1,401
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene

, , , , , & show all
Pages 337-351 | Received 07 Aug 2022, Accepted 08 Dec 2022, Published online: 13 Feb 2023

References

  • Amengual J. Bioactive properties of carotenoids in human health. Nutrients. 2019;11(10):2388.
  • Qian C, Decker EA, Xiao H, et al. Physical and chemical stability of β-carotene-enriched nanoemulsions: influence of pH, ionic strength, temperature, and emulsifier type. Food Chem. 2012;132(3):1221–1229.
  • von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr. 2010;30:35–56.
  • Shoveller AK, De Godoy MR, Larsen J, et al. Emerging advancements in canine and feline metabolism and nutrition. ScientificWorldJournal. 2016;2016:9023781.
  • Jacobsen IH, Ledesma-Amaro R, Martinez JL. Recombinant β-Carotene production by Yarrowia lipolytica – assessing the potential of micro-scale fermentation analysis in cell factory design and bioreaction optimization. Front Bioeng Biotechnol. 2020;8:29.
  • Ludmila BR, Joanna H. β-Carotene—properties and production methods. Food Qual Saf. 2018;2(2):69–74.
  • Yan GL, Liang HY, Duan CQ, et al. Enhanced production of β-Carotene by recombinant industrial wine yeast using grape juice as substrate. Curr Microbiol. 2012;64(2):152–158.
  • Gupta I, Adin SN, Panda BP, et al. β-Carotene-production methods, biosynthesis from Phaffia rhodozyma, factors affecting its production during fermentation, pharmacological properties: a review. Biotech and App Biochem. 2022;69(6):2517–2529.
  • Lv PJ, Qiang S, Liu L, et al. Dissolved-oxygen feedback control fermentation for enhancing β-carotene in engineered Yarrowia lipolytica. Sci Rep. 2020;10(1):17114.
  • Ribeiro BD, Barreto DW, Coelho MAZ, et al. Technological aspects of β-Carotene production. Food Bioprocess Technol. 2011;4(5):693–701.
  • Bhosale PB, Gadre RV. Production of beta-carotene by a mutant of rhodotorula glutinis. Appl Microbiol Biotechnol. 2001;55(4):423–427.
  • Larroude M, Celinska E, Back A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol Bioeng. 2018;115(2):464–472.
  • Wu Y, Yan P, Li Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply. Front Bioeng Biotechnol. 2020;8:585.
  • Li Y, Lin Z, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng. 2015;31:13–21.
  • Wu T, Ye L, Zhao D, et al. Membrane engineering – a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng. 2017;43(Pt A):85–91.
  • Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019;10(1):2142.
  • Liu Z, Zhang Y, Nielsen J. Synthetic biology of yeast. Biochemistry. 2019;58(11):1511–1520.
  • Ma YR, Wang KF, Wang WJ, et al. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. Bioresour Technol. 2019;281:449–456.
  • Xue Z, Sharpe PL, Hong SP, et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol. 2013;31(8):734–740.
  • Ma Y, Liu N, Greisen P, et al. Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica. Nat Commun. 2022;13(1):572.
  • Meadows AL, Hawkins KM, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature. 2016;537(7622):694–697.
  • Sun L, Kwak S, Jin YS. Vitamin a production by engineered Saccharomyces cerevisiae from xylose via two-phase in situ extraction. ACS Synth Biol. 2019;8(9):2131–2140.
  • Sun L, Lee JW, Yook S, et al. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun. 2021;12(1):4975.
  • Kildegaard KR, Adiego-Pérez B, Doménech Belda D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin. Synth Syst Biotechnol. 2017;2(4):287–294.
  • Zhou P, Li M, Shen B, et al. Directed coevolution of β-Carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin. J Agric Food Chem. 2019;67(4):1072–1080.
  • Zhang C, Chen X, Too HP. Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol. 2020;104(13):5725–5737.
  • Czajka JJ, Nathenson JA, Benites VT, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone. Microb Cell Fact. 2018;17(1):136.
