. 3D welan gum–graphene oxide composite hydrogels with efficient dye adsorption capacity. RSC Adv. 2015;5(92):75589–75599.
  • Razavi SMA, Alghooneh A, Behrouzian F. Sage (Salvia macrosiphon) seed gum. In: Emerging natural hydrocolloids: rheology and functions, Chap. 8. Chichester: Wiley; 2019. p. 159–181.
  • Razavi SMA, Cui SW, Ding H. Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. Int J Biol Macromol. 2016;83:142–151.
  • Marvdashti LM, Yavarmanesh M, Koocheki A. Controlled release of nisin from polyvinyl alcohol – Alyssum homolocarpum seed gum composite films: nisin kinetics. Food Biosci. 2019;28:133–139.
  • Perduca MJ, Spotti MJ, Santiago LG, et al. Rheological characterization of the hydrocolloid from Gleditsia amorphoides seeds. LWT-Food Sci Technol. 2013;51(1):143–147.
  • Koocheki A, Hesarinejad MA. Qodume shahri (Lepidium perfoliatum) seed gum. In: Emerging natural hydrocolloids: rheology and functions. 1st ed. Hoboken, NJ: Wiley Online Library; 2019. p. 251–272.
  • Singh B, Sharma V. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr Polym. 2014;101(1):928–940.
  • Rastogi L, Sashidhar RB, Karunasagar D, et al. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta. 2014;118:111–117.
  • Deshmukh AS, Setty CM, Badiger AM, et al. Gum ghatti: a promising polysaccharide for pharmaceutical applications. Carbohydr Polym. 2012;87(2):980–986.
  • Mirhosseini H, Amid BT. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int. 2012;46(1):387–398.
  • Singh B, Sharma V, Kumar, RA. Designing moringa gum-sterculia gum-polyacrylamide hydrogel wound dressings for drug delivery applications. Carbohydr Polym Technol Appl. 2021;2:100062.
  • Mudgil D, Barak S, Khatkar BS. Guar gum: processing, properties and food applications — a review. J Food Sci Technol. 2014;51(3):409–418.
  • Zaharuddin ND, Noordin MI, Kadivar A. The use of Hibiscus esculentus (okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form. Biomed Res Int. 2014;2014:735891.
  • Mortensen A, Aguilar F, Crebelli R. Re‐evaluation of tara gum (E 417) as a food additive. EFSA J. 2017;15(6):4863.
  • Singh B, Mohan M, Singh B. Synthesis and characterization of the Azadirachta indica gum – polyacrylamide interpenetrating network for biomedical applications. Carbohydr Polym Technol Appl. 2020;1:100017.
  • Lahaye M. Developments on gelling algal galactans, their structure and physico- chemistry. J Appl Phycol. 2001;13:173–184.
  • Aliabbasi N, Fathi M, Emam-Djomeh Z. Gum arabic-based nanocarriers for drug and bioactive compounds delivery. In: Micro- and nanoengineered gum-based biomaterials for drug delivery and biomedical applications, chap.13. Elsevier; 2022. p. 333–345.
  • Singh Abhishek, Patel Amit Kumar, Srivastava Rajat. Recently investigated polymeric natural gums and mucilages for various drug delivery system. World J Adv Res Rev. 2020;6(1):50–72.
  • Cerezo AS, Stacey M, Webber JM. Some structural studies of brea gum (an exudate from Cercidium australe Jonhst.). Carbohydr Res. 1969;9(4):505–517.
  • Huanbutta K, Sittikijyothin W. Development and characterization of seed gums from Tamarindus indica and Cassia fistula as disintegrating agent for fast disintegrating Thai cordial tablet. Asian J Pharm Sci. 2017;12(4):370–377.
  • Plank J, Ng S, Foraita S. Intercalation of the microbial biopolymers welan gum and EPS I into layered double hydroxides. Z Naturforsch Sect B J Chem Sci. 2012;67(5):479–487.
  • Kohajdová Z, Karovičová J. Application of hydrocolloids as baking improvers. Chem Pap. 2009;63(1):26–38.
  • Mortensen A, Aguilar F, Crebelli R, et al. Re‐evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. EFSA J. 2017;15(6):4864.
  • Barros AB, Moura AF, Silva DA, et al. Evaluation of antitumor potential of cashew gum extracted from Anacardium occidentale Linn. Int J Biol Macromol. 2020;154(2020):319–328.
  • Kumar D, Pandey J, Kumar P, et al. Psyllium mucilage and its use in pharmaceutical field : an overview. Curr Synthetic Sys Biol. 2017;05(01):1000134.
