576
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Antiviral and antibacterial properties of phloroglucinols: a review on naturally occurring and (semi)synthetic derivatives with potential therapeutic interest

ORCID Icon, , , , , , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 319-336 | Received 17 May 2022, Accepted 08 Dec 2022, Published online: 02 Jan 2023

References

  • Singh IP, Sidana J, Bharate SB, et al. Phloroglucinol compounds of natural origin: synthetic aspects. Nat Prod Rep. 2010;27(3):393–416.
  • Sanna C, Scognamiglio M, Fiorentino A, et al. Prenylated phloroglucinols from Hypericum scruglii, an endemic species of Sardinia (Italy), as new dual HIV-1 inhibitors effective on HIV-1 replication. PLoS One. 2018;13(3):e0195168.
  • Peron G, Hošek J, Rajbhandary S, et al. LC-MSn and HR-MS characterization of secondary metabolites from Hypericum japonicum thunb. ex murray from nepalese himalayan region and assessment of cytotoxic effect and inhibition of NF-κB and AP-1 transcription factors in vitro. J Pharm Biomed Anal. 2019;174:663–673.
  • Liu LS, Liu MH, He JY. Hypericum japonicum thunb. ex murray: phytochemistry, pharmacology, quality control and pharmacokinetics of an important herbal medicine. Molecules. 2014;19(8):10733–10754.
  • Peron G, Pant DR, Shrestha SS, et al. An integrated LC-ESI-MSn and high resolution LC-ESI-QTOF approach for the identification of phloroglucinols from Nepalese Hypericum japonicum. Molecules. 2020;25(24):5937.
  • Zhang R, Ji Y, Zhang X, et al. Ethnopharmacology of Hypericum species in China: a comprehensive review on ethnobotany, phytochemistry and pharmacology. J Ethnopharmacol. 2020;254:112686.
  • Bridi H, Meirelles GC, von Poser GL. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry. 2018;155:203–232.
  • Chan JA, Shultis EA, Carr SA, et al. Novel phloroglucinols from the plant Melicope sessilifloro (rutaceae). J Org Chem. 1989;54(9):2098–2103.
  • Rios JL, Recio MC, Villar A. Isolation and identification of the antibacterial compounds from Helichrysum stoechas. J Ethnopharmacol. 1991;33(1–2):51–55.
  • Venkatesan J, Keekan KK, Anil S, et al. Phlorotannins. Encyclopedia of food chemistry. Amsterdam, Netherlands: Elsevier; 2019. p. 515–527.
  • Singh IP, Bharate SB. Phloroglucinol compounds of natural origin. Nat Prod Rep. 2006;23(4):558–591.
  • Shrivastava AK, Thapa S, Shrestha L, et al. Phytochemical screening and the effect of Trichosanthes dioica in high-fat diet induced atherosclerosis in wistar rats. Food Frontiers. 2021;2(4):527–536.
  • Wu L, Luo J, Zhang Y, et al. Isolation and biomimetic synthesis of (±)-calliviminones a and B, two novel diels–alder adducts, from Callistemon viminalis. Tetrahedron Lett. 2015;56(1):229–232.
  • Song JG, Su JC, Song QY, et al. Cleistocaltones a and B, antiviral phloroglucinol–terpenoid adducts from Cleistocalyx operculatus. Org Lett. 2019;21(23):9579–9583.
  • Luo SL, Hu LJ, Huang XJ, et al. Discovery and biomimetic synthesis of a Phloroglucinol-Terpene adduct collection from Baeckea frutescens and its biogenetic origin insight. Chemistry. 2020;26(49):11104–11108.
  • Erpel F, Mateos R, Pérez-Jiménez J, et al. Phlorotannins: from isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int. 2020;137:109589.
  • Hammond CT, Mahlberg PG. Phloroglucinol glucoside as a natural constituent of Cannabis sativa. Phytochemistry. 1994;37(3):755–756.
  • Louche LMM, Gaydou EM, Lesage J-C. Determination of phlorin as peel marker in orange (Citrus sinensis) fruits and juices. J Agric Food Chem. 1998;46(10):4193–4197.
  • Celaj O, Durán AG, Cennamo P, et al. Phloroglucinols from Myrtaceae: attractive targets for structural characterization, biological properties and synthetic procedures. Phytochem Rev. 2021;20(1):259–299.