  • López J, Essus K, Kim IK, et al. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:84.
  • Lu Y, Yang Q, Lin Z, et al. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Microb Cell Fact. 2020;19(1):49.
  • Meng N, Yan GL, Zhang D, et al. Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae. Mol Biol Rep. 2019;46(6):6311–6323.
  • López J, Bustos D, Camilo C, et al. Engineering Saccharomyces cerevisiae for the overproduction of β-ionone and its precursor β-carotene. Front Bioeng Biotechnol. 2020;8:578793.
  • Werner N, Ramirez-Sarmiento CA, Agosin E. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories. Food Chem. 2019;299:125089.
  • Fathi Z, Tramontin LRR, Ebrahimipour G, et al. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates. FEMS Yeast Res. 2021;21(1):foaa068.
  • Zhang XK, Wang DN, Chen J, et al. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica. Biotechnol Lett. 2020;42(6):945–956.
  • Gao S, Tong Y, Zhu L, et al. Production of β-carotene by expressing a heterologous multifunctional carotene synthase in Yarrowia lipolytica. Biotechnol Lett. 2017;39(6):921–927.
  • Liu L, Qu YL, Dong GR, et al. Elevated β-carotene production using codon-adapted CarRA&B and metabolic balance in engineered Yarrowia lipolytica. Front Microbiol. 2021;12:627150.
  • Li S, Ma L, Fu W, et al. Programmable synthetic upstream activating sequence library for fine-tuning gene expression levels in Saccharomyces cerevisiae. ACS Synth Biol. 2022;11(3):1228–1239.
  • Naseri G, Behrend J, Rieper L, et al. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors. Nat Commun. 2019;10(1):2615.
  • Bu X, Lin JY, Duan CQ, et al. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microb Cell Fact. 2022;21(1):3.
  • Zhao Y, Zhang Y, Nielsen J, et al. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng. 2021;118(5):2043–2052.
  • Bu X, Lin JY, Cheng J, et al. Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. Biotechnol Biofuels. 2020;13(1):168.
  • Sun L, Atkinson CA, Lee YG, et al. High‐level β‐carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Biotechnol Bioeng. 2020;117(11):3522–3532.
  • Reyes LH, Gomez JM, Kao KC. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng. 2014;21:26–33.
  • Li Q, Sun Z, Li J, et al. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. FEMS Microbiol Lett. 2013;345(2):94–101.
  • Xie W, Liu M, Lv X, et al. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng. 2014;111(1):125–133.
  • Verwaal R, Wang J, Meijnen JP, et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from xanthophyllomyces dendrorhous. Appl Environ Microbiol. 2007;73(13):4342–4350.
  • Cheng MH, Sun L, Jin YS, et al. Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to β-carotene using an engineered Saccharomyces cerevisiae. Bioresour Technol. 2020;308:123275.
  • Li J, Shen J, Sun Z, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae. Front Microbiol. 2017;8:1116.
  • Sun Y, Sun L, Shang F, et al. Enhanced production of β-carotene in recombinant Saccharomyces cerevisiae by inverse metabolic engineering with supplementation of unsaturated fatty acids. Process Biochem. 2016;51(5):568–577.
  • Cui Z, Zheng H, Zhang J, et al. A CRISPR/Cas9-mediated, homology-independent tool developed for targeted genome integration in Yarrowia lipolytica. Appl Environ Microbiol. 2021;87(6)
  • Liu R, Liu L, Li X, et al. Engineering yeast artificial core promoter with designated base motifs. Microb Cell Fact. 2020;19(1):38.
  • Cui Z, Jiang X, Zheng H, et al. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica. Biotechnol Bioeng. 2019;116(2):354–363.
  • Gao S, Tong Y, Zhu L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng. 2017;41:192–201.
  • Liu X, Liu M, Zhang J, et al. Mapping of nonhomologous end joining-mediated integration facilitates genome-scale trackable mutagenesis in Yarrowia lipolytica. ACS Synth Biol. 2021;11(1):216–227.