  • Maroufi LY, Shahabi N, Ghanbarzadeh M, et al. Development of antimicrobial active food packaging film based on gelatin/dialdehyde quince seed gum incorporated with apple peel polyphenols. Food Bioprocess Technol. 2022;15(3):693–705.
  • Behrouzi M, Moghadam PN. Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydr Polym. 2018;202:227–235.
  • LO, Ekebafe, DE, Ogbeifun FEO. Polymer applications in agriculture. Biokemistri. 2011;23(3):81–89.
  • Dai L, Cheng T, Wang Y, et al. A self-assembling guar gum hydrogel for efficient oil/water separation in harsh environments. Sep Purif Technol. 2019;225:129–135.
  • Chung HJ, Park TG. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today. 2009;4(5):429–437.
  • Khan M, Shah LA, Rehman T, et al. Synthesis of physically cross-linked gum arabic-based polymer hydrogels with enhanced mechanical, load bearing and shape memory behavior. Iran Polym J. 2020;29(4):351–360.
  • Chen W, Bu Y, Li D, et al. Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection. J Mater Chem C. 2020;8(3):900–908.
  • Shahvalizadeh R, Ahmadi R, Davandeh I, et al. Antimicrobial bio-nanocomposite films based on gelatin, tragacanth, and zinc oxide nanoparticles – microstructural, mechanical, thermo-physical, and barrier properties. Food Chem. 2021;354:129492.
  • Bonifacio MA, Cometa S, Cochis A, et al. Data in brief data on manuka honey/gellan gum composite hydrogels for cartilage repair. Data Brief. 2018;20:831–839.
  • Taylor DL, In Het Panhuis M. Self-healing hydrogels. Adv Mater. 2016;28(41):9060–9093.
  • Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006;1(1):15–30.
  • Padil VVT, Wacławek S, Černík M, et al. Tree gum-based renewable materials: sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv. 2018;36(7):1984–2016.
  • Azarniya A, Tamjid E, Eslahi N, et al. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol. 2019;134:280–289.
  • Yavari L, Ghorbani M, Mohammadi M, et al. Colloids and surfaces A: physicochemical and engineering aspects improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil. Colloids Surf A Physicochem Eng Asp. 2021;622(April):126659.
  • Padil VVT, Černík M. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J Hazard Mater. 2015;287:102–110.
  • Vo TS, Vo TTBC, Tran TT, et al. Enhancement of water absorption capacity and compressibility of hydrogel sponges prepared from gelatin/chitosan matrix with different polyols. Prog Nat Sci Mater Int. 2022;32(1):54–62.
  • Ngece K, Aderibigbe BA, Ndinteh DT, et al. Alginate-gum acacia based sponges as potential wound dressings for exuding and bleeding wounds. Int J Biol Macromol. 2021;172:350–359.
  • Garnica-Palafox IM, Sánchez-Arévalo FM. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr Polym. 2016;151:1073–1081.
  • Kopeček J, Yang J. Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed Engl. 2012;51(30):7396–7417.
  • Varaprasad K, Raghavendra GM, Jayaramudu T, et al. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl. 2017;79:958–971.
  • Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:13–36.
  • Palem RR, Madhusudana Rao K, Kang TJ. Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydr Polym. 2019;223:115074.
  • Ullah F, Othman MBH, Javed F, et al. Classification, processing and application of hydrogels: a review. Mater Sci Eng C Mater Biol Appl. 2015;57:414–433.
  • Singh B, Varshney L, Francis S, et al. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiat Phys Chem. 2017;135:94–105.
  • Swain S, Bal T. Carrageenan-guar gum microwave irradiated micro-porous interpenetrating polymer network: a system for drug delivery. Int J Polym Mater Polym Biomater. 2019;68(5):256–265.
  • Said HM, Abd Alla SG, El-Naggar AWM. Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym. 2004;61(3):397–404.
  • Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30(13):2544–2551.
  • Chen T, Embree HD, Wu L-Q, et al. In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan. Biopolymers. 2002;64(6):292–302.
  • Yung CW, Wu LQ, Tullman JA, et al. Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res A. 2007;83(4):1039–1046.
  • Pan H, Zheng B, Shen H, et al. Strength-tunable printing of xanthan gum hydrogel via enzymatic polymerization and amide bioconjugation. Chem Commun. 2020;56(23):3457–3460.
  • Sahu N, Gupta D, Nautiyal U. Hydrogel: preparation, characterization and applications. APJNH. 2020;3(1):1–11.
  • Funami T, Hiroe M, Noda S, et al. Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll. 2007;21(4):617–629.