  • Akaberi M, Sahebkar A, Azizi N, et al. Everlasting flowers: phytochemistry and pharmacology of the genus Helichrysum. Ind Crop Prod. 2019;138:111471.
  • Zhao F, Watanabe Y, Nozawa H, et al. Prenylflavonoids and phloroglucinol derivatives from hops (Humulus lupulus). J Nat Prod. 2005;68(1):43–49.
  • Phang Y, Wang X, Lu Y, et al. Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem. 2020;205:112646.
  • Bailly C, Vergoten G. Anticancer properties and mechanism of action of oblongifolin C, guttiferone K and related polyprenylated acylphloroglucinols. Nat Prod Bioprospect. 2021;11(6):629–641.
  • Harinantenaina L, Bowman JD, Brodie PJ, et al. Antiproliferative and antiplasmodial dimeric phloroglucinols from Mallotus oppositifolius from the Madagascar dry Forest (1). J Nat Prod. 2013;76(3):388–393.
  • Tchangoue YAN, Tchamgoue J, Lunga PK, et al. Antibacterial phloroglucinols derivatives from the leaves of Mallotus oppositifolius (geisler) mull. Arg. (euphorbiaceae). Fitoterapia. 2020;142:104527.
  • Kabran FA, Okpekon TA, Roblot F, et al. Bioactive phloroglucinols from Mallotus oppositifolius. Fitoterapia. 2015;107:100–104.
  • Han X, Li Z, Li CY, et al. Phytochemical constituents and biological activities of plants from the genus dryopteris. Chem Biodivers. 2015;12(8):1131–1162.
  • Penttila A, Sundman J. The chemistry of dryopteris acylphloroglucinols. J Pharm Pharmacol. 1970;22(6):393–404.
  • Widén C-J, Fraser-Jenkins CR, Roux JP. A survey of phenolic compounds in Dryopteris and related fern genera. Part IV. Phloroglucinol derivatives and morphology in the section marginatae (Pteridophyta, dryopteridaceae). Ann Bot Fenn. 2015;52(1–2):53–83.
  • Lever J, Brkljača R, Kraft G, et al. Natural products of marine macroalgae from South Eastern Australia, with emphasis on the Port Phillip Bay and heads regions of Victoria. Mar Drugs. 2020;18(3):142.
  • Glombitza KW, Schmidt A. Nonhalogenated and halogenated phlorotannins from the brown alga Carpophyllum angustifolium. J Nat Prod. 1999;62(9):1238–1240.
  • Yang F, Cao Y. Biosynthesis of phloroglucinol compounds in microorganisms–review. Appl Microbiol Biotechnol. 2012;93(2):487–495.
  • Ou C, Zhang Q, Wu G, et al. Dryocrassin ABBA, a novel active substance for use against amantadine-resistant H5N1 avian influenza virus. Front Microbiol. 2015;6:592.
  • Wei SH, Yang JR, Wu HS, et al. Human infection with avian influenza a H6N1 virus: an epidemiological analysis. Lancet Respir Med. 2013;1(10):771–778.
  • Wang J, Yan YT, Fu SZ, et al. Anti-Influenza virus (H5N1) activity screening on the phloroglucinols from rhizomes of Dryopteris crassirhizoma. Molecules. 2017;22(3):431.
  • Ryu YB, Jeong HJ, Yoon SY, et al. Influenza virus neuraminidase inhibitory activity of phlorotannins from the edible brown alga Ecklonia cava. J Agric Food Chem. 2011;59(12):6467–6473.
  • Cho HM, Doan TP, Ha TKQ, et al. Dereplication by high-performance liquid chromatography (HPLC) with quadrupole-time-of-flight mass spectroscopy (qTOF-MS) and antiviral activities of phlorotannins from Ecklonia cava. Mar Drugs. 2019;17(3):149.
  • Takasaki M, Konoshima T, Shingu T, et al. Structures of euglobal-G1, -G2, and -G3 from Eucalyptus grandis, three new inhibitors of Epstein-Barr virus activation. Chem Pharm Bull. 1990;38(5):1444–1446.
  • Takasaki M, Konoshima T, Fujitani K, et al. Inhibitors of skin-tumor promotion. VIII. Inhibitory effects of euglobals and their related compounds on Epstein-Barr virus activation. (1). Chem Pharm Bull (Tokyo). 1990;38(10):2737–2739.
