817
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Fast-growing cyanobacterial chassis for synthetic biology application

, , , &
Pages 414-428 | Received 15 Jul 2022, Accepted 28 Dec 2022, Published online: 26 Feb 2023

References

  • Yunus IS, Wang Z, Sattayawat P, et al. Improved bioproduction of 1-Octanol using engineered Synechocystis sp. ACS Synth Biol. 2021;10(6):1417–1428.
  • Oliver NJ, Rabinovitch-Deere CA, Carroll AL, et al. Cyanobacterial metabolic engineering for biofuel and chemical production. Curr Opin Chem Biol. 2016;35:43–50.
  • Ciebiada M, Kubiak K, Daroch M. Modifying the cyanobacterial metabolism as a key to efficient biopolymer production in photosynthetic microorganisms. Int J Mol Sci. 2020;21(19):7204.
  • Demay J, Bernard C, Reinhardt A, et al. Natural products from cyanobacteria: focus on beneficial activities. Mar Drugs. 2019;17(6):320.
  • Jaiswal D, Sahasrabuddhe D, Wangikar PP. Cyanobacteria as cell factories the roles of host and pathway engineering and translational research. Curr Opin Biotechnol. 2022;73:314–322.
  • Gao X, Sun T, Pei G, et al. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol. 2016;100(8):3401–3413.
  • Yu J, Liberton M, Cliften PF, et al. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep. 2015;5:8132.
  • Włodarczyk A, Selão TT, Norling B, et al. Newly discovered Synechococcus sp. PCC 11901 is a robust cyanobacterial strain for high biomass production. Commun Biol. 2020;3(1):215.
  • Flamholz AI, Dugan E, Blikstad C, et al. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. elife. 2020:9:e59882.
  • Rodrigues JS, Lindberg P. Metabolic engineering of Synechocystis sp. PCC 6803 for improved bisabolene production. Metab Eng Commun. 2021;12:e00159.
  • Schipper K, Das P, Muraikhi A, et al. Outdoor scale-up of Leptolyngbya sp.: effect of light intensity and inoculum volume on photoinhibition and -oxidation. Biotechnol Bioeng. 2021;118(6):2368–2379.
  • Diao J, Song X, Zhang L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin. Metab Eng. 2020;61:275–287.
  • Koch M, Bruckmoser J, Scholl J, et al. Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC. Microb Cell Fact. 2020;19(1):231.
  • Napathorn SC, Visetkoop S, Pinyakong O, et al. Polyhydroxybutyrate (PHB) production using an Arabinose-Inducible expression system in comparison with cold shock inducible expression system in Escherichia coli. Front Bioeng Biotechnol. 2021;9:661096.
  • Kratz WA, Myers J. Nutrition and growth of several blue-green algae. Am J Bot. 1955;42:282–287.
  • Jaiswal D, Sengupta A, Sohoni S, et al. Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Sci Rep. 2018;8(1):16632.
  • Jaiswal D, Sengupta A, Sengupta S, et al. A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801. Sci Rep. 2020;10(1):191.
  • Ungerer J, Lin PC, Chen HY, et al. Adjustments to photosystem stoichiometry and electron transfer proteins are key to the remarkably fast growth of the cyanobacterium Synechococcus elongatus UTEX 2973. mbio. 2018;9(1):e02327-17.
  • Long B, Fischer B, Zeng Y, et al. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat Commun. 2022;13(1):541.
  • Abernathy MH, Czajka JJ, Allen DK, et al. Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity. Metab Eng. 2019;54:222–231.
  • Yao J, Wang J, Ju Y, et al. Engineering a xylose-utilizing Synechococcus elongatus UTEX 2973 chassis for 3-hydroxypropionic acid biosynthesis under photomixotrophic conditions. ACS Synth Biol. 2022;11(2):678–688.
  • Malairuang K, Krajang M, Sukna J, et al. High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC). Processes. 2020;8(10):1321.
  • Shiloach J, Fass R. Growing E. coli to high cell density–a historical perspective on method development. Biotechnol Adv. 2005;23(5):345–357.
  • Adomako M, Ernst D, Simkovsky R, et al. Comparative genomics of Synechococcus elongatus explains the phenotypic diversity of the strains. mbio. 2022;13(3):e0086222.
  • Inoue-Kashino N, Kashino Y, Takahashi Y. Psb30 is a photosystem II reaction center subunit and is required for optimal growth in high light in Chlamydomonas reinhardtii. J Photochem Photobiol B. 2011;104(1–2):220–228.
  • Inoue-Kashino N, Takahashi T, Ban A, et al. Evidence for a stable association of Psb30 (Ycf12) with photosystem II core complex in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res. 2008;98(1–3):323–335.