  • Jeong B, Bae YH, Kim SW. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules. 1999;32(21):7064–7069.
  • Magnin D. Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr Polym. 2004;55(4):437–453.
  • Veiga IG, Moraes ÂM. Study of the swelling and stability properties of chitosan-xanthan membranes. J Appl Polym Sci. 2012;124(S1):E154–E160.
  • Maiti S, Khillar PS, Mishra D, et al. Physical and self–crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polym Test. 2021;97:107155.
  • Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015;6(2):105–121.
  • Takigami M, Amada H, Nagasawa N, et al. Preparation and properties of CMC gel. Trans Mat Res Soc Japan. 2007;32(3):713–716.
  • Zhang H, Zhang F, Wu J. Physically crosslinked hydrogels from polysaccharides prepared by freeze-thaw technique. React Funct Polym. 2013;73(7):923–928.
  • Iijima M, Hatakeyama T, Hatakeyama H. Gelation of cassia gum by freezing and thawing. J Therm Anal Calorim. 2013;113(3):1073–1078.
  • Al-Assaf S, Phillips GO, Aoki H, et al. Characterization and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (acacia (sen) SUPER GUM™): part 1—controlled maturation of Acacia senegal var. senegal to increase viscoelasticity, produce a hydrogel form and convert a poor into a good emulsifier. Food Hydrocoll. 2007;21(3):319–328.
  • Lv S, Liu L, Yang W. Preparation of soft hydrogel nanoparticles with PNIPAm hair and characterization of their temperature-induced aggregation. Langmuir. 2010;26(3):2076–2082.
  • Iizawa T, Taketa H, Maruta M, et al. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci. 2007;104(2):842–850.
  • Gong CY, Shi S, Dong PW, et al. Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm. 2009;365(1–2):89–99.
  • Mittal H, Maity A, Ray SS. Synthesis of co-polymer-grafted gum karaya and silica hybrid organic-inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem Eng J. 2015;279:166–179.
  • Yang N, Huang Y, Hou J, et al. Rheological behaviors and texture properties of semi-interpenetrating networks of hydroxypropyl methylcellulose and gellan. Food Hydrocoll. 2022;122:107097.
  • Zhao Y, Kang J, Tan T. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer. 2006;47(22):7702–7710.
  • Lipatov YS. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog Polym Sci. 2002;27(9):1721–1801.
  • Shin MS, Kim SJ, Park SJ, et al. Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine. J Appl Polym Sci. 2002;86(2):498–503.
  • Madduma‐Bandarage USK, Madihally SV. Synthetic hydrogels: synthesis, novel trends, and applications. J Appl Polym Sci. 2021;138(19):50376.
  • Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185–199.
  • Hoffman AS. Conventional and environmentally-sensitive hydrogels for medical and industrial uses: a review paper. In: Polymer gels. Boston (MA): Springer US; 1991. p. 289–297.
  • Zhang W, Wang P, Liu S, et al. Factors affecting the properties of superabsorbent polymer hydrogels and methods to improve their performance: a review. J Mater Sci. 2021;56(29):16223–16242.
  • Reis AV, Guilherme MR, Cavalcanti OA, et al. Synthesis and characterization of pH-responsive hydrogels based on chemically modified arabic gum polysaccharide. Polymer. 2006;47(6):2023–2029.
  • Tan H, Rubin JP, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis. 2010;6(3):173–180.
  • Souza S, Kogikoski S Jr., Silva E, et al. Nanostructured antigen-responsive hydrogels based on peptides for Leishmaniasis detection. J Braz Chem Soc. 2016;28(9):1619–1629.
  • Li P, Wang T, He J, et al. Synthesis, characterization, and selective dye adsorption by pH- and ion-sensitive polyelectrolyte galactomannan-based hydrogels. Carbohydr Polym. 2021;264:118009.
  • Gupta NR, Arun Torris AT, Wadgaonkar PP, et al. Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydr Polym. 2015;117:331–338.
  • Berlangieri C, Poggi G, Murgia S, et al. Structural, rheological and dynamics insights of hydroxypropyl guar gel-like systems. Colloids Surf B Biointerfaces. 2018;168:178–186.
  • Murali R, Vidhya P, Thanikaivelan P. Thermoresponsive magnetic nanoparticle – aminated guar gum hydrogel system for sustained release of doxorubicin hydrochloride. Carbohydr Polym. 2014;110:440–445.
  • Thakur S, Chauhan GS, Ahn J-H. Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of L-DOPA and L-tyrosine. Carbohydr Polym. 2009;76(4):513–520.