  • Honda I, Tokuda H, Kozuka M, et al. Inhibitory effects of 3-nitrophloroglucinecarboxylic acid derivatives on Epstein-Barr virus early antigen induction. Cancer Lett. 1993;68(1):1–5.
  • Akazawa H, Kohno H, Tokuda H, et al. Anti‐inflammatory and anti‐tumor‐promoting effects of 5‐deprenyllupulonol C and other compounds from hop (Humulus lupulus L.). Chem Biodivers. 2012;9(6):1045–1054.
  • Zhang H, Tao L, Fu WW, et al. Prenylated benzoylphloroglucinols and xanthones from the leaves of Garcinia oblongifolia with antienteroviral activity. J Nat Prod. 2014;77(4):1037–1046.
  • Su JC, Wang S, Cheng W, et al. Phloroglucinol derivatives with unusual skeletons from Cleistocalyx operculatus and their in vitro antiviral activity. J Org Chem. 2018;83(15):8522–8532.
  • Bloor SJ. Antiviral phloroglucinols from New Zealand Kunzea species. J Nat Prod. 1992;55(1):43–47.
  • Chiba K, Takakuwa T, Tada M, et al. Inhibitory effect of acylphloroglucinol derivatives on the replication of vesicular stomatitis virus. Biosci Biotechnol Biochem. 1992;56(11):1769–1772.
  • Okba MM, El Gedaily RA, Ashour RM. UPLC-PDA-ESI-qTOF-MS profiling and potent anti-HSV-II activity of Eucalyptus sideroxylon leaves. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1068–1069:335–342.
  • Cao JQ, Wu Y, Zhong YL, et al. Antiviral triketone-phloroglucinol-monoterpene adducts from Callistemon rigidus. Chem Biodivers. 2018;15(7):e1800172.
  • Chen N, Wu Z, Li W, et al. Acylphloroglucinols-based meroterpenoid enantiomers with antiviral activities from Dryopteris crassirhizoma. Ind Crop Prod. 2020;150:112415.
  • Hu L, Xue Y, Zhang J, et al. (±)-japonicols A-D, Acylphloroglucinol-based meroterpenoid enantiomers with anti-KSHV activities from Hypericum japonicum. J Nat Prod. 2016;79(5):1322–1328.
  • Hu L, Liu Y, Wang Y, et al. Discovery of acylphloroglucinol-based meroterpenoid enantiomers as KSHV inhibitors from Hypericum japonicum. RSC Adv. 2018;8(43):24101–24109.
  • Nakane H, Arisawa M, Fujita A, et al. Inhibition of HIV-reverse transcriptase activity by some phloroglucinol derivatives. FEBS Lett. 1991;286(1-2):83–85.
  • Appendino G, Ottino M, Marquez N, et al. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol alpha-Pyrone from Helichrysum italicum ssp. microphyllum. J Nat Prod. 2007;70(4):608–612.
  • Ahn MJ, Yoon KD, Min SY, et al. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull. 2004;27(4):544–547.
  • Deng LM, Hu LJ, Bai YTZ, et al. Rhodomentosones a and B: two pairs of enantiomeric phloroglucinol trimers from Rhodomyrtus tomentosa and their asymmetric biomimetic synthesis. Org Lett. 2021;23(11):4499–4504.
  • Deng LM, Tang W, Wang SQ, et al. Discovery and biomimetic synthesis of a polycyclic polymethylated phloroglucinol collection from Rhodomyrtus tomentosa. J Org Chem. 2022;87(7):4788–4800.
  • Fuchimoto J, Kojima T, Okabayashi T, et al. Humulone suppresses replication of respiratory syncytial virus and release of IL-8 and RANTES in normal human nasal epithelial cells. Med Mol Morphol. 2013;46(4):203–209.
  • Tavares RCA, Mahadeshwar G, Wan H, et al. The global and local distribution of RNA structure throughout the SARS-CoV-2 genome. J Virol. 2021;95(5):e02190-20.
  • Ouassaf M, Belaidi S, Chtita S, et al. Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. J Biomol Struct Dyn. 2021;40:11264–11273.