  • Yang F, Liu L, Qiang S, et al. Enhanced β-carotene production by overexpressing the DID2 gene, a subunit of ESCRT complex, in engineered Yarrowia lipolytica. Biotechnol Lett. 2021;43(9):1799–1807.
  • Liu M, Zhang J, Ye J, et al. Morphological and metabolic engineering of Yarrowia lipolytica to increase β-carotene production. ACS Synth Biol. 2021;10(12):3551–3560.
  • Qiang S, Wang J, Xiong XC, et al. Promoting the synthesis of precursor substances by overexpressing hexokinase (Hxk) and hydroxymethylglutaryl-CoA synthase (Erg13) to elevate β-carotene production in engineered Yarrowia lipolytica. Front Microbiol. 2020;11:1346.
  • Worland AM, Czajka JJ, Xing Y, et al. Analysis of Yarrowia lipolytica growth, catabolism, and terpenoid biosynthesis during utilization of lipid-derived feedstock. Metab Eng Commun. 2020;11:e00130.
  • Xu P, Qiao K, Ahn WS, et al. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci USA. 2016;113(39):10848–10853.
  • Huang YY, Jian XX, Lv YB, et al. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. J Biotechnol. 2018;281:106–114.
  • Yan GL, Wen KR, Duan CQ. Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae. Curr Microbiol. 2012;64(2):159–163.
  • Lu Z, Peng B, Ebert BE, et al. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun. 2021;12(1):1051.
  • Amiri P, Shahpiri A, Asadollahi MA, et al. Metabolic engineering of Saccharomyces cerevisiae for linalool production. Biotechnol Lett. 2016;38(3):503–508.
  • Scalcinati G, Partow S, Siewers V, et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:117.
  • Yuan J, Ching CB. Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:38.
  • Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528–532.
  • Liu H, Marsafari M, Deng L, et al. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica. Appl Microbiol Biotechnol. 2019;103(7):3167–3179.
  • Zhao X, Shi F, Zhan W. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae. Lett Appl Microbiol. 2015;61(4):354–360.
  • Jo JH, Oh SY, Lee HS, et al. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol J. 2015;10(12):1935–1943.
  • Wang N, Chi P, Zou Y, et al. Metabolic engineering of Yarrowia lipolytica for thermoresistance and enhanced erythritol productivity. Biotechnol Biofuels. 2020;13:176.
  • Jin CC, Zhang JL, Song H, et al. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microb Cell Fact. 2019;18(1):77.
  • Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. J Agric Food Chem. 2017;65(37):8162–8170.
  • Chatzivasileiou AO, Ward V, Edgar SM, et al. Two-step pathway for isoprenoid synthesis. Proc Natl Acad Sci USA. 2019;116(2):506–511.
  • Kabernick DC, Gostick JT, Ward VCA. Kinetic characterization and modeling of sequentially entrapped enzymes in 3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene via the isopentenol utilization pathway. Biotechnol Bioeng. 2022;119(5):1239–1251.
  • Liu H, Chen SL, Xu JZ, et al. Dual regulation of cytoplasm and peroxisomes for improved Α-Farnesene production in recombinant Pichia pastoris. ACS Synth Biol. 2021;10(6):1563–1573.
  • Luo Z, Liu N, Lazar Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab Eng. 2020;61:344–351.
  • Clomburg JM, Qian S, Tan Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proc Natl Acad Sci USA. 2019;116(26):12810–12815.
  • Ma T, Shi B, Ye Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng. 2019;52:134–142.
  • Pomraning KR, Bredeweg EL, Kerkhoven EJ, et al. Regulation of yeast-to-hyphae transition in Yarrowia lipolytica. mSphere. 2018;3(6):e00541-18.
  • Cervantes-Chávez JA, Ruiz-Herrera J. STE11 disruption reveals the central role of a MAPK pathway in dimorphism and mating in Yarrowia lipolytica. FEMS Yeast Res. 2006;6(5):801–815.