  • Santos MB, de Carvalho CWP, Garcia-Rojas EE. Microencapsulation of vitamin D3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chem. 2021;343:128529.
  • Mali KK, Dhawale SC, Dias RJ. Synthesis and characterization of hydrogel films of carboxymethyl tamarind gum using citric acid. Int J Biol Macromol. 2017;105(Pt 1):463–470.
  • Khushbu K, Warkar SG, Thombare N. Zinc micronutrient-loaded carboxymethyl tamarind kernel gum-based superabsorbent hydrogels: controlled release and kinetics studies for agricultural applications. Colloid Polym Sci. 2021;299(7):1103–1111.
  • Pal S, Ghorai S, Das C, et al. Carboxymethyl tamarind-g-poly(acrylamide)/silica: a high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res. 2012;51(48):15546–15556.
  • Hanna DH, Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem. 2019;84:115–124.
  • Jayaprada M, Umapathy MJ. Preparation and properties of a microfibrillated cellulose reinforced pectin/fenugreek gum biocomposite. New J Chem. 2020;44(43):18792–18802.
  • Liang L, Lin X, Liu Y, et al. Carboxymethyl konjac glucomannan mechanically reinforcing gellan gum microspheres for uranium removal. Int J Biol Macromol. 2020;145:535–546.
  • Zhu G, Sheng L, Tong Q. Preparation and characterization of carboxymethyl-gellan and pullulan blend films. Food Hydrocoll. 2014;35:341–347.
  • Lima LRM, Ramos EL de L, Silva MFS, et al. Poly(N-isopropylacrylamide)/galactomannan from Delonix regia seed thermal responsive graft copolymer via Schiff base reaction. Int J Biol Macromol. 2021;166:144–154.
  • Kumar A, Ahuja M. Carboxymethyl gum kondagogu: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym. 2012;90(1):637–643.
  • Dey P, Maiti S, Sa B. Gastrointestinal delivery of glipizide from carboxymethyl locust bean gum-Al3+-alginate hydrogel network: in vitro and in vivo performance. J Appl Polym Sci. 2013;128(3):2063–2072.
  • Maiti S, Chowdhury M, Chakraborty A, et al. Sulfated locust bean gum hydrogel beads for immediate analgesic effect of tramadol hydrochloride. J Sci Ind Res. 2014;73(1):21–28.
  • Verma D, Sharma SK. Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol. 2021;181:653–671.
  • Kaith BS, Singh A, Sharma AK, et al. Hydrogels: synthesis, classification, properties and potential applications—a brief review. J Polym Environ. 2021;29(12):3827–3841.
  • Taghizadeh M, Taghizadeh A, Yazdi MK, et al. Chitosan-based inks for 3D printing and bioprinting. Green Chem. 2022;24(1):62–101.
  • Lacoste C, Lopez-Cuesta JM, Bergeret A. Development of a biobased superabsorbent polymer from recycled cellulose for diapers applications. Eur Polym J. 2019;116:38–44.
  • Qasemi S, Ghaemy M. Highly sensitive and strongly fluorescent gum tragacanth based superabsorbent hydrogel as a new biosensor for glucose optical detection. J Mater Chem C. 2020;8(12):4148–4156.
  • Patel S, Goyal A. Applications of natural polymer gum arabic: a review. Int J Food Prop. 2015;18(5):986–998.
  • Ali A, Garg P, Goyal R, et al. A novel herbal hydrogel formulation of Moringa oleifera for wound healing. Plants. 2021;10(1):1–13.
  • Pierce GF, Mustoe TA. Pharmacologic enhancement of wound healing. Annu Rev Med. 1995;46(1):467–481.
  • Singh B, Sharma S, Dhiman A. Acacia gum polysaccharide based hydrogel wound dressings: synthesis, characterization, drug delivery and biomedical properties. Carbohydr Polym. 2017;165:294–303.
  • Bajpai A, Raj V. Hydrophobically modified guar gum films for wound dressing. Polym. Bull. 2021;78(8):4109–4128.
  • Pettinelli N, Rodríguez-Llamazares S, Bouza R, et al. Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm. 2020;589:119828.
  • Guilherme MR, Aouada FA, Fajardo AR, et al. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J. 2015;72:365–385.
  • Chiong JA, Tran H, Lin Y, et al. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv Sci. 2021;8(14):1–30.
  • Thombare N, Mishra S, Shinde R, et al. Guar gum based hydrogel as controlled micronutrient delivery system: mechanism and kinetics of boron release for agricultural applications. Biopolymers. 2021;112(3):e23418.