  • Kumar R, Hazarika K. In-silico studies on phloroglucinol and SARS CoV2MPro. Biosc Biotech Res Comm. 2021;14(7):278–282.
  • Park JY, Kim JH, Kwon JM, et al. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorg Med Chem. 2013;21(13):3730–3737.
  • Gunaseelan S, Arunkumar M, Aravind MK, et al. Probing marine brown macroalgal phlorotannins as antiviral candidate against SARS-CoV-2: molecular docking and dynamics simulation approach. Mol Div. 2022;26:3205–3224.
  • Gentile D, Patamia V, Scala A, et al. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs. 2020;18(4):225.
  • Hou B, Zhang Y-M, Liao H-Y, et al. Target-based virtual screening and LC/MS-guided isolation procedure for identifying phloroglucinol-terpenoid inhibitors of SARS-CoV-2. J Nat Prod. 2022;85(2):327–336.
  • Jin Y-H, Jeon S, Lee J, et al. Anticoronaviral activity of the natural phloroglucinols, dryocrassin ABBA and filixic acid ABA from the rhizome of Dryopteris crassirhizoma by targeting the main protease of SARS-CoV-2. Pharmaceutics. 2022;14(2):376.
  • Gurung R, Agrawal R, Thapa Y, et al. Preliminary phytochemical screening, in-vitro antioxidant and antibacterial activity of Begonia pecta. World J Pharm Pharm Sci. 2019;8(10):1241–1257.
  • Stan D, Enciu AM, Mateescu AL, et al. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation. Front Pharmacol. 2021;12:723233.
  • Gurung R, Adhikari S, Parajuli K. Evaluation of the antibacterial and antioxidant activity of Mimosa rubicaulis and Reinwardtia indica. Evid Based Complement Alternat Med. 2020;2020:3862642.
  • Khan F, Tabassum N, Bamunuarachchi NI, et al. Phloroglucinol and its derivatives: antimicrobial properties toward microbial pathogens. J Agric Food Chem. 2022;70(16):4817–4838.
  • Mathekga AD, Meyer JJ, Horn MM, et al. An acylated phloroglucinol with antimicrobial properties from Helichrysum caespititium. Phytochemistry. 2000;53(1):93–96.
  • Farias IV, Amorim CM, Graff E, et al. Improvement in phloroglucinol compound extracted from different parts of Eugenia umbelliflora monitored by LC-UV and antimicrobial activity. Nat Prod Res. 2021;36:3713–3716.
  • Dall’agnol R, Ferraz A, Bernardi AP, et al. Bioassay-guided isolation of antimicrobial benzopyrans and phloroglucinol derivatives from Hypericum species. Phytother Res. 2005;19(4):291–293.
  • Lee HB, Kim JC, Lee SM. Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res. 2009;32(5):655–659.
  • Liu R, Liu X-Y, Li M, et al. Eurobusones A-D, four antibacterial formyl phloroglucinol meoterpenoids from Eucalyptus robusta. Fitoterapia. 2022;157:105131.
  • Biessy A, Filion M. Phloroglucinol derivatives in Plant-Beneficial Pseudomonas spp.: biosynthesis, regulation, and functions. Metabolites. 2021;11(3):182.
  • Li N, Gao C, Peng X, et al. Aspidin BB, a phloroglucinol derivative, exerts its antibacterial activity against Staphylococcus aureus by inducing the generation of reactive oxygen species. Res Microbiol. 2014;165(4):263–272.
  • Casero C, Machín F, Méndez-Álvarez S, et al. Structure and antimicrobial activity of phloroglucinol derivatives from Achyrocline satureioides. J Nat Prod. 2015;78(1):93–102.
  • Bogdanova K, Röderova M, Kolar M, et al. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res Microbiol. 2018;169(3):127–134.
  • Cermak P, Olsovska J, Mikyska A, et al. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS. 2017;125(11):1033–1038.
  • Shaheen F, Ahmad M, Nahar Khan S, et al. New α-Glucosidase inhibitors and antibacterial compounds from Myrtus communis L. Eur J Org Chem. 2006;2006(10):2371–2377.
  • Daus M, Wunnoo S, Voravuthikunchai SP, et al. Phloroglucinol–meroterpenoids from the leaves of Eucalyptus camaldulensis dehnh. Phytochemistry. 2022;200:113179.