  • Cervantes-Chávez JA, Ruiz-Herrera J. The regulatory subunit of protein kinase a promotes hyphal growth and plays an essential role in Yarrowia lipolytica. FEMS Yeast Res. 2007;7(6):929–940.
  • Zhao XF, Li M, Li YQ, et al. The TEA/ATTS transcription factor YlTec1p represses the yeast-to-hypha transition in the dimorphic yeast Yarrowia lipolytica. FEMS Yeast Res. 2013;13(1):50–61.
  • Hammer SK, Avalos JL. Harnessing yeast organelles for metabolic engineering. Nat Chem Biol. 2017;13(8):823–832.
  • Guo Q, Shi TQ, Peng QQ, et al. Harnessing Yarrowia lipolytica peroxisomes as a subcellular factory for α-Humulene overproduction. J Agric Food Chem. 2021;69(46):13831–13837.
  • Zhu ZT, Du MM, Gao B, et al. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction. Metab Eng. 2021;68:232–245.
  • Ma Y, Li J, Huang S, et al. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab Eng. 2021;68:152–161.
  • Rabeharindranto H, Castaño-Cerezo S, Lautier T, et al. Enzyme-fusion strategies for redirecting and improving carotenoid synthesis in S. cerevisiae. Metab Eng Commun. 2019;8:e00086.
  • Bai Q, Cheng S, Zhang J, et al. Establishment of genomic library technology mediated by non-homologous end joining mechanism in Yarrowia lipolytica. Sci China Life Sci. 2021;64(12):2114–2128.
  • Liu Y, Jiang X, Cui Z, et al. Engineering the oleaginous yeast Yarrowia lipolytica for production of α-farnesene. Biotechnol Biofuels. 2019;12:296.
  • Liu X, Cui Z, Su T, et al. Identification of genome integration sites for developing a CRISPR-based gene expression toolkit in Yarrowia lipolytica. Microb Biotechnol. 2022;15(8):2223–2234.
  • Arora N, Philippidis GP. Microalgae strain improvement strategies: random mutagenesis and adaptive laboratory evolution. Trends Plant Sci. 2021;26(11):1199–1200.
  • Wang Z, Zhou L, Lu M, et al. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl Microbiol Biotechnol. 2021;105(4):1745–1758.
  • Patel AK, Saini JK, Singhania RR, et al. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresour Technol. 2022;344(Pt B):126247.
  • Godara A, Rodriguez MAG, Weatherston JD, et al. Beneficial mutations for carotenoid production identified from laboratory-evolved Saccharomyces cerevisiae. J Ind Microbiol Biotechnol. 2019;46(12):1793–1804.
  • Wang M, Liu GN, Liu H, et al. Engineering global transcription to tune lipophilic properties in Yarrowia lipolytica. Biotechnol Biofuels. 2018;11:115.
  • Zhang C, Too HP. Revalorizing lignocellulose for the production of natural pharmaceuticals and other high value bioproducts. Curr Med Chem. 2019;26(14):2475–2484.
  • de Paula RG, Antoniêto ACC, Ribeiro LFC, et al. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv. 2019;37(6):107347.
  • Kim SR, Ha SJ, Wei N, et al. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012;30(5):274–282.
  • Sun T, Yu Y, Wang K, et al. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: a review. Bioresour Technol. 2021;337:125484.
  • Ledesma-Amaro R, Lazar Z, Rakicka M, et al. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng. 2016;38:115–124.
  • Kwak S, Jo JH, Yun EJ, et al. Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnol Adv. 2019;37(2):271–283.
  • Sun L, Jin YS. Xylose assimilation for the efficient production of biofuels and chemicals by engineered Saccharomyces cerevisiae. Biotechnol J. 2021;16(4):e2000142.
  • Shi F, Zhan W, Li YF, et al. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma. World J Microbiol Biotechnol. 2014;30(1):125–133.
  • Luo H, Niu Y, Duan C, et al. A pH control strategy for increased β-carotene production during batch fermentation by recombinant industrial wine yeast. Process Biochem. 2013;48(2):195–200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.