  • Sousa HR, Lima IS, Neris LML, et al. Superabsorbent hydrogels based to polyacrylamide/cashew tree gum for the controlled release of water and plant nutrients. Molecules. 2021;26(9):2680.
  • Azimi A, Azari A, Rezakazemi M, et al. Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev. 2017;4(1):37–59.
  • Wu Q, He L, Jiang ZW, et al. One-step synthesis of Cu(II) metal–organic gel as recyclable material for rapid, efficient and size selective cationic dyes adsorption. J Environ Sci. 2019;86:203–212.
  • Ranjbar-Mohammadi M, Rahimdokht M, Pajootan E. Low cost hydrogels based on gum tragacanth and TiO2 nanoparticles: characterization and RBFNN modelling of methylene blue dye removal. Int J Biol Macromol. 2019;134:967–975.
  • Mallakpour S, Tabesh F. Green and plant-based adsorbent from tragacanth gum and carboxyl-functionalized carbon nanotube hydrogel bionanocomposite for the super removal of methylene blue dye. Int J Biol Macromol. 2021;166:722–729.
  • Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. J Mater Sci Mater Med. 2020;31(6):50.
  • Singh SK, Dey S, Schneider MP, et al. D-Mannitol based surfactants for cosmetic and food applications and hydrogels to produce stabilized Ag nanoparticles. New J Chem. 2022;46(13):6193–6200.
  • Fan Z, Cheng P, Gao Y, et al. Understanding the rheological properties of a novel composite salecan/gellan hydrogels. Food Hydrocoll. 2022;123:107162.
  • Mensah A, Chen Y, Asinyo BK, et al. Bioactive icariin/β-CD-IC/bacterial cellulose with enhanced biomedical potential. Nanomaterials. 2021;11(2):387.
  • Amin U, Khan MU, Majeed Y, et al. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int J Biol Macromol. 2021;183(February):2184–2198.
  • Feng E, Ma G, Wu Y, et al. Preparation and properties of organic–inorganic composite superabsorbent based on xanthan gum and loess. Carbohydr Polym. 2014;111:463–468.
  • de Azeredo HMC. Antimicrobial nanostructures in food packaging. Trends Food Sci Technol. 2013;30(1):56–69.
  • Chen Y, Zhang M, Sun Y, et al. Improving 3D/4D printing characteristics of natural food gels by novel additives: a review. Food Hydrocoll. 2022;123:107160.
  • Azam RSM, Zhang M, Bhandari B, et al. Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophys. 2018;13(3):250–262.
  • Koyyada A, Orsu P. Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers. J Drug Deliv Sci Technol. 2021;63:102431.
  • Ramakrishnan RK, Wacławek S, Černík M, et al. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int J Biol Macromol. 2021;177:526–534.
  • Hemmatgir F, Koupaei N, Poorazizi E. Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing. Burns. 2022;48(1):146–155.
  • Kumar V, Mittal H, Alhassan SM. Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. Int J Biol Macromol. 2019;132:1252–1261.
  • Sharma B, Thakur S, Mamba G, et al. Titania modified gum tragacanth based hydrogel nanocomposite for water remediation. J Environ Chem Eng. 2021;9(1):104608.
  • Bhosale RR, Osmani RAM, Abu Lila AS, et al. Ghatti gum-base graft copolymer: a plausible platform for pH-controlled delivery of antidiabetic drugs. RSC Adv. 2021;11(24):14871–14882.
  • Sharma K, Kumar V, Kaith BS, et al. A study of the biodegradation behaviour of poly(methacrylic acid/aniline)-grafted gum ghatti by a soil burial method. RSC Adv. 2014;4(49):25637–25649.
  • Mittal H, Maity A, Ray SS. Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel. Int J Biol Macromol. 2015;79:8–20.
  • Zhang P, Zhao Y, Shi Q. Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydr Polym. 2016;153:345–355.
  • Daud H, Ghani A, Iqbal DN, et al. Preparation and characterization of guar gum based biopolymeric hydrogels for controlled release of antihypertensive drug. Arab J Chem. 2021;14(5):103111.
  • Santoso SP, Angkawijaya AE, Bundjaja V, et al. TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int J Biol Macromol. 2021;193(Pt A):721–733.
  • Kim JH, Min HJ, Park K, et al. Preparation and evaluation of a cosmetic adhesive containing guar gum. Korean J Chem Eng. 2017;34(8):2236–2240.
  • Rahman S, Konwar A, Majumdar G, et al. Guar gum-chitosan composite film as excellent material for packaging application. Carbohydr Polym Technol Appl. 2021;2:100158.