  • Shen G, Zhao J, Reimer SK, et al. Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem. 2002;277(23):20343–20354.
  • Nicolaou SA, Fast AG, Nakamaru-Ogiso E, et al. Overexpression of fetA (ybbL) and fetB (ybbM), encoding an iron exporter, enhances resistance to oxidative stress in Escherichia coli. Appl Environ Microbiol. 2013;79(23):7210–7219.
  • Wang J, Chen L, Huang S, et al. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803. Biotechnol Biofuels Bioprod. 2012;5:89.
  • Shrivastava AK, Singh S, Singh PK, et al. A novel alkyl hydroperoxidase (AhpD) of anabaena PCC7120 confers abiotic stress tolerance in Escherichia coli. Funct Integr Genomics. 2015;15(1):77–92.
  • Luo Z, Guo Y, Liu J, et al. Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels. 2016;9:134.
  • Grant JR, Stothard P. The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(Web Server issue):W181–W184.
  • Tan X, Hou S, Song K, et al. The primary transcriptome of the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Biotechnol Biofuels. 2018;11(218):218.
  • Abernathy MH, Yu J, Ma F, et al. Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis. Biotechnol Biofuels. 2017;10:273.
  • Ungerer J, Wendt KE, Hendry JI, et al. Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc Natl Acad Sci U S A. 2018;115(50):E11761–E11770.
  • Wang SB, Murray CI, Chung HS, et al. Redox regulation of mitochondrial ATP synthase. Trends Cardiovasc Med. 2013;23(1):14–18.
  • Casey WT, Nikodinovic-Runic J, Garcia F, et al. The effect of polyphosphate kinase gene deletion on polyhydroxyalkanoate accumulation and carbon metabolism in Pseudomonas putida KT2440. Environ Microbiol Rep. 2013;5(5):740–746.
  • Takai N, Nakajima M, Oyama T, et al. A KaiC-associating SasA–RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci U S A. 2006;103(32):12109–12114.
  • Lou W, Tan X, Song K, et al. A specific single nucleotide polymorphism in the ATP synthase gene significantly improves environmental stress tolerance of Synechococcus elongatus PCC 7942. Appl Environ Microbiol. 2018;84(18):e01222-18.
  • Qiao Y, Wang W, Lu X. Engineering cyanobacteria as cell factories for direct trehalose production from CO2. Metab Eng. 2020;62:161–171.
  • Mills LA, Moreno-Cabezuelo JÁ, Włodarczyk A, et al. Development of a biotechnology platform for the fast-growing cyanobacterium Synechococcus sp. PCC 11901. Biomolecules. 2022;12(7):872.
  • Mukherjee B, Madhu S, Wangikar PP. The role of systems biology in developing non-model cyanobacteria as hosts for chemical production. Curr Opin Biotechnol. 2020;64:62–69.
  • Jaiswal D, Nenwani M, Mishra V, et al. Probing the metabolism of gamma-glutamyl peptides in cyanobacteria via metabolite profiling and 13C labeling. Plant J. 2022;109(3):708–726.
  • Mueller TJ, Ungerer JL, Pakrasi HB, et al. Identifying the metabolic differences of a fast-growth phenotype in synechococcus UTEX 2973. Sci Rep. 2017;7:41569.
  • Hendry JI, Gopalakrishnan S, Ungerer J, et al. Genome-scale fluxome of Synechococcus elongatus UTEX 2973 using transient 13C-labeling data. Plant Physiol. 2019;179(2):761–769.
  • Song K, Tan X, Liang Y, et al. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol. 2016;100(18):7865–7875.
  • Sun T, Li S, Song X, et al. Toolboxes for cyanobacteria: recent advances and future direction. Biotechnol Adv. 2018;36(4):1293–1307.
  • Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci. 2021;22(7):3327.
  • Xu Y, Alvey RM, Byrne PO, et al. Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods Mol Biol. 2011;684:273–293.
  • Vioque A. Transformation of cyanobacteria. Adv Exp Med Biol. 2007;616:12–22.
  • Racharaks R, Arnold W, Peccia J. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. J Microbiol Methods. 2021;189:106315.
  • Vasudevan R, Gale GAR, Schiavon AA, et al. CyanoGate: a modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant Physiol. 2019 May;180(1):39–55.
  • Chen L, Liu H, Wang L, et al. Synthetic counter-selection markers and their application in genetic modification of Synechococcus elongatus UTEX2973. Appl Microbiol Biotechnol. 2021;105(12):5077–5086.
  • Li S, Sun T, Xu C, et al. Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Metab Eng. 2018;48:163–174.