  • Wu L, Zhang Y, Wang X, et al. Acylphloroglucinols from the fruits of Callistemon viminalis. Phytochem Lett. 2017;20:61–65.
  • Qin X-J, Liu H, Yu Q, et al. Acylphloroglucinol derivatives from the twigs and leaves of Callistemon salignus. Tetrahedron. 2017;73(14):1803–1811.
  • Leejae S, Taylor PW, Voravuthikunchai SP. Antibacterial mechanisms of rhodomyrtone against important hospital-acquired antibiotic-resistant pathogenic bacteria. J Med Microbiol. 2013;62(Pt 1):78–85.
  • Larsen L, Benn MH, Parvez M, et al. A cytotoxic triketone–phloroglucinol–bullatenone hybrid from Lophomyrtus bullata. Org Biomol Chem. 2005;3(17):3236–3241.
  • Eom S-H, Kim Y-M, Kim S-K. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol. 2012;50(9):3251–3255.
  • Okeke ES, Nweze EJ, Chibuogwu CC, et al. Aquatic phlorotannins and human health: bioavailability, toxicity, and future prospects. Nat Prod Comm. 2021;16(12):1934578X2110561.
  • Meng W, Mu T, Sun H, et al. Phlorotannins: a review of extraction methods, structural characteristics, bioactivities, bioavailability, and future trends. Algal Res. 2021;60:102484.
  • Gomes L, Monteiro P, Cotas J, et al. Seaweeds’ pigments and phenolic compounds with antimicrobial potential. Biomol Concepts. 2022;13(1):89–102.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803.
  • Majhi S, Das D. Chemical derivatization of natural products: semisynthesis and pharmacological aspects: a decade update. Tetrahedron. 2021;78:131801.
  • Kusumaningsih T, Firdaus M, Widyo Wartono M, et al. Ethyl-2-(3,5-Dihidroxyfenol): phloroglucinol derivatives as potential anticancer material. IOP Conf Ser: mater Sci Eng. 2016;107:012059.
  • Li N, Khan SI, Qiu S, et al. Synthesis and anti-inflammatory activities of phloroglucinol-based derivatives. Molecules. 2018;23(12):3232.
  • Shaari K, Suppaiah V, Wai LK, et al. Bioassay-guided identification of an anti-inflammatory prenylated acylphloroglucinol from Melicope ptelefolia and molecular insights into its interaction with 5-lipoxygenase. Bioorg Med Chem. 2011;19(21):6340–6347.
  • Julian WT, Vasilchenko AV, Shpindyuk DD, et al. Bacterial-derived plant protection metabolite 2,4-diacetylphloroglucinol: effects on bacterial cells at inhibitory and subinhibitory concentrations. Biomolecules. 2020;11(1):13.
  • Kusumaningsih T, Prasetyo WE, Wibowo FR, et al. Toward an efficient and eco-friendly route for the synthesis of dimeric 2,4-diacetyl phloroglucinol and its potential as a SARS-CoV-2 main protease antagonist: insight from in silico studies. New J Chem. 2021;45(17):7830–7843.
  • Singh IP, Sidana J, Bansal P, et al. Phloroglucinol compounds of therapeutic interest: global patent and technology status. Expert Opin Ther Pat. 2009;19(6):847–866.
  • Mudiyanselage PSJ, editor. Progress towards the synthesis of type B polycyclic polyprenylated acylphloroglucinol 7-epi-clusianone [doctoral dissertations]. Lexington, Kentucky: University of Kentucky; 2010.
  • Yamaki M, Miwa M, Ishiguro K, et al. Antimicrobial activity of naturally occurring and synthetic phloroglucinols against Staphylococcus aureus. Phytother Res. 1994;8(2):112–114.
  • Abdel-Ghany SE, Day I, Heuberger AL, et al. Production of phloroglucinol, a platform chemical, in Arabidopsis using a bacterial gene. Sci Rep. 2016;6:38483.
  • Nishimura E, Ohfune Y, Shinada T. Total synthesis of a monomeric phloroglucinol derivative isolated from Myrtus communis. Chem Lett. 2015;44(4):445–447.
  • Appendino G, Bianchi F, Minassi A, et al. Oligomeric acylphloroglucinols from myrtle (Myrtus communis). J Nat Prod. 2002;65(3):334–338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.