  • Rutz JK, Zambiazi RC, Borges CD, et al. Microencapsulation of purple Brazilian cherry juice in xanthan, tara gums and xanthan-tara hydrogel matrixes. Carbohydr Polym. 2013;98(2):1256–1265.
  • Abd Alla SG, Sen M, El-Naggar AWM. Swelling and mechanical properties of superabsorbent hydrogels based on tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym. 2012;89(2):478–485.
  • Shen J, Li B, Zhan X, et al. A one pot method for preparing an antibacterial superabsorbent hydrogel with a Semi-IPN structure based on tara gum and polyquaternium-7. Polymers. 2018;10(7):696.
  • Ma Q, Hu D, Wang H, et al. Tara gum edible film incorporated with oleic acid. Food Hydrocoll. 2016;56:127–133.
  • Qureshi D, Behera KP, Mohanty D, et al. Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids Surfaces A Physicochem Eng Asp. 2021;613:126043.
  • Pal A, Pal S. Amphiphilic copolymer derived from tamarind gum and poly (methyl methacrylate) via ATRP towards selective removal of toxic dyes. Carbohydr Polym. 2017;160:1–8.
  • He P, Guo R, Hu K, et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem Eng J. 2021;414:128726.
  • Malik NS, Ahmad M, Minhas MU, et al. Chitosan/xanthan gum based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation. Front Chem. 2020;8:50.
  • Gils PS, Ray D, Sahoo PK. Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol. 2009;45(4):364–371.
  • Zhang Q, Hu XM, Wu MY, et al. Synthesis and performance characterization of poly(vinyl alcohol)-xanthan gum composite hydrogel. React Funct Polym. 2019;136:34–43.
  • Da-Lozzo EJ, Moledo RCA, Faraco CD, et al. Curcumin/xanthan–galactomannan hydrogels: rheological analysis and biocompatibility. Carbohydr Polym. 2013;93(1):279–284.
  • Balasubramanian R, Kim SS, Lee J. Novel synergistic transparent k-Carrageenan/xanthan gum/gellan gum hydrogel film: mechanical, thermal and water barrier properties. Int J Biol Macromol. 2018;118(Pt A):561–568.
  • Bashir S, Teo YY, Ramesh S, et al. Synthesis and characterization of karaya gum-g- poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin. Polymer. 2018;147:108–120.
  • Mittal H, Maity A, Ray SS. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Appl Surf Sci. 2016;364:917–930.
  • Cao TL, Song KB. Active gum karaya/cloisite Na+ nanocomposite films containing cinnamaldehyde. Food Hydrocoll. 2019;89:453–460.
  • Cao L, Liu W, Wang L. Developing a green and edible film from cassia gum: the effects of glycerol and sorbitol. J Clean Prod. 2018;175:276–282.
  • Deng Y, Yang X, Zhang X, et al. Novel fenugreek gum-cellulose composite hydrogel with wound healing synergism: facile preparation, characterization and wound healing activity evaluation. Int J Biol Macromol. 2020;160:1242–1251.
  • Liu C, Lei F, Li P, et al. Borax crosslinked fenugreek galactomannan hydrogel as potential water-retaining agent in agriculture. Carbohydr Polym. 2020;236:116100.
  • Mishra S, Kundu K. Synthesis, characterization and applications of polyacrylamide grafted fenugreek gum (FG-g-PAM) as flocculant: microwave vs thermal synthesis approach. Int J Biol Macromol. 2019;141:792–808.
  • Rossi B, Ponzini E, Merlini L, et al. Characterization of aerogels from chemo-enzymatically oxidized galactomannans as novel polymeric biomaterials. Eur Polym J. 2017;93:347–357.
  • Niu Y, Yang T, Ke R, et al. Preparation and characterization of pH-responsive sodium alginate/humic acid/konjac hydrogel for L-ascorbic acid controlled release. Mat Express. 2019;9(6):563–569.
  • Wei Z, Li G. Preparation of konjac glucomannan/xanthan gum plural gel embedding urea and its release performance. Huagong Xuebao/CIESC J. 2011;62(1):255–261.
  • Gan L, Shang S, Hu E, et al. Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange. Appl Surf Sci. 2015;357:866–872.
  • Schnitzler I, Hausen C, Klein C. Hydrogel comprising natural polysaccharides konjac mannan, xanthan gum, pullulan and carrageenan, and optionally sclerotium gum, for skin care cosmetics; 2011.
  • Rhim J-W, Wang L-F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym. 2013;96(1):71–81.
  • Slavutsky AM, Bertuzzi MA, Armada M, et al. Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocoll. 2014;35:270–278.