  • Wendt KE, Walker P, Sengupta A, et al. Engineering natural competence into the fast-growing cyanobacterium Synechococcus elongatus strain UTEX 2973. Appl Environ Microbiol. 2022;88(1):e0188221.
  • Sengupta AS, Madhu S, Wangikar PP. A library of tunable, portable and inducer-free promoters derived from cyanobacteria. ACS Synth Biol. 2020;9(7):1790–1801.
  • Sun X, Li S, Zhang F, et al. Development of a N-acetylneuraminic acid-based sensing and responding switch for orthogonal gene regulation in cyanobacterial Synechococcus strains. ACS Synth Biol. 2021 Aug 20;10(8):1920–1930.
  • Xiao Y, Wang S, Rommelfanger S, et al. Developing a Cas9-based tool to engineer native plasmids in Synechocystis sp. PCC 6803. Biotechnol Bioeng. 2018;115(9):2305–2314.
  • Li H, Shen CR, Huang CH, et al. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng. 2016;38:293–302.
  • Wendt KE, Ungerer J, Cobb RE, et al. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact. 2016;15(1):115.
  • Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep. 2016;6:39681.
  • Sengupta A, Pritam P, Jaiswal D, et al. Photosynthetic co-production of succinate and ethylene in a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801. Metabolites. 2020;10(6):250.
  • Knoot CJ, Biswas S, Pakrasi HB. Tunable repression of key photosynthetic processes using Cas12a CRISPR interference in the Fast-Growing cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol. 2020;9(1):132–143.
  • Gaida SM, Al-Hinai MA, Indurthi DC, et al. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res. 2013;41(18):8726–8737.
  • Na D, Yoo SM, Chung H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol. 2013;31(2):170–174.
  • Green AA, Silver PA, Collins JJ, et al. Toehold switches: de-novo-designed regulators of gene expression. Cell. 2014;159(4):925–939.
  • Kanno M, Carroll AL, Atsumi S. Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun. 2017;8:14724.
  • Sarnaika A, Abernathyb MH, Han X, et al. Metabolic engineering of cyanobacteria for photoautotrophic production of heparosan, a pharmaceutical precursor of heparin. Algal Res. 2019;37:57–63.
  • Yeo JCC, Muiruri JK, Thitsartarn W, et al. Recent advances in the development of biodegradable PHB-based toughening materials: approaches, advantages and applications. Mater Sci Eng C Mater Biol Appl. 2018;92:1092–1116.
  • Roh H, Lee JS, Choi HI, et al. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresour Technol. 2021;327:124789.
  • Russo DA, Zedler JAZ, Wittmann DN, et al. Expression and secretion of a lytic polysaccharide monooxygenase by a fast-growing cyanobacterium. Biotechnol Biofuels. 2019;12:74.
  • Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy. 2009;86(11):2273–2282.
  • Ducat DC, Avelar-Rivas JA, Way JC, et al. Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol. 2012;78(8):2660–2668.
  • Lin PC, Zhang F, Pakrasi HB. Enhanced production of sucrose in the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. Sci Rep. 2020;10(1):390.
  • Ajikumar PK, Tyo K, Carlsen S, et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm. 2008;5(2):167–190.
  • Lin PC, Zhang F, Pakrasi HB. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering. Metab Eng Commun. 2021;12:e00164.
  • Lennen RM, Pfleger BF. Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol. 2013;24(6):1044–1053.
  • Jeong Y, Cho SH, Lee H, et al. Current status and future strategies to increase secondary metabolite production from cyanobacteria. Microorganisms. 2020;8(12):1849.
  • Knoot CJ, Khatri Y, Hohlman RM, et al. Engineered production of hapalindole alkaloids in the cyanobacterium Synechococcus sp. ACS Synth Biol. 2019;8(8):1941–1951.
  • Tan X, Luo Q, Lu X. Biosynthesis, biotechnological production, and applications of glucosylglycerols. Appl Microbiol Biotechnol. 2016;100(14):6131–6139.
  • Cui J, Sun T, Chen L, et al. Salt-tolerant Synechococcus elongatus UTEX 2973 obtained via engineering of heterologous synthesis of compatible solute glucosylglycerol. Front Microbiol. 2021;12:650217.
  • Eggeling L, Bott M. A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99(8):3387–3394.
  • Dookeran ZA, Nielsen DR. Systematic engineering of Synechococcus elongatus UTEX 2973 for photosynthetic production of l-Lysine, cadaverine, and glutarate. ACS Synth Biol. 2021;10(12):3561–3575.
  • Knoot CJ, Ungerer J, Wangikar PP, et al. Cyanobacteria: promising biocatalysts for sustainable chemical production. J Biol Chem. 2018;293(14):5044–5052.
  • Sengupta S, Jaiswal D, Sengupta A, et al. Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid. Biotechnol Biofuels. 2020;13:89.
  • Hays SG, Yan LLW, Silver PA, et al. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng. 2017;11:4.
  • Kapdan IK, Kargi F, Oztekin R, et al. Bio-hydrogen production from acid hydrolyzed wheat starch by photo-fermentation using different Rhodobacter sp. Int J Hydrogen Energy. 2009;34(5):2201–2207.
  • Zhang L, Chen L, Diao J, et al. Construction and analysis of an artificial consortium based on the fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 to produce the platform chemical 3-hydroxypropionic acid from CO2. Biotechnol Biofuels. 2020;13:82.
  • Watanabe S. Cyanobacterial multi-copy chromosomes and their replication. Biosci Biotechnol Biochem. 2020;84(7):1309–1321.
  • Cassier-Chauvat C, Veaudor T, Chauvat F. Comparative genomics of DNA recombination and repair in cyanobacteria: biotechnological implications. Front Microbiol. 2016;7:1809.
  • Gordon GC, Pfleger BF. Regulatory tools for controlling gene expression in cyanobacteria. Adv Exp Med Biol. 2018;1080:281–315.
  • Sengupta A, Pakrasi HB, Wangikar PP. Recent advances in synthetic biology of cyanobacteria. Appl Microbiol Biotechnol. 2018;102(13):5457–5471.
  • Cui J, Sun T, Li S, et al. Improved salt tolerance and metabolomics analysis of Synechococcus elongatus UTEX 2973 by overexpressing mrp antiporters. Front Bioeng Biotechnol. 2020;8(500):500.
  • Srivastava V, Amanna R, Rowden SJL, et al. Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance. J Biosci Bioeng. 2021 May;131(5):491–500.
  • Huang Q, Jiang F, Wang L, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 2017;3(3):318–329.
  • Matson MM, Atsumi S. Photomixotrophic chemical production in cyanobacteria. Curr Opin Biotechnol. 2018;50:65–71.
  • Liu X, Sheng J, Curtiss III R. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci. 2011;108(17):6899–6904.
  • Kato A, Takatani N, Ikeda K, et al. Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus. Biotechnol Biofuels. 2017;10:141.
  • Davies FK, Work VH, Beliaev AS, et al. Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol. 2014;2:21.
  • Lin PC, Saha R, Zhang F, et al. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC 6803. Sci Rep. 2017;7(1):17503.
  • Wang X, Liu W, Xin C, et al. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations. Proc Natl Acad Sci U S A. 2016;113(50):14225–14230.
  • Lan EI, Wei CT. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Metab Eng. 2016;38:483–493.
  • Hasunuma T, Matsuda M, Kato Y, et al. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. Metab Eng. 2018;48:109–120.
  • Iijima H, Watanabe A, Sukigara H, et al. Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. Metab Eng. 2021 May;65:88–98.
  • Thiel K, Patrikainen P, Nagy C, et al. Redirecting photosynthetic electron flux in the cyanobacterium Synechocystis sp. PCC 6803 by the deletion of flavodiiron protein Flv3. Microb Cell Fact. 2019;18(1):189.
  • Tan X, Du W, Lu X. Photosynthetic and extracellular production of glucosylglycerol by genetically engineered and gel-encapsulated cyanobacteria. Appl Microbiol Biotechnol. 2015;99(5):2147–2154.
  • Aikawa S, Nishida A, Hasunuma T, et al. Short-term temporal metabolic behavior in halophilic cyanobacterium Synechococcus sp. strain PCC 7002 after salt shock. Metabolites. 2019;9(12):297.
  • Korosh TC, Markley AL, Clark RL, et al. Engineering photosynthetic production of L-lysine. Metab Eng. 2017;44:273–283.
  • Ruffing AM, Jones HD. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng. 2012;109(9):2190–2199.
  • Mo H, Xie X, Zhu T, et al. Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2017;10:145.
  • Carbonell V, Vuorio E, Aro EM, et al. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942. World J Microbiol Biotechnol. 2019;35(5):77.
  • Sun T, Li Z, Li S, et al. Exploring and validating key factors limiting cyanobacteria-based CO2 bioconversion: case study to maximize myo-inositol biosynthesis. Chem Eng J. 2023:452:139158.
  • Hidese R, Matsuda M, Osanai T, et al. Malic enzyme facilitates d-Lactate production through increased pyruvate supply during anoxic dark fermentation in Synechocystis sp. ACS Synth Biol. 2020;9(2):260–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.