  • Choi JH, Park A, Lee W, et al. Preparation and characterization of an injectable dexamethasone-cyclodextrin complexes-loaded gellan gum hydrogel for cartilage tissue engineering. J Control Release. 2020;327:747–765.
  • Sabadini RC, Silva MM, Pawlicka A, et al. Gellan gum-O,O′-bis(2-aminopropyl)-polyethylene glycol hydrogel for controlled fertilizer release. J Appl Polym Sci. 2018;135(2):45636.
  • Choudhary S, Sharma K, Kumar V, et al. Microwave-assisted synthesis of gum gellan-cl-poly(acrylic-co-methacrylic acid) hydrogel for cationic dyes removal. Polym Bull. 2020;77(9):4917–4935.
  • Nair R, Roy Choudhury A. Synthesis and rheological characterization of a novel shear thinning levan gellan hydrogel. Int J Biol Macromol. 2020;159:922–930.
  • Haseeb MT, Hussain MA, Yuk SH, et al. Polysaccharides based superabsorbent hydrogel from linseed: dynamic swelling, stimuli responsive on-off switching and drug release. Carbohydr Polym. 2016;136:750–756.
  • Zhang H, Luan Q, Huang Q, et al. A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation. Carbohydr Polym. 2017;157:1830–1836.
  • Prado NS, da Silva ISV, Lopes Silva TA, et al. Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Mater Res. 2018;21(6):e20180134.
  • Sharma AK, Kaith BS, Shanker U, et al. γ-radiation induced synthesis of antibacterial silver nanocomposite scaffolds derived from natural gum Boswellia serrata. J Drug Deliv Sci Technol. 2020;56:101550.
  • Yavari Maroufi L, Ghorbani M. Injectable chitosan-quince seed gum hydrogels encapsulated with curcumin loaded-halloysite nanotubes designed for tissue engineering application. Int J Biol Macromol. 2021;177:485–494.
  • Hosseinzadeh H, Mohammadi S. Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohydr Polym. 2015;134:213–221.
  • Shekarabi AS, Oromiehie AR, Vaziri A, et al. Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films. Food Sci Nutr. 2014;2(6):821–827.
  • Lima LRM, Cavalcante C, Carneiro MJM, et al. Thermal responsive poly-N-isopropylacrylamide/galactomannan copolymer nanoparticles as a potential amphotericin delivery carrier. Carbohydr Polym Technol Appl. 2021;2:100126.
  • Rodriguez-Canto W, Cerqueira MA, Chel-Guerrero L, et al. Delonix regia galactomannan-based edible films: effect of molecular weight and k-carrageenan on physicochemical properties. Food Hydrocoll. 2020;103:105632.
  • Kaur S, Jindal R. Synthesis of interpenetrating network hydrogel from (gum copal alcohols-collagen)-co-poly(acrylamide) and acrylic acid: isotherms and kinetics study for removal of methylene blue dye from aqueous solution. Mater Chem Phys. 2018;220:75–86.
  • Kumar D, Pandey J, Kumar P. Microwave assisted synthesis of binary grafted psyllium and its utility in anticancer formulation. Carbohydr Polym. 2018;179:408–414.
  • Aydınoğlu D, Karaca N, Ceylan Ö. Natural carrageenan/psyllium composite hydrogels embedded montmorillonite and investigation of their use in agricultural water management. J Polym Environ. 2021;29(3):785–798.
  • Chaudhary S, Sharma J, Kaith BS, et al. Gum xanthan-psyllium-cl-poly(acrylic acid-co-itaconic acid) based adsorbent for effective removal of cationic and anionic dyes: adsorption isotherms, kinetics and thermodynamic studies. Ecotoxicol Environ Saf. 2018;149:150–158.
  • Askari F, Sadeghi E, Mohammadi R, et al. The physicochemical and structural properties of psyllium gum/modified starch composite edible film. J Food Process Preserv. 2018;42(10):e13715.
  • Setia A, Kumar R. Microwave assisted synthesis and optimization of Aegle marmelos-g-poly(acrylamide): release kinetics studies. Int J Biol Macromol. 2014;65:462–470.
  • Sharma B, Sandilya A, Patel U, et al. A bio-inspired exploration of eco-friendly bael gum and guar gum-based bioadhesive as tackifiers for packaging applications. Int J Adhes Adhes. 2021;110:102946.
  • Malik S, Kumar A, Ahuja M. Synthesis of gum kondagogu-g-poly(N-vinyl-2-pyrrolidone) and its evaluation as a mucoadhesive polymer. Int J Biol Macromol. 2012;51(5):756–762.
  • Ramakrishnan RK, Padil VVT, Škodová M, et al. Hierarchically porous bio‐based sustainable conjugate sponge for highly selective oil/organic solvent absorption. Adv Funct Materials. 2021;31(18):2100640.
  • Pal P, Pandey JP, Sen G. Sesbania gum based hydrogel as platform for sustained drug delivery: an ‘in vitro’ study of 5-Fu release. Int J Biol Macromol. 2018;113:1116–1124.
  • Pal P, Banerjee A, Halder U, et al. Conferring antibacterial properties on sesbania gum via microwave-assisted graft copolymerization of DADMAC. J Polym Environ. 2018;26(8):3272–3282.
  • Liu W, Ling Z, Huang C, et al. Investigation of galactomannan/deacetylated chitosan nanocomposite films and their anti-bacterial capabilities. Mater Today Commun. 2022;30:103002.
  • Sharma P, Mittal H, Jindal R, et al. Sustained delivery of atenolol drug using gum dammar crosslinked polyacrylamide and zirconium based biodegradable hydrogel composites. Colloids Surf A Physicochem Eng Asp. 2019;562:136–145.
  • Sharma P, Jindal R, Maiti M, et al. Novel organic–inorganic composite material as a cation exchanger from a triterpenoidal system of dammar gum: synthesis, characterization and application. Iran Polym J. 2016;25(8):671–685.
  • Ranote S, Ram B, Kumar D, et al. Functionalization of Moringa oleifera gum for use as Hg2+ ions adsorbent. J Environ Chem Eng. 2018;6(2):1805–1813.
  • Maryam S, Barkat K, Khalid I, et al. Polymeric blends of okra gum/gelatin prepared by aqueous polymerization technique: their characterization and toxicological evaluation. Polym. Bull. 2022;79(7):5339–5363.
  • Nagpal M, Aggarwal G, Jain UK, et al. Okra fruit gum-chitosan impregnated polymer network films: formulation and substantial depiction. Asian J Pharm Clin Res. 2017;10(10):219–222.
  • Mankotia P, Choudhary S, Sharma K, et al. Neem gum based pH responsive hydrogel matrix: a new pharmaceutical excipient for the sustained release of anticancer drug. Int J Biol Macromol. 2020;142:742–755.
  • Moreira BR, Batista KA, Castro EG, et al. A bioactive film based on cashew gum polysaccharide for wound dressing applications. Carbohydr Polym. 2015;122:69–76.
  • Silva BDS, Ulhoa CJ, Batista KA, et al. Biodegradable and bioactive CGP/PVA film for fungal growth inhibition. Carbohydr Polym. 2012;89(3):964–970.
  • Zohuriaan-Mehr MJ, Motazedi Z, Kabiri K, et al. Gum arabic–acrylic superabsorbing hydrogel hybrids: studies on swelling rate and environmental responsiveness. J Appl Polym Sci. 2006;102(6):5667–5674.
  • Kaith BS, Sharma R, Sharma K, et al. Effects of O7+ and Ni9+ swift heavy ions irradiation on polyacrylamide grafted gum acacia thin film and sorption of methylene blue. Vacuum. 2015;111:73–82.
  • Anvari M, Chung D. Dynamic rheological and structural characterization of fish gelatin – gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocoll. 2016;60:516–524.
  • Bulut E, Dilek M. Development and characterization of pH-sensitive locust bean gum-alginate microspheres for controlled release of ibuprofen. J Drug Deliv Sci Technol. 2014;24(6):613–619.
  • Pandey S, Do JY, Kim J, et al. Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. Int J Biol Macromol. 2020;143:60–75.
  • Martins JT, Cerqueira MA, Bourbon AI, et al. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll. 2012;29(2):280–289.
  • Oleyaei SA, Razavi SMA, Mikkonen KS. Novel nanobiocomposite hydrogels based on sage seed gum-laponite: physico-chemical and rheological characterization. Carbohydr Polym. 2018;192:282–290.
  • Razavi SMA, Mohammad Amini A, Zahedi Y. Characterisation of a new biodegradable edible film based on sage seed gum: influence of plasticiser type and concentration. Food Hydrocoll. 2015;43:290–298.
  • Wang Y, Tong L, Zheng Y, et al. Hydrogels with self-healing ability, excellent mechanical properties and biocompatibility prepared from oxidized gum arabic. Eur Polym J. 2019;117:363–371.
  • Rana V, Kamboj S, Sharma R, et al. Modification of gums: synthesis techniques and pharmaceutical benefits. In: Handbook of polymers for pharmaceutical technologies. Massachusetts: Scrivener Publishing LLC, Wiley; 2015. p. 299